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Abstract. This paper is concerned with the existence and asymptotic behavior of solu-
tions of the Cauchy problem for an abstract model for vertical vibrations of a viscous
beam in Banach spaces. First is obtained a local solution of the problem by using the
method of successive approximations, a characterization of the derivative of the non-
linear term of the equation defined in a Banach space and the Ascoli–Arzelà theorem.
Then the global solution is found by the method of prolongation of solutions. The
exponential decay of solutions is derived by considering a Lyapunov functional.
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1 Introduction

The small transverse vibrations due to flexion of an extensible beam, of length L, whose ends
are held at fixed distance apart can be described by the following equation

u′′(x, t) + σ
∂4u(x, t)

∂x4 +

[
m0 + m1

∫ L

0

(
∂u(x, t)

∂x

)2

dx

](
−∂2u(x, t)

∂x2

)
= 0, (1.1)

where 0 < x < L and t > 0. Here u(x, t) denotes the displacement of the point x of the beam
at the instant t and σ, m0 and m1 are positive constants. The nonlinear term indicates the
change in the tension of the beam due to its extensibility. Equation (1.1) was introduced by
Woinowsky-Krieger [28].

Equation (1.1) with σ = 0 describes the small transverse vibrations of an elastic stretched
string of length L. This equation was introduced by Kirchhoff [16]. Analyzing the same
phenomenon, Carrier [7] obtained the following model:

u′′(x, t) +
[

m0 + m1

∫ L

0
|u(x, t)|2 dx

] (
−∂2u(x, t)

∂x2

)
= 0. (1.2)
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Let Ω ⊂ Rn be a bounded open set of Rn. A generalization of (1.1) and (1.2) is the
following equation:

u′′(x, t) + σ(−∆)2u(x, t) +
[

m0 + m1

∫
Ω
|(−∆)αu(x, t)|2 dx

]
(−∆u(x, t)) = 0, (1.3)

where x ∈ Ω, t > 0 and 0 ≤ α ≤ 1.
An abstract formulation for a mixed problem of equation (1.3) is the following:∣∣∣∣∣ u′′(t) + σA2u(t) + M(

∣∣Aαu(t)|2
)

Au(t) = 0 in H, t > 0

u(0) = u0, u′(0) = u1,
(1.4)

where M(ξ) is a smooth function satisfying M(ξ) ≥ m0 > 0, A is an unbounded self-adjoint
operator of a real separable Hilbert space H with A coercive and A−1 compact. Here σ and α

are real numbers such that σ ≥ 0 and 0 ≤ α ≤ 1.
The existence of a global solution of (1.4) was obtained by Medeiros [22]. The decay of

solution with a dissipation in the equation of (1.4) was studied by [3–5, 9, 25].
There are many papers that analyze the equation (1.4) with σ = 0. Among of then we

can mention [2, 6, 8, 10, 11, 19, 21, 23, 26]. In Medeiros et al. [24] there are an extensive list of
references on problem (1.4) when σ = 0.

In the above papers the Faedo–Galerkin method is used. The study of hyperbolic problems
using the theory of semigroups can be seen in J. A. Goldstein [13] and [12] for the linear and
nonlinear case, respectively.

In Izaguirre et al. [14] is formulated problem (1.4), with σ = 0, in the context of Banach
space. More precisely, they consider the problem∣∣∣∣∣ Bu′′(t) + M(‖u(t)‖β

W)Au(t) = 0 in V ′, t > 0

u(0) = u0, u′(0) = u1, u0 6= 0,
(1.5)

where V is a real separable Hilbert space with dual V ′; A, B : V → V ′ are two positive linear
symmetric operators with A−1 and B−1 not neccessarily compact; W is a real Banach space
such that V is continuously embedded in W and β is a real number with β > 1. They obtain
a local solution for (1.5).

Also, with the introduction of the damping δBu′(t), δ > 0, in the equation of (1.5), Izaguirre
et al. [15] obtain a global solution and exponential decay of the energy for (1.5).

Considering B ≡ I and introducing the expression F(u) + (1 + α ‖u‖β)Au′ in the problem
(1.5), where F is an operator and α > 0, β ≥ 2, Araruna and Carvalho [1] studied the existence
of the global solution, uniqueness and exponential decay.

Motivated by (1.4) and (1.5), we formulate the following problem:∣∣∣∣∣ u′′(t) + M(‖u(t)‖β
W)Au(t) + A2u(t) = 0 in V ′, t > 0

u(0) = u0, u′(0) = u1.
(1.6)

Note that the nonlinear term M(‖u‖2
D(Aα))Au of (1.4) is a particular case of the nonlinear

term M(‖u‖β
W)Au of (1.6) since the Hilbert space D(Aα) is a particular case of the Banach

space W. Thus (1.6) generalizes (1.4).
The results of [22] are obtained in the framework of Hilbert spaces and under the hypoth-

esis A−1 a compact operator. We want to work in the framework of Banach spaces and where
A−1 is not necessarily compact, therefore the results of [22] do not apply in our case.
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In our approach, we need to obtain two a priori estimates but we cannot differentiate two
times with respect to t the term ‖u(t)‖β

W , β > 1. To overcome this difficulty we introduce a
strong dissipation in equation (1.6), more precisely, we consider∣∣∣∣∣∣∣

u′′(t) + M(‖u(t)‖β
W)Au(t) + A2u(t) +

[
1 + K(t)

∣∣∣A 3
2 u(t)

∣∣∣β] Au′(t) = 0, t > 0

u(0) = u0, u′(0) = u1,
(1.7)

where M and K are functions satisfying suitable conditions.
It is possible to solve problem (1.6) with a weak internal dissipation δu′, δ > 0, but in

this case we obtain only solutions under the condition that the initial data belong to a ball
whose radius depends on δ. We are interested in obtaining global solutions of (1.6) without
restrictions on the norms of the initial data. For this purpose, we consider the dissipation
of (1.7).

The objective of this paper is to investigate the existence and asymptotic behavior of so-
lutions of problem (1.7). The plan is as follows: first, with general functions M(ξ) and K(t),
we obtain a local solution of (1.7). Then for particular M(ξ) and K(t) increasing in t, we
get a global solution of (1.7). Finally, with K(t) = K positive constant and particular M(t, ξ)

with M(t, ξ) decreasing in t, we derive a global solution of (1.7). This last solution decays
exponentially in t.

To obtain a solution of (1.7), we proceed in the following way. First, by the successive ap-
proximation method, the characterization of the derivative of the nonlinear term M(‖u(t)‖β

W)

and the Ascoli–Arzelà theorem, we obtain a local solution of (1.7). Then by the method of pro-
longation of solutions, we deduce the existence of a global solutions of (1.7). The exponential
decay of the energy is derived by considering a Lyapunov functional (see V. Komornik and
E. Zuazua [17] and V. Komornik [18]). In the last section, we give some examples.

2 Notations and results

Let V and H be two real Hilbert spaces whose scalar product and norm are represented,
respectively, by ((u, v)), ‖u‖ and (u, v), |u|. Here H is separable.

Let us represent by A the unbounded self-adjoint operator of H defined by the triplet
{V, H; ((u, v))}. We have

(Au, u) ≥ γ0 |u|2 ,

∀u ∈ D(A), where γ0 is a positive constant (see Lions [20]).
We consider the following hypotheses:

V is densely and continuously embedded in H, (2.1)

W is a real Banach space with dual W ′ strictly convex, (2.2)

D (A) is continuously embedded in W. (2.3)

Consider the functions M(ξ) and K(t) satisfying

M ∈ C1 ([0, ∞ )) , M(ξ) ≥ m0 > 0, ∀ξ ≥ 0 (m0 constant) (2.4)

and
K ∈ L∞

loc (0, ∞) and K(t) ≥ 0, a.e. in (0, ∞). (2.5)

Under the above considerations, we have the following result.
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Theorem 2.1 (Local solution). Assume hypotheses (2.1)–(2.5). Consider a real number β with β > 1
and

u0 ∈ D(A
5
2 ), u1 ∈ D(A

3
2 ). (2.6)

Then for T0 = m0(ln 2)
N1

> 0, where N1 will be defined in (2.15), there exists a unique function u :
[0, T0]→ R in the class ∣∣∣∣∣∣∣∣

u ∈ L∞(0, T0; D(A
5
2 ))

u′ ∈ L∞(0, T0; D(A
3
2 )) ∩ L2(0, T0; D(A2))

u′′ ∈ L∞(0, T0; D(A
1
2 )),

(2.7)

satisfying

(P1)

∣∣∣∣∣∣∣
u′′ + M(‖u‖β

W)Au + A2u +

[
1 + K

∣∣∣A 3
2 u
∣∣∣β] Au′ = 0, in L∞(0, T0; D(A

1
2 ))

u(0) = u0, u′(0) = u1.

Remark 2.2. By hypotheses (2.1) and (2.3), we obtain, respectively, two positive constants k0

and k1 such that
|u| ≤ k0 ‖u‖ , ∀u ∈ V (2.8)

and
‖u‖W ≤ k1 ‖u‖D(A) , ∀u ∈ D (A) . (2.9)

Remark 2.3. Let θ1 ≥ θ2 ≥ 0 be real numbers. Then D(Aθ1) is continuously embedded in
D(Aθ2) and ∣∣∣Aθ2 u

∣∣∣2 ≤ 1

γ
2(θ1−θ2)
0

∣∣∣Aθ1 u
∣∣∣2 , ∀u ∈ D(Aθ1). (2.10)

Remark 2.4. As a consequence of (2.9) and (2.10), we obtain the following:

‖u‖W ≤ k2 ‖u‖D(A
3
2 )

, ∀u ∈ D(A
3
2 ), (2.11)

‖u‖W ≤ k3 ‖u‖D(A
5
2 )

, ∀u ∈ D(A
5
2 ), (2.12)

‖u‖W ≤ k4 ‖u‖D(A2) , ∀u ∈ D(A2), (2.13)

where ki, i = 2, 3, 4, are positive constants.

In what follows, we introduce the real number T0 > 0 mentioned in Theorem 2.1. In fact,
consider u0 and u1 satisfying hypothesis (2.6). Take a real number N2 > 0 such that∣∣∣A 3

2 u1
∣∣∣2 + M

(∥∥u0∥∥β

W

) ∣∣A2u0∣∣2 + ∣∣∣A 5
2 u0
∣∣∣2 <

N2

2
. (2.14)

Consider also the constant
N1 = βRk2kβ−1

3 Nβ, (2.15)

where R = maxξ∈[0,(k3 N)β] |M
′(ξ)| and k2 and k3 were defined in Remark 2.4. Then T0 is given

by

0 < T0 =
m0(ln 2)

N1
. (2.16)
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In order to obtain the global solution of (1.7), we introduce the following hypotheses:

M(ξ) = m0 + m1ξ, ∀ξ ≥ 0, (2.17)

where m0 and m1 are constants such that m0 > 0 and m1 ≥ 0 and

K ∈ L∞
loc (0, ∞) with K(t) > 0 a.e. in (0, ∞) and

1
K
∈ L1 (0, ∞) . (2.18)

Also we consider the exponent 2β instead β in the last term of the equation. For the justifica-
tion, see Remark 3.6.

Theorem 2.5 (Global solution). Assume hypotheses (2.1)–(2.3), (2.17) and (2.18). Consider β a real
number with β > 1 and

u0 ∈ D(A
5
2 ), u1 ∈ D(A

3
2 ).

Then there exists a unique function u : (0, ∞)→ R in the class∣∣∣∣∣∣∣∣
u ∈ L∞(0, ∞; D(A

5
2 ))

u′ ∈ L∞(0, ∞; D(A
3
2 )) ∩ L2(0, ∞; D(A2))

u′′ ∈ L∞(0, ∞; D(A
1
2 )),

(2.19)

satisfying

(P2)

∣∣∣∣∣∣∣
u′′ + M(‖u‖β

W)Au + A2u +

[
1 + K

∣∣∣A 3
2 u
∣∣∣2β
]

Au′ = 0, in L∞
loc(0, ∞; D(A

1
2 ))

u(0) = u0, u′(0) = u1.

The asymptotic behavior of solutions of (1.7) is obtained under the following hypothesis:

M(t, ξ) = m0 + m1(t)ξ, (2.20)

where
m0 > 0 (m0 constant);

m1(t) =
1

z(t)
, z(t) > 0 , m1(t) ≤ m2 , t ≥ 0 (m2 constant);

z ∈ C1([0, ∞ )), z′(t) ≥ C0 > 0, |m′(t)| ≤ C1 , t ≥ 0 (C0 and C1 constants);

m1 ∈ L1(0, ∞).

The energy associated to problem (P2) with the above M(t, ξ) is the following:

E(t) =
∥∥u′(t)

∥∥2
+ M(t, ‖u‖β

W) |Au(t)|2 +
∣∣∣A 3

2 u(t)
∣∣∣2 , ∀t ≥ 0. (2.21)

Theorem 2.6 (Decay of the energy). Assume hypotheses (2.1)–(2.3) and (2.20). Consider real num-
bers β, K with β ≥ 2, K ≥ β2(k1k7)

β

2C0
> 0 and

u0 ∈ D(A
5
2 ), u1 ∈ D(A

3
2 ).

Then there exists a unique function u in the class (2.19), u solution of (P2) with M(t, ξ) given by
(2.20) and K(t) is the function constant K. Furthermore, there exists a positive constant τ0 such that

E(t) ≤ 3E(0) exp(− 2
3 τ0t), ∀t ≥ 0. (2.22)

Note that k1 was defined in (2.9) and k7 denotes the immersion constant of D(A
3
2 ) into

D(A), see Remark 2.3.

Remark 2.7. To obtain the uniqueness of solutions of the above theorem it suffices to consider
K a positive constant.
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3 Proof of the results

In order to prove the results we need some previous propositions.

Proposition 3.1. Let M(ξ) be a function M : [0, ∞[ → R of class C1 and u be a vectorial function
such that u ∈ C1([0, ∞[ ; W), u(t) 6= 0, ∀t ≥ 0. Consider hypothesis (2.2) and β a real number with
β ≥ 1. Then the Leibniz derivative of M(‖u‖β

W) is given by

d
dt

{
M(‖u‖β

W)
}
= βM′(‖u‖β

W) ‖u‖β−1
W

〈
Ju(t)
‖u‖W

, u′(t)
〉

W ′×W
, t ≥ 0,

where J : W →W ′ is the duality application defined by

〈Ju, u〉W ′×W = ‖u‖2
W , ‖Ju‖W ′ = ‖u‖W , ∀u ∈W.

Furthermore, if β > 1 and u(t0) = 0, then
d
dt

{
M(‖u(t0)‖β

W)
}
= 0.

For the proof of the Proposition 3.1, see [14] and [15].
Now consider the real functions µ1 and µ2 satisfying the following:

µ1 ∈W1,∞
loc (0, ∞) with µ1(t) ≥ C∗ > 0, a.e. in (0, ∞) (C∗ constant) (3.1)

and
µ2 ∈ L∞

loc(0, ∞) with µ2(t) ≥ C∗∗ > 0, a.e. in (0, ∞) (C∗∗ constant). (3.2)

Proposition 3.2. Assume hypotheses (3.1) and (3.2). Consider α and δ two real numbers such that
α ≥ 0 and δ ≥ 0. If u0 ∈ D(Aα+2) and u1 ∈ D(Aα+1), then there exists a unique function u in the
class ∣∣∣∣∣∣∣

u ∈ L∞
loc(0, ∞; D(Aα+2))

u′ ∈ L∞
loc(0, ∞; D(Aα+1))

u′′ ∈ L∞
loc(0, ∞; D(Aα))

such that u is a solution of the problem∣∣∣∣∣ u′′ + µ1Au + A2u + δµ2Au′ = 0, in L∞
loc(0, ∞; D(Aα))

u(0) = u0, u′(0) = u1.

Proof. We apply the Faedo–Galerkin method. Let {w1, w2, . . . } be a Hilbert basis of H.
Consider the basis

{
A−2α−2w1, A−2α−2, w2, . . .

}
of D(Aα+2). Use the notation zj = A−2α−2wj,

j = 1, 2, . . . and denote by Vm = [z1, z2, . . . , zm] the subspace of D(Aα+2) generated by
z1, z2, . . . , zm. Consider the approximate solution

um(t) =
m

∑
j=1

gjm(t)zj

defined by the system

(PA)

∣∣∣∣∣∣∣∣∣∣
(u′′m(t), A2α+2zj) + µ1(t)(Aum(t), A2α+2zj) + (A2um(t), A2α+2zj)

+ δµ2(t)(Au′m(t), A2α+2zj) = 0, j = 1, 2, . . . , m

um(0) = u0
m → u0 in D(Aα+2), u0

m ∈ Vm

u′m(0) = u1
m → u1in D(Aα+1), u1

m ∈ Vm.

System (PA) has a solution on a certain interval [0, tm ), which can be extended by the next
priori estimates, over the interval [0, T] for all real number T > 0.
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Estimates

Taking zj = 2u′m(t) in (PA)1, we obtain

d
dt

[∣∣∣Aα+1u′m(t)
∣∣∣2 + µ1(t)

∣∣∣Aα+ 3
2 um(t)

∣∣∣2 + ∣∣Aα+2um(t)
∣∣2]+ 2δµ2(t)

∣∣∣Aα+ 3
2 u′m(t)

∣∣∣2
= µ′1(t)

∣∣∣Aα+ 3
2 um(t)

∣∣∣2 .

Integrating the above equality from 0 to t, t ≤ tm and using (3.1) and (3.2), we get∣∣∣Aα+1u′m(t)
∣∣∣2 + µ1(t)

∣∣∣Aα+ 3
2 um(t)

∣∣∣2 + ∣∣Aα+2um(t)
∣∣2 + 2δC∗∗

∫ t

0

∣∣∣Aα+ 3
2 u′m(s)

∣∣∣2 ds

≤ C +
∫ t

0
µ1(s)

µ′1(s)
µ1(s)

∣∣∣Aα+ 3
2 um(s)

∣∣∣2 ds,
(3.3)

where C > 0 is a constant independent of m and t.
Applying Gronwall’s inequality in (3.3) and using (3.1), we obtain∣∣∣Aα+1u′m(t)

∣∣∣2 + C∗
∣∣∣Aα+ 3

2 um(t)
∣∣∣2 + ∣∣Aα+2um(t)

∣∣2 + 2δC∗∗
∫ t

0

∣∣∣Aα+ 3
2 u′m(s)

∣∣∣2 ds ≤ CT, (3.4)

∀t ∈ [0, tm ), tm ≤ T, where

CT = C exp
[∫ T

0

µ′1(s)
µ1(s)

ds
]

.

As a consequence of estimates (3.4), we deduce, respectively, the existence of a subsequence
of (um)m∈N, still denoted by (um)m∈N, such that∣∣∣∣∣∣∣∣

um → u weak star in L∞(0, T; D(Aα+2))

u′m → u′ weak star in L∞(0, T; D(Aα+1))

u′m → u′ weak in L2(0, T; D(Aα+ 3
2 )).

(3.5)

Now, multiplying the approximate equation (PA)1 by θ ∈ D(0, T), integrating the result
of 0 to T and using the convergences (3.5), we get

u′′ + µ1Au + A2u + δµ2Au′ = 0 in L∞(0, T; D(Aα)). (3.6)

Finally, using the diagonal process we obtain equality (3.6) in L∞
loc(0, ∞; D(Aα)). By stan-

dard arguments, we verify the initial conditions and the uniqueness of the solutions. This
concludes the proof of Proposition 3.2.

3.1 Proof of Theorem 2.1

A sketch of the proof of Theorem 2.1 is as follows. First, we approximate u0 and u1 by
functions u0

l and u1
l belonging to D(A4) and D(A3), respectively. Then by Proposition 3.1 and

3.2 and the method of successive approximations, we determine the solution ul of the problem

(Pl)

∣∣∣∣∣∣∣
u′′l + M(‖ul‖

β
W)Aul + A2ul +

[
1 + K

∣∣∣A 3
2 ul

∣∣∣β] Au′l = 0

ul(0) = u0
l , u′l(0) = u1

l .
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Estimates obtained for the solution ul allow us to pass to the limit in the equation in (Pl).
The limit of the nonlinear terms follows by applying Proposition 3.1 and the Ascoli–Arzelà
theorem for real functions.

We begin the proof. As a consequence of (2.14), we can choose η > 0 such that[∣∣∣A 3
2 u1
∣∣∣2 + η

]
+
[

M(
∥∥u0∥∥β

W) + η
] [∣∣A2u0∣∣2 + η

]
+

[∣∣∣A 5
2 u0
∣∣∣2 + η

]
<

N2

2
. (3.7)

Consider sequences (u0
l )l∈N and (u1

l )l∈N of vectors of D(A4) and D(A3), respectively, such
that

u0
l → u0 in D(A

5
2 ) (3.8)

and
u1

l → u1 in D(A
3
2 ). (3.9)

Therefore it follows from (2.4), (2.12) and (3.8) the convergence

M(
∥∥u0

l

∥∥β

W)→ M(
∥∥u0∥∥β

W). (3.10)

As a consequence of (2.10) and (3.8)–(3.10), there exists l0(η) such that for l ≥ l0(η), we
have ∣∣∣∣∣∣∣

∣∣∣A 5
2 u0

l

∣∣∣2 ≤ ∣∣∣A 5
2 u0
∣∣∣2 + η,

∣∣A2u0
l

∣∣2 ≤ ∣∣A2u0∣∣2 + η

M(
∥∥u0

l

∥∥β

W) ≤ M(
∥∥u0∥∥β

W) + η,
∣∣∣A 3

2 u1
l

∣∣∣2 ≤ ∣∣∣A 3
2 u1
∣∣∣2 + η.

(3.11)

Then inequalities (3.7) and (3.11) provide∣∣∣A 3
2 u1

l

∣∣∣2 + M(
∥∥u0

l

∥∥β

W)
∣∣A2u0

l

∣∣2 + ∣∣∣A 5
2 u0

l

∣∣∣2 <
N2

2
, (3.12)

∀l ≥ l0(η).
Let v be a function satisfying

v ∈ L∞(0, T0; D(A4)), v′ ∈ L∞(0, T0; D(A3)), v′′ ∈ L∞(0, T0; D(A2)) (3.13)

and

max
0≤t<≤T0

[∣∣∣A 3
2 v′(t)

∣∣∣2 + m0
∣∣A2v(t)

∣∣2 + ∣∣∣A 5
2 v(t)

∣∣∣2 + 2
∫ t

0

∣∣A2v′(s)
∣∣2 ds

]
≤ N2. (3.14)

Now we consider following technical lemma.

Lemma 3.3. Suppose that v satisfies (3.13) and (3.14). Then∣∣∣∣ d
dt

{
M(‖v(t)‖β

W)
}∣∣∣∣ ≤ N1, (3.15)

∀t ∈ [0, T0] , where N1 was defined in (2.15).

The above Lemma follows by using (2.4), (2.11), (2.12), (3.14) and Proposition 3.1.

Remark 3.4. We note that inequality (3.15) remains valid even when v(t) = 0, for some t ∈
[0, T], by virtue of Proposition 3.1.
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In the sequel we will use the method of successive approximations to obtain the solution
of problem (Pl). Thus, we consider the following problem:

(Pl,1)

∣∣∣∣∣∣∣
u′′l,1(t)+M(

∥∥u0
l

∥∥β

W)Aul,1(t)+A2ul,1(t) +
[

1+K(t)
∣∣∣A 3

2 u0
l

∣∣∣β]Au′l,1(t)=0, t ∈ [0, T0]

ul,1(0) = u0
l , u′l,1(0) = u1

l .

It follows from hypotheses (2.4), (2.5) and Proposition 3.2 that ul,1 belongs to class (3.13).
Now taking the scalar product of H of both sides of the equation in (Pl,1) with 2A3u′l,1, inte-
grating this result on [0, t], 0 < t ≤ T0, using (3.12) and the hypothesis (2.4), we obtain that
ul,1 satisfies (3.14).

Define the sequence (ul,ν)ν≥2, where ul,ν is the solution of the problem

(Pl,ν)

∣∣∣∣∣∣∣
u′′l,ν(t) + M(‖ul,ν−1(t)‖

β
W)Aul,ν(t) + A2ul,ν(t)+

[
1+K(t)

∣∣∣A 3
2 ul,ν−1(t)

∣∣∣β]Au′l,ν(t)=0

ul,ν(0) = u0
l , u′l,ν(0) = u1

l .

Using induction we shall prove that ul,ν satisfies the (3.13) and (3.14). In fact, assume that
ul,ν−1 satisfies (3.13) and (3.14). Then, by Lemma 3.3, we have∣∣∣∣ d

dt

{
M(‖ul,ν−1‖

β
W)
}∣∣∣∣ ≤ N1,

∀t ∈ [0, T0].
Also by Proposition 3.2, we derive that ul,ν belongs to class (3.13).
Taking the scalar product of H of both sides of equation (Pl,ν)1 with 2A3u′l,ν(t), applying

similar arguments used to prove that ul,1 satisfies (3.14) and using the last inequality, we obtain∣∣∣A 3
2 u′l,ν(t)

∣∣∣2 + M(‖ul,ν−1‖
β
W)
∣∣A2ul,ν(t)

∣∣2 + ∣∣∣A 5
2 ul,ν(t)

∣∣∣2 + 2
∫ t

0

∣∣A2u′l,ν(s)
∣∣2 ds

≤
∣∣∣A 3

2 u1
l

∣∣∣2 + M(
∥∥u0

l

∥∥β

W)
∣∣A2u0

l

∣∣2 + ∣∣∣A 5
2 u0

l

∣∣∣2 + N1

∫ t

0

∣∣A2ul,ν(s)
∣∣2 ds.

Then by (3.12) we find∣∣∣A 3
2 u′l,ν(t)

∣∣∣2 + m0
∣∣A2ul,ν(t)

∣∣2 + ∣∣∣A 5
2 ul,ν(t)

∣∣∣2 + 2
∫ t

0

∣∣A2u′l,ν(s)
∣∣2 ds

≤ N2

2
+

N1

m0

∫ t

0
m0
∣∣A2ul,ν(s)

∣∣2 ds,

∀l ≥ l0(η), t ∈ [0, T0].
Hence Gronwall’s inequality implies

∣∣∣A 3
2 u′l,ν(t)

∣∣∣2 + m0
∣∣A2ul,ν(t)

∣∣2 + ∣∣∣A 5
2 ul,ν(t)

∣∣∣2 + 2
∫ t

0

∣∣A2u′l,ν(s)
∣∣2 ds ≤

(
N2

2

)2

exp
(

N1

m0
t
)

,

∀l ≥ l0(η), t ∈ [0, T0] .
Then thanks to the choice of T0, this inequality provides∣∣∣A 3

2 u′l,ν(t)
∣∣∣2 + m0

∣∣A2ul,ν(t)
∣∣2 + ∣∣∣A 5

2 ul,ν(t)
∣∣∣2 + 2

∫ t

0

∣∣A2u′l,ν(s)
∣∣2 ds ≤ N2,
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∀l ≥ l0(η), t ∈ [0, T0] .
Thus ul,ν satisfies (3.13) and (3.14).
The last inequality implies that there exists a subsequence of (ul,ν)ν∈N, still denoted by

(ul,ν)ν∈N, such that ∣∣∣∣∣∣∣∣
ul,ν → ul weak star in L∞(0, T0; D(A

5
2 ))

u′l,ν → u′l weak star in L∞(0, T0; D(A
3
2 ))

u′l,ν → u′l weak in L2(0, T0; D(A2)).

(3.16)

Convergences (3.16) are not sufficient to pass to the limit in problem (Pl,ν) due to the
nonlinear terms. Next we will prove that

M(‖ul,ν−1‖
β
W)→ M(‖ul‖

β
W) in C0([0, T0]) (3.17)

and ∣∣∣A 3
2 ul,ν−1

∣∣∣β → ∣∣∣A 3
2 ul

∣∣∣β in C0([0, T0]). (3.18)

Let us begin considering the sequence (ϕl,ν)ν∈N, where ϕl,ν(t) = ‖ul,ν−1(t)‖
β
W . As a con-

sequence of (2.12) and (3.14) it follows that

‖ul,ν−1(t)‖
β
W ≤ kβ

3

∣∣∣A 5
2 ul,ν−1(t)

∣∣∣β ≤ (k3N)β. (3.19)

Now using the mean value theorem, Proposition 3.1, (2.11), (2.12) and (3.14), we have∣∣∣‖ul,ν−1(t2)‖β
W − ‖ul,ν−1(t1)‖

β
W

∣∣∣ ≤ βkβ−1
3 k2Nβ |t2 − t1| . (3.20)

Therefore from (3.19), (3.20) and the Ascoli–Arzelà theorem it follows that there exists
ϕl ∈ C0([0, T0]) such that

‖ul,ν−1‖
β
W → ϕl in C0([0, T0]). (3.21)

Consequently we obtain from (3.21) and (2.4) the convergence

M(‖ul,ν−1‖
β
W)→ M(ϕl). (3.22)

Now let us consider the sequence (ψl,ν)ν∈N, where ψl,ν(t) =
∣∣A 3

2 ul,ν−1(t)
∣∣β. In a similar

way as in (3.22), we conclude that there exists a sequence ψl ∈ C0([0, T0]) such that∣∣∣A 3
2 ul,ν−1

∣∣∣β → ψl in C0([0, T0]). (3.23)

Below we will show that M(ϕl) = M(‖ul‖
β
W) and ψl =

∣∣A 3
2 ul
∣∣β. For that, one proceeds as

follows. Let ul,ν and ul,σ be the solutions of problems (Pl,ν) and (Pl,σ), respectively. Consider
wσν = ul,σ − ul,ν. So wσν is the solution of the problem

(Pσν)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w′′σν(t) + M(‖ul,σ−1(t)‖
β
W)Awσν(t) + A2wσν(t) +

[
1 + K(t)

∣∣∣A 3
2 ul,σ−1(t)

∣∣∣β] Aw′σν(t)

=
[

M(‖ul,ν−1(t)‖
β
W)−M(‖ul,σ−1(t)‖

β
W)
]

Aul,ν(t)

+K(t)
[∣∣∣A 3

2 ul,ν−1(t)
∣∣∣β − ∣∣∣A 3

2 ul,σ−1(t)
∣∣∣β] Au′l,ν(t), t ∈ [0, T0]

wσν(0) = 0, w′σν(0) = 0.
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Taking the scalar product of H of both sides of the equation (Pσν) with 2A2w′σν(t), we
obtain

d
dt

[∣∣Aw′σν(t)
∣∣2 + M(‖ul,σ−1(t)‖

β
W)
∣∣∣A 3

2 wσν(t)
∣∣∣2 + ∣∣A2wσν(t)

∣∣2]
+2
[

1 + K(t)
∣∣∣A 3

2 ul,σ−1(t)
∣∣∣β] ∣∣∣A 3

2 w′σν(t)
∣∣∣2

=

[
d
dt

M(‖ul,σ−1(t)‖
β
W)

] ∣∣∣A 3
2 wσν(t)

∣∣∣2
+2
[

M(‖ul,ν−1(t)‖
β
W)−M(‖ul,σ−1(t)‖

β
W)
]
(A2ul,ν(t), Aw′σν(t))

+2K(t)
[∣∣∣A 3

2 ul,ν−1(t)
∣∣∣β − ∣∣∣A 3

2 ul,σ−1(t)
∣∣∣β] (A2u′l,ν(t), Aw′σν(t)),

(3.24)

t ∈ [0, T0] .
By Lemma 3.3, the first term of the second member of (3.24) can be bounded by

N1

∣∣∣A 3
2 wσν(t)

∣∣∣2 .

As (M(‖ul,ν−1(t)‖
β
W)) is convergent in C0([0, T0]), it follows that for ε > 0, there exists ν0

such that ∣∣∣M(‖ul,ν−1(t)‖
β
W)−M(‖ul,σ−1(t)‖

β
W)
∣∣∣ ≤ ε,

∀σ, ν ≥ ν0, t ∈ [0, T0] .
This inequality and (3.14) imply that the second term of the second member of (3.24) can

be bounded by

2ε
N

m
1
2
0

∣∣Aw′σν(t)
∣∣ ,

∀σ, ν ≥ ν0.
In a similar way, the third term of the second member of (3.24)can be bounded by

2εk∗(T0)
N

m
1
2
0

∣∣Aw′σν(t)
∣∣ ,

∀σ, ν ≥ ν0, where k∗(T0) = ‖K‖L∞(0,T0)
.

Integrating both members of (3.24) on [0, t] , 0 < t ≤ T0, and taking into account the last
four results, we obtain∣∣Aw′σν(t)

∣∣2 + m0

∣∣∣A 3
2 wσν(t)

∣∣∣2 ≤ Cε2 +
∫ t

0

∣∣Aw′σν(s)
∣∣2 ds +

N1

m0

∫ t

0
m0

∣∣∣A 3
2 wσν(s)

∣∣∣2 ds,

∀σ, ν ≥ ν0, where C > 0 is a generic constant which is independent of σ and ν.
The last inequality and the Gronwall inequality imply that (A

3
2 ul,ν)ν∈N is a Cauchy se-

quence in C0([0, T0] ; H). Consequently we have

ul,ν → ul in C0([0, T0] ; D(A
3
2 )) (3.25)

which provides convergence (3.18).
Using (2.11) and the convergence (3.25) it follows that (ul,ν)ν∈N is a Cauchy sequence in

C0([0, T0] ; W). Therefore
ul,ν → ul in C0([0, T0] ; W)
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which implies the convergence

‖ul,ν‖
β
W → ‖ul‖

β
W in C0([0, T0]). (3.26)

Convergences (3.21), (3.22) and (3.26) provide convergence (3.17).
Due to convergences (3.16), (3.17) and (3.18), we can pass to the limit in (Pl,ν). The limit ul

is a solution of problem (Pl).
Our next goal is to take the limit in problem (Pl).
Write (3.14) with ul,ν and take the limit inf of both sides of this inequality. Then conver-

gences (3.16) provide

ess sup
0<t<T0

[∣∣∣A 3
2 u′l(t)

∣∣∣2 + m0
∣∣A2ul(t)

∣∣2 + ∣∣∣A 5
2 ul(t)

∣∣∣2 + ∫ t

0

∣∣A2u′l(s)
∣∣2 ds

]
≤ N2,

∀l ∈N.
This implies that there exists a subsequence of (ul), still denoted by (ul), such that∣∣∣∣∣∣∣∣

ul → u weak star in L∞(0, T0; D(A
5
2 ))

u′l → u′ weak star in L∞(0, T0; D(A
3
2 ))

u′l → u′ weak in L2(0, T0; D(A2)).

(3.27)

In the sequel we will prove that

M(‖ul‖
β
W)→ M(‖u‖β

W) in C0([0, T0]) (3.28)

and ∣∣∣A 3
2 ul

∣∣∣β → ∣∣∣A 3
2 u
∣∣∣β in C0([0, T0]). (3.29)

Let us consider two sequences (ϕl)l∈N and (ψl)l∈N, such that ϕl(t) = ‖ul(t)‖
β
W and ψl(t) =∣∣A 3

2 ul(t)
∣∣β. Then by applying arguments similar to those used to obtain (3.21) and (3.23), we

get two functions ϕ, ψ ∈ C0([0, T0]) such that

‖ul‖
β
W → ϕ in C0([0, T0]) (3.30)

and ∣∣∣A 3
2 ul

∣∣∣β → ψ in C0([0, T0]). (3.31)

Thus hypothesis (2.4) and convergence (3.30) provide

M(‖ul‖
β
W)→ M(ϕ) in C0([0, T0]). (3.32)

In the sequel, we will show that ϕ = ‖u‖β
W and ψ =

∣∣A 3
2 u
∣∣β. Let us begin considering ul

and uk two solutions of problems (Pl) and (Pk), respectively. Consider still wlk = ul − uk. So
wlk is the solution of the problem

(Plk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w′′lk(t) + M(‖ul(t)‖
β
W)Awlk(t) + A2wlk(t) +

[
1 + K(t)

∣∣∣A 3
2 ul(t)

∣∣∣β] Aw′lk(t)

=
[

M(‖uk(t)‖
β
W)−M(‖ul(t)‖

β
W)
]

Auk(t)

+ K(t)
[∣∣∣A 3

2 uk(t)
∣∣∣β − ∣∣∣A 3

2 ul(t)
∣∣∣β] Au′k(t), t ∈ [0, T0]

wlk(0) = u0
l − u0

k , w′lk(0) = u1
l − u1

k .
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Taking the scalar product of H of both sides of the equation (Plk) with 2A3w′lk(t) and
integrating the result into [0, t] , 0 < t ≤ T0, we obtain∣∣∣A 3

2 w′lk(t)
∣∣∣2 + [M(‖ul(t)‖

β
W)
∣∣A2wlk(t)

∣∣2]+ ∣∣∣A 5
2 wlk(t)

∣∣∣2 + 2
∫ t

0

∣∣A2w′lk(s)
∣∣2 ds

+ 2
∫ t

0
K(s)

∣∣∣A 3
2 ul(s)

∣∣∣β ∣∣A2w′lk(s)
∣∣2 ds

=
∣∣∣A 3

2 w′lk(0)
∣∣∣2 + [M(‖ul(0)‖

β
W)
∣∣A2wlk(0)

∣∣2]+ ∣∣∣A 5
2 wlk(0)

∣∣∣2
+
∫ t

0

[
d
ds

{
M(‖ul(s)‖

β
W)
}] ∣∣A2wlk(s)

∣∣2 ds

+ 2
∫ t

0

[
M(‖uk(s)‖

β
W)−M(‖ul(s)‖

β
W)
]
(A2uk(s), A2w′lk(s))ds

+ 2
∫ t

0
K(s)

[∣∣∣A 3
2 uk(s)

∣∣∣β − ∣∣∣A 3
2 ul(s)

∣∣∣β] (A2u′k(s), A2w′lk(s))ds.

(3.33)

By similar arguments used to bound the terms of the second member of (3.24) and using
convergences (3.30) and (3.31), we obtain∣∣∣∣ d

ds

{
M(‖ul(s)‖

β
W)
}∣∣∣∣ ≤ N1,

a.e. in (0, T0), and for ε > 0,

2
∣∣∣[M(‖uk(s)‖

β
W)−M(‖ul(s)‖

β
W)
]
(A2uk(s), A2w′lk(s))

∣∣∣ ≤ 2ε2N2

m0
+

1
2

∣∣A2w′lk(s)
∣∣2 ,

and

2
∣∣∣∣K(s) [∣∣∣A 3

2 uk(s)
∣∣∣β − ∣∣∣A 3

2 ul(s)
∣∣∣β] (A2u′k(s), A2w′lk(s))

∣∣∣∣
≤ 2ε2 [k∗(T0)]

2 ∣∣A2u′k(s)
∣∣2 + 1

2

∣∣A2w′lk(s)
∣∣2 ,

∀k, l ≥ l0.
Taking into account the last three inequalities in (3.33) , noting that

∣∣A2u′k(s)
∣∣2 ≤ N2, a.e.

in (0, T0) and that the first three terms of the second member of (3.33) can be bounded by ε2,
we find ∣∣∣A 3

2 w′lk(t)
∣∣∣2 + m0

∣∣A2wlk(t)
∣∣2 + ∣∣∣A 5

2 wlk(t)
∣∣∣2 + 2

∫ t

0

∣∣A2w′lk(s)
∣∣2 ds

≤ 2ε2
[

N2

m0
T0 + [k∗(T0)]

2 N2T0 + 1
]
+

N1

m0

∫ t

0
m0
∣∣A2wlk(s)

∣∣2 ds,

∀k, l ≥ l0.
The last inequality and Gronwall’s inequality imply that∣∣A2wlk(t)

∣∣2 ≤ Cε2,

t ∈ [0, T0] , ∀k, l ≥ l0, where C > 0 denotes a generic constant which is independent of l and k.
The last inequality implies that

ul → u in C0([0, T0] ; D(A2)). (3.34)
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In view of Remark 2.3, it follows from (3.34) the following convergence:

ul → u in C0([0, T0] ; D(A
3
2 )) (3.35)

which implies convergence (3.29).
Combining (3.35) with (2.11) it results that

ul → u in C0([0, T0] ; W)

which implies convergence

‖ul‖
β
W → ‖u‖

β
W in C0([0, T0]). (3.36)

Combining (3.30), (3.32) and (3.36), we obtain the convergence (3.28).
Due the convergences (3.27), (3.28)and (3.29), we can pass to the limit in (Pl). The limit u

is a solution of problem (P1)1 and u verifies (2.7). Using a standard argument, we can verify
the initial conditions (P1)2.

The uniqueness of the solution is proved by the energy method. In fact, we consider u and
v in the conditions of the Theorem 2.1. Then w = u− v satisfies

(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w′′(t) + M(‖u(t)‖β
W)Aw(t) + A2w(t) +

[
1 + K(t)

∣∣∣A 3
2 u(t)

∣∣∣β] Aw′(t)

=
[

M(‖v(t)‖β
W)−M(‖u(t)‖β

W)
]

Av(t)

+ K(t)
[∣∣∣A 3

2 v(t)
∣∣∣β − ∣∣∣A 3

2 u(t)
∣∣∣β] Av′(t), t ∈ [0, T0]

w(0) = w′(0) = 0.

Taking the scalar product in H of both sides of equation of (P) with 2Aw′(t), we obtain

d
dt

[∣∣∣A 1
2 w′(t)

∣∣∣2 + M(‖u(t)‖β
W) |Aw(t)|2 +

∣∣∣A 3
2 w(t)

∣∣∣2]
+ 2

[
1 + K(t)

∣∣∣A 3
2 u(t)

∣∣∣β] ∣∣Aw′(t)
∣∣2

=

[
d
dt

M(‖u(t)‖β
W)

]
|Aw(t)|2

+ 2
[

M(‖v(t)‖β
W)−M(‖u(t)‖β

W)
]
(A

3
2 v(t), A

1
2 w′(t))

+ 2K(t)
[∣∣∣A 3

2 v(t)
∣∣∣β − ∣∣∣A 3

2 u(t)
∣∣∣β] (A

3
2 v′(t), A

1
2 w′(t)),

(3.37)

t ∈ [0, T0] .
By the mean value theorem, we get

M(‖v(t)‖β
W)−M(‖u(t)‖β

W) = βM′(ξ∗)(s∗)β−1 [‖v(t)‖W − ‖u(t)‖W ] ,

where ξ∗ is between the real numbers ‖v(t)‖β
W and ‖u(t)‖β

W and s∗ is between the real numbers
‖v(t)‖W and ‖u(t)‖W . By R given in (2.15), inequality (3.14) and (2.9), we find

2
∣∣∣[M(‖v(t)‖β

W)−M(‖u(t)‖β
W)
]
(A

3
2 v(t), A

1
2 w′(t))

∣∣∣
≤ 2βR(k3N)β−1 ‖v(t)− u(t)‖W

∣∣∣A 3
2 v(t)

∣∣∣ ∣∣∣A 1
2 w′(t)

∣∣∣
≤ 2βRkβ−1

3 k1k5Nβ |Aw(t)|
∣∣∣A 1

2 w′(t)
∣∣∣ ,

(3.38)
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where k5 denotes the immersion constant of D(A
5
2 ) into D(A

3
2 ) (see Remark 2.3).

In similar way we obtain that

2
∣∣∣∣K(t) [∣∣∣A 3

2 v(t)
∣∣∣β − ∣∣∣A 3

2 u(t)
∣∣∣β] (A

3
2 v′(t), A

1
2 w′(t))

∣∣∣∣
≤ 2k∗(T0)k

β−1
5 N

∣∣∣A 3
2 w(t)

∣∣∣ ∣∣∣A 1
2 w′(t)

∣∣∣ ,
(3.39)

t ∈ [0, T0] .
Combining (3.37) with (3.38) and (3.39) and using the Lemma 3.3, we obtain

d
dt

[∣∣∣A 1
2 w′(t)

∣∣∣2 + M(‖u(t)‖β
W) |Aw(t)|2 +

∣∣∣A 3
2 w(t)

∣∣∣2]
≤ C

[
|Aw(t)|2 +

∣∣∣A 1
2 w′(t)

∣∣∣2 + ∣∣∣A 3
2 w(t)

∣∣∣2] ,
(3.40)

t ∈ [0, T0] , where C is a generic constant which is independent of u and v.
Integrating (3.40) from 0 to t ≤ T0 and noting that M(ξ) ≥ m0 > 0 and w(0) = w′(0) = 0,

we have ∣∣∣A 1
2 w′(t)

∣∣∣2 + m0 |Aw(t)|2 +
∣∣∣A 3

2 w(t)
∣∣∣2

≤ C
m0

∫ t

0
m0 |Aw(s)|2 ds + C

∫ t

0

∣∣∣A 3
2 w(s)

∣∣∣2 ds + C
∫ t

0

∣∣∣A 1
2 w′(s)

∣∣∣2 ds,
(3.41)

t ∈ [0, T0] .
Finally, applying Gronwall’s inequality in (3.41), we obtain that |Aw(t)| = 0, for all t ∈

[0, T0] , that is, u(t) = v(t), for all t ∈ [0, T0]. This concludes the proof of Theorem 2.1.

3.2 Proof of Theorem 2.5

Initially we consider the following problem:

(P′l )

∣∣∣∣∣∣∣
u′′l (t) + M(‖ul(t)‖

β
W)Aul(t) + A2ul(t) +

[
1 + K(t)

∣∣∣A 3
2 ul(t)

∣∣∣2β
]

Au′l(t) = 0, t > 0

ul(0) = u0
l , u′l(0) = u1

l ,

where (u0
l )l∈N and (u1

l )l∈N are sequences of D(A4) and D(A3), respectively.
Consequently we have

u0
l → u0 in D(A

5
2 ) (3.42)

and
u1

l → u1 in D(A
3
2 ). (3.43)

By Theorem 2.1, there exists a unique solution ul of (P′l ) belonging to class (2.7), but

Proposition 3.2 with µ1(t) = M(‖ul(t)‖
β
W) and µ2(t) = 1 + K(t)

∣∣A 3
2 ul(t)

∣∣2β says us that ul
belong to class ∣∣∣∣∣∣∣

ul ∈ L∞(0, T0l ; D(A4))

u′l ∈ L∞(0, T0l ; D(A3))

u′′l ∈ L∞(0, T0l ; D(A2)).

(3.44)
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Fix l ∈ N. Let Ml be the set constituted by the real numbers T > 0 such that there exists
a unique solution ul of (P′l ) belongs to class (3.44) (changing T0l with T). By the preceding
arguments it follows thatMl 6= ∅. We denote by Tmax,l the supremum of the T ∈ Ml .

Next we obtain estimates for the solution ul . Taking the scalar product of the H of both
sides of equation in (P′l ) with 2A3u′l(t), t ∈ [0, Tmax,l ), and using the Proposition 3.1, we obtain

d
dt

[∣∣∣A 3
2 u′l(t)

∣∣∣2 + M(‖ul(t)‖
β
W)
∣∣A2ul(t)

∣∣2 + ∣∣∣A 5
2 ul(t)

∣∣∣2]
+ 2

[
1 + K(t)

∣∣∣A 3
2 ul(t)

∣∣∣2β
] ∣∣A2u′l(t)

∣∣2
≤ βm1 ‖ul(t)‖

β−1
W

∥∥u′l(t)
∥∥

W

∣∣A2ul(t)
∣∣2 ,

(3.45)

t ∈ [0, Tmax,l ). Here we assume that ul(t) 6= 0.

Remark 3.5. We note that ∣∣A2u
∣∣2 = (A2u, A2u) = (A

3
2 u, A

5
2 u),

∀u ∈ D(A
5
2 ). Consequently ∣∣A2u

∣∣2 ≤ ∣∣∣A 3
2 u
∣∣∣ ∣∣∣A 5

2 u
∣∣∣ , (3.46)

∀u ∈ D(A
5
2 ).

Combining (2.11), (2.13) and (3.46) with (3.45), we have

d
dt

[∣∣∣A 3
2 u′l(t)

∣∣∣2 + M(‖ul(t)‖
β
W)
∣∣A2ul(t)

∣∣2 + ∣∣∣A 5
2 ul(t)

∣∣∣2]
+ 2

[
1 + K(t)

∣∣∣A 3
2 ul(t)

∣∣∣2β
] ∣∣A2u′l(t)

∣∣2
≤ βm1kβ−1

2 k4

∣∣∣A 3
2 ul(t)

∣∣∣β ∣∣A2u′l(t)
∣∣ ∣∣∣A 5

2 ul(t)
∣∣∣ ,

(3.47)

t ∈ [0, Tmax,l ).
Due to hypothesis (2.18), we can rewrite (3.47) in the form

d
dt

[∣∣∣A 3
2 u′l(t)

∣∣∣2 + M(‖ul(t)‖
β
W)
∣∣A2ul(t)

∣∣2 + ∣∣∣A 5
2 ul(t)

∣∣∣2]
+ 2

[
1 + K(t)

∣∣∣A 3
2 ul(t)

∣∣∣2β
] ∣∣A2u′l(t)

∣∣2
≤ 2K(t)

∣∣∣A 3
2 ul(t)

∣∣∣2β ∣∣A2u′l(t)
∣∣2 + (βm1kβ−1

2 k4)
2

8K(t)

∣∣∣A 5
2 ul(t)

∣∣∣2 ,

(3.48)

t ∈ [0, Tmax,l ).

Remark 3.6. In (3.48) is justified the introduction of the damping term 2K(t)
∣∣A 3

2 u(t)
∣∣2β in

equation (1.6).

Integrating (3.48) from 0 to t, t < Tmax,l , using the convergences (3.42) and (3.43), hypoth-
esis (2.17) and ul with regularities (3.44), we obtain∣∣∣A 3

2 u′l(t)
∣∣∣2 + M(‖ul(t)‖

β
W)
∣∣A2ul(t)

∣∣2 + ∣∣∣A 5
2 ul(t)

∣∣∣2 + 2
∫ t

0

∣∣A2u′l(s)
∣∣2 ds

≤ C + C
∫ t

0

1
K(s)

∣∣∣A 5
2 ul(s)

∣∣∣2 ds,
(3.49)
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t ∈ [0, Tmax,l ), where C > 0 denotes a generic constant which is independent of l and t.
Using hypotheses (2.17) and (2.18) and the Gronwall inequality in (3.49), we have∣∣∣A 3

2 u′l(t)
∣∣∣2 + m0

∣∣A2ul(t)
∣∣2 + ∣∣∣A 5

2 ul(t)
∣∣∣2 + 2

∫ t

0

∣∣A2u′l(s)
∣∣2 ds ≤ C1, (3.50)

∀t ∈ [0, Tmax,l ), where

C1 = C exp
[

C
∫ ∞

0

1
K(s)

ds
]

.

Consequently, we obtain ∣∣∣A 5
2 ul(t)

∣∣∣2 ≤ C1 (3.51)

and ∣∣∣A 3
2 u′l(t)

∣∣∣2 ≤ C1, (3.52)

t ∈ [0, Tmax,l ), where C1 is a constant independent of l and t.

Remark 3.7. Due the Proposition 3.1 is possible to obtain the inequality (3.50) even when
ul(t) = 0.

Now we will prove that Tmax,l is infinite ∀l ∈ N. Let us suppose that Tmax,l < ∞. Now
consider a sequence of the real numbers (tν) such that 0 < tν < Tmax,l with tν → Tmax,l .
By (3.51) and (3.52) we obtain, respectively, that there exists ξ ∈ D(A

5
2 ) and η ∈ D(A

3
2 ) such

that
ul(tν)→ ξ weak in D(A

5
2 ) and u′l(tν)→ η weak in D(A

3
2 ).

With ξ and η we determine, by Theorem 2.1, the local solution of the problem

(P∗)

∣∣∣∣∣∣∣
v′′(t) + M(‖v(t)‖β

W)Av(t) + A2v(t) +
[

1 + K(t)
∣∣∣A 3

2 v(t)
∣∣∣2β
]

Av′(t) = 0

v(0) = ξ, v′(0) = η.

We note that the function

ũ(t) =

∣∣∣∣∣ v(t), 0 ≤ t < Tmax,l

v(t− Tmax,l), Tmax,l ≤ t < Tmax,l + T0

is a solution of problem (P′l ) in [0, Tmax,l + T0] . This is a contradiction with the definition of
Tmax,l . So Tmax,l is infinite. Consequently we obtain from (3.50) that∣∣∣A 5

2 ul(t)
∣∣∣2 ≤ C1, (3.53)∣∣∣A 3

2 u′l(t)
∣∣∣2 ≤ C1, (3.54)∫ t

0

∣∣A2u′l(s)
∣∣2 ds ≤ C1, (3.55)

∀t ∈ [0, ∞[ , where C1 is a constant independent of l and t.
By arguments similar to those employed in the proof of Theorem 2.1, we obtain the con-

vergences

M(‖ul‖
β
W)→ M(‖u‖β

W) in C0([0, T0]) (3.56)
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and ∣∣∣A 3
2 ul

∣∣∣β → ∣∣∣A 3
2 u
∣∣∣β in C0([0, T0]). (3.57)

Due to the estimates (3.53)–(3.55) and convergences (3.56) and (3.57), we can pass to the
limit in (P′l ). The limit u is a solution of problem (P2)1 and u verifies (2.19). Using a standard
argument, we can verify the initial conditions (P2)2. The uniqueness of solution is obtained
as is the proof of Theorem 2.1. So Theorem 2.5 is proved.

3.3 Proof of Theorem 2.6

i) Existence of solutions

Let us begin by showing that problem (P2) possesses solution in the class (2.19) when we con-
sider the hypothesis (2.20) instead of the hypothesis (2.17) and when we consider a function
K(t) satisfying hypothesis K(t) = K. As the calculations are similar, we will obtain only the
estimates.

Initially we consider the following problem:

(P′′l )

∣∣∣∣∣∣∣
u′′l (t) + M(t, ‖ul(t)‖

β
W)Aul(t) + A2ul(t) +

[
1 + K

∣∣∣A 3
2 ul(t)

∣∣∣β] Au′l(t) = 0, t > 0

ul(0) = u0
l , u′l(0) = u1

l ,

where (u0
l )l∈N ⊂ D(A4) and (u1

l )l∈N ⊂ D(A3).
Consequently we obtain the convergences (3.42) and (3.43).
With the same arguments as were used in the proof of Theorem 2.5, we have

d
dt

[∣∣∣A 3
2 u′l(t)

∣∣∣2 + M(t, ‖ul(t)‖
β
W)
∣∣A2ul(t)

∣∣2 + ∣∣∣A 5
2 ul(t)

∣∣∣2]
+ 2

[
1 + K

∣∣∣A 3
2 ul(t)

∣∣∣β] ∣∣A2u′l(t)
∣∣2

≤ m′1(t) ‖ul(t)‖
β
W

∣∣A2ul(t)
∣∣2

+ βm1(t) ‖ul(t)‖
β−1
W

∥∥u′l(t)
∥∥

W

∣∣A2ul(t)
∣∣2 ,

(3.58)

t ∈ [0, Tmax,l ).
It results from (2.11) and of the fact that β ≥ 2 the following:

‖ul(t)‖
β−1
W = ‖ul(t)‖

β
2
W ‖ul(t)‖

β
2−1
W ≤ k

β
2−1
2 ‖ul(t)‖

β
2
W

∣∣∣A 3
2 ul(t)

∣∣∣ β
2−1

. (3.59)

Now let us note that

∣∣A2ul(t)
∣∣2 = (A

3
2 ul(t), A

1
2 ul(t)) ≤ k6

∣∣∣A 3
2 ul(t)

∣∣∣ ∣∣A2ul(t)
∣∣ , (3.60)

where k6 is the immersion constant of D(A2) into D(A
1
2 ) (see Remark 2.3).
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Substituting (3.59) and (3.60) into (3.58), we get

d
dt

[∣∣∣A 3
2 u′l(t)

∣∣∣2 + M(t, ‖ul(t)‖
β
W)
∣∣A2ul(t)

∣∣2 + ∣∣∣A 5
2 ul(t)

∣∣∣2]
+ 2

[
1 + K

∣∣∣A 3
2 ul(t)

∣∣∣β] ∣∣A2u′l(t)
∣∣2

≤ m′1(t) ‖ul(t)‖
β
W

∣∣A2ul(t)
∣∣2 + 2K

∣∣∣A 3
2 ul(t)

∣∣∣β ∣∣A2u′l(t)
∣∣2

+
1

8K
k(

β
2−1)2

2 k2
4k2

6β2(m1(t))2 ‖ul(t)‖
β
W

∣∣A2ul(t)
∣∣2 ,

that is,

d
dt

[∣∣∣A 3
2 u′l(t)

∣∣∣2 + M(t, ‖ul(t)‖
β
W)
∣∣A2ul(t)

∣∣2 + ∣∣∣A 5
2 ul(t)

∣∣∣2]+ 2
∣∣A2u′l(t)

∣∣2
≤ m′1(t) ‖ul(t)‖

β
W

∣∣A2ul(t)
∣∣2 + 1

8K
k(

β
2−1)2

2 k2
4k2

6β2(m1(t))2 ‖ul(t)‖
β
W

∣∣A2ul(t)
∣∣2 .

(3.61)

Integrating (3.61) from 0 to t, t < Tmax,l , using the hypothesis (2.20) and convergences
(3.42) and (3.43), we derive∣∣∣A 3

2 u′l(t)
∣∣∣2 + m0

∣∣A2ul(t)
∣∣2 + m1(t) ‖ul(t)‖

β
W

∣∣A2ul(t)
∣∣2 + ∣∣∣A 5

2 ul(t)
∣∣∣2

+ 2
∫ t

0

∣∣A2u′l(s)
∣∣2 ds +

∫ t

0
(−m′1(s)) ‖ul(s)‖

β
W

∣∣A2ul(s)
∣∣2 ds

≤ C +
1

8K
k(

β
2−1)2

2 k2
4k2

6β2
∫ t

0
m1(s)

[
m1(s) ‖ul(s)‖

β
W

∣∣A2ul(s)
∣∣2] ds,

(3.62)

where C > 0 is a generic constant independent of l and t.
As m′1 ≤ 0 and m1 ∈ L1(0, ∞) (see (2.20)), it results from (3.62) and Gronwall’s inequality∣∣∣A 3

2 u′l(t)
∣∣∣2 + m0

∣∣A2ul(t)
∣∣2 + ∣∣∣A 5

2 ul(t)
∣∣∣2 + 2

∫ t

0

∣∣A2u′l(s)
∣∣2 ds ≤ C, (3.63)

t ∈ [0, Tmax,l ), where C > 0 is a generic constant independent of l and t. Note that with (3.63)
we derive similar estimates to (3.51) and (3.52) for ul .

With (3.63) and similar arguments used in the proof of Theorem 2.5 we obtain that Tmax,l
is infinite and that u is the solution of (P2) in the class (2.19).

ii) Decay of solutions

Take the scalar product of the H of both sides of equation in (P2) with 2Au′(t) and use (2.21),
Proposition 3.1 and hypothesis (2.20). We obtain

d
dt

E(t) + 2
[

1 + K
∣∣∣A 3

2 u(t)
∣∣∣β] ∣∣Au′(t)

∣∣2
≤ − z′(t)

[z(t)]2
‖u(t)‖β

W |Au(t)|2 + β
1

z(t)
‖u(t)‖β−1

W

∥∥u′(t)
∥∥

W |Au(t)|2 ,
(3.64)

where E(t) was defined in (2.21). Here u(t) 6= 0.
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It follows from (2.9), (2.20) and the inequality ab ≤ C0a2

2 + b2

2C0
(a, b ≥ 0 and C0 > 0) that

− z′(t)

[z(t)]2
‖u(t)‖β

W |Au(t)|2 + β
1

z(t)
‖u(t)‖β−1

W

∥∥u′(t)
∥∥

W |Au(t)|2

≤ − C0

[z(t)]2
‖u(t)‖β

W |Au(t)|2 + β(k1k7)
β
2

1
z(t)
‖u(t)‖

β
2
W

∣∣Au′(t)
∣∣ ∣∣∣A 3

2 u(t)
∣∣∣ β

2 |Au(t)|

≤ − C0

[z(t)]2
‖u(t)‖β

W |Au(t)|2 + C0

2 [z(t)]2
‖u(t)‖β

W |Au(t)|2

+
β2(k1k7)β

2C0

∣∣∣A 3
2 u(t)

∣∣∣β ∣∣Au′(t)
∣∣2

≤ β2(k1k7)β

2C0

∣∣∣A 3
2 u(t)

∣∣∣β ∣∣Au′(t)
∣∣2 ,

(3.65)

where k7 is the immersion constant of D(A
3
2 ) into D(A) (see Remark 2.3).

Combining (3.64) and (3.65) and using the hypothesis K ≥ β2(k1k7)
β

2C0
, we obtain

d
dt

E(t) + 2
∣∣Au′(t)

∣∣2 ≤ 0. (3.66)

Remark 3.8. Due to Proposition 3.1 it is possible to obtain the inequality (3.66) even when
u(t) = 0.

Let ε > 0. Consider the functions

ρ(t) = (u′(t), Au(t)) +
1
2
|Au(t)|2 , ∀t ≥ 0 (3.67)

and
Eε(t) = E(t) + ερ(t), ∀t ≥ 0, (3.68)

where E(t) was defined in (2.21).
Therefore, it follows from (2.8) and (3.67) that

|ρ(t)| ≤ 1
2

k2
0
∥∥u′(t)

∥∥2
+

k2
7

2

∣∣∣A 3
2 u(t)

∣∣∣2 + 1
2
|Au(t)|2 ≤ P0E(t), ∀t ≥ 0, (3.69)

where P0 = max
{ 1

2 k2
0, k2

7
}

.
Combining (3.68) and (3.69) we have

(1− εP0)E(t) ≤ Eε(t) ≤ (1 + εP0)E(t), ∀ε > 0.

Considering 0 < ε < 1
2P0

, it follows from the preceding inequality that

1
2

E(t) ≤ Eε(t) ≤
3
2

E(t), ∀t ≥ 0. (3.70)

Now taking the scalar product of the H of both sides of equation in (P2) with Au(t), we
have:

d
dt
(u′(t), Au(t)) +

d
dt

[
1
2
|Au(t)|2

]
+ M(t, ‖u(t)‖β

W)(Au(t), Au(t))

+ (A2u(t), Au(t)) + K
∣∣∣A 3

2 u(t)
∣∣∣β (Au′(t), Au(t))

=
∥∥u′(t)

∥∥2 .

(3.71)
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Therefore, it results from (3.67) and (3.71) that
d
dt
(ρ(t)) + M(t, ‖u(t)‖β

W) |Au(t)|2 +
∣∣∣A 3

2 u(t)
∣∣∣2 + K

∣∣∣A 3
2 u(t)

∣∣∣β (A
1
2 u′(t), A

3
2 u(t)) ≤

∥∥u′(t)
∥∥2 ,

which implies,

ρ′(t) ≤
∥∥u′(t)

∥∥2 −M(t, ‖u(t)‖β
W) |Au(t)|2 −

∣∣∣A 3
2 u(t)

∣∣∣2 + KC2
∥∥u′(t)

∥∥ ∣∣∣A 3
2 u(t)

∣∣∣ ,

where C2 > 0 is a bound for
∣∣A 3

2 u(t)
∣∣β (see (3.63) and that

∣∣A 3
2 u(t)

∣∣ ≤ ∣∣A2u(t)
∣∣).

Consequently, we obtain by this last inequality that

ρ′(t) ≤
(

1 +
K2C2

2
2

)∥∥u′(t)
∥∥2 −M(t, ‖u(t)‖β

W) |Au(t)|2 − 1
2

∣∣∣A 3
2 u(t)

∣∣∣2 . (3.72)

Combining (3.66), (3.68) and (3.72), we obtain

E′ε(t) ≤ − 2
∣∣Au′(t)

∣∣2 − εM(t, ‖u(t)‖β
W) |Au(t)|2

+ ε

(
1 +

K2C2
2

2

)∥∥u′(t)
∥∥2 − ε

2

∣∣∣A 3
2 u(t)

∣∣∣2 .
(3.73)

Noting that ‖u′(t)‖2 ≤ k2
8 |Au′(t)|2 , where k8 is the immersion constant of D(A) into

D(A
1
2 ), it results from (3.73) that

E′ε(t) ≤ −
[

2
k2

8
− ε

(
1 +

K2C2
2

2

)] ∥∥u′(t)
∥∥2 − εM(t, ‖u(t)‖β

W) |Au(t)|2 − ε

2

∣∣∣A 3
2 u(t)

∣∣∣2 .

Considering ε = min
{ 1

2P0
, 4

k2
8(2+K2C2

2)

}
, it follows from the preceding inequality that

E′ε(t) ≤ −τ0E(t), ∀t ≥ 0, (3.74)

where τ0 = min
{

ε
2 , δ
}

, with δ = 2
k2

8
− ε
(
1 + K2C2

2
2

)
.

Using (3.70) and (3.74), we have

E′ε(t) ≤ −
2
3

τ0Eε(t), ∀t ≥ 0,

which gives

Eε(t) ≤ Eε(0) exp
(
−2

3
τ0t
)

, ∀t ≥ 0. (3.75)

Finally we get (2.22) as a consequence of (3.70) and (3.75). So Theorem 2.6 is proved.

Remark 3.9. We observe that Theorems 2.1–2.6 are true if, instead of the hypothesis (2.3), we
consider the hypothesis

V is continuously embedded in W.

Remark 3.10. With the same technique and hypotheses as were used in the solution of prob-
lem (P2), it is possible to solve

(
P′
)

∣∣∣∣∣∣∣∣∣∣
u′′(t) + M1(‖u(t)‖2)Au(t) + M2(‖u(t)‖β

W)Au(t) + A2u(t)

+ σ

[
1 + K(t)

(∣∣∣A 3
2 u(t)

∣∣∣4 + ∣∣∣A 3
2 u(t)

∣∣∣β)] Au′(t) = 0, t > 0

u(0) = u0, u′(0) = u1,

where M1(ξ) and M2(ξ) are similar to M(ξ) of problem (P2) and σ ≥ 0 is a real number. Also
with our techniques it is possible to solve problem (P′) replacing M1(‖u(t)‖2) by M1(|u(t)|2),
where ‖·‖ and |·| denote the norms of V and H, respectively. Remark 3.9 also remains valid
in these cases.
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4 Examples

1o) In the deduction of the beam equation (1 + u2
x)

1
2 is approximated by (1 + 1

2 ux)2. Utilizing
Taylor’s formula is possible to approximate (1 + u2

x)
1
2 by 1 + 3

8 u2
x +

3
128 u6

x. Motivated by this
latter approach, we may consider the generalized equation

utt(x, t)+
[

m0 + m1

∫ L

0
(ux(x, t))2dx + m2

∫ L

0
(ux(x, t))6dx

]
(−uxx(x, t)) + uxxxx(x, t) = 0, (4.1)

where m0, m1, m2 > 0 are constants.
In a similar manner, we have:

utt(x, t) +
[

m0 + m1

∫ L

0
(u(x, t))2dx + m2

∫ L

0
(u(x, t))6dx

]
(−uxx(x, t)) + uxxxx(x, t) = 0, (4.2)

where m0, m1, m2 > 0 are constants.
Considering Remark 3.10 with V = H1

0(0, L), H = L2(0, L), A = − ∂2

∂x2 the operator defined
by the triplet

{
H1

0(0, L), L2(0, L); ((u, v))H1
0 (0,L)

}
, W = W1,6

0 (0, L), β = 6 and σ = 0, we obtain
a local solution of the mixed problem for equation (4.1). In this case we have the following
embeddings

D(A) = H1
0(0, L) ∩ H2(0, L) ↪→W = W1,6

0 (0, L) ↪→ V = H1
0(0, L),

where ↪→ denotes continuous immersion.
Analogously, Remark 3.10 with V = H1

0(0, L), H = L2(0, L), A = − ∂2

∂x2 the operator defined
by the triplet

{
H1

0(0, L), L2(0, L); ((u, v))H1
0 (0,L)

}
, W = L6(0, L), β = 6 and σ = 0, we obtain

a local solution of the mixed problem for equation (4.2). In this case we have the following
embeddings

D(A) = H1
0(0, L) ∩ H2(0, L) ↪→ V = H1

0(0, L) ↪→W = L6(0, L).

2o) Let Ω ⊂ Rn be a bounded open of Rn with smooth boundary Γ. If β > 1, then the Sobolev
embedding theorem allows to obtain the existence of solution to the following problems.

(E1)

∣∣∣∣∣∣∣∣∣
u′′ + M

(
‖u‖β

W1,p
0 (Ω)

)
(−∆u) + ∆2u = 0, in Ω× ]0, T0[

u = 0 in Γ× ]0, T0[

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

where 1 < p < ∞ if 1 ≤ n ≤ [4α + 2] and 1 < p ≤ 2n
n−[4α+2] if n > [4α + 2]. Here [γ] denotes

the integer part of the real number γ.

(E2)

∣∣∣∣∣∣∣∣
u′′ + M

(
‖u‖β

Lp(Ω)

)
(−∆u) + ∆2u = 0, in Ω× ]0, T0[

u = 0 in Γ× ]0, T0[

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

where n and p are in the same conditions of the problem (E1).

(E3)

∣∣∣∣∣∣∣∣
u′′ + M

(∣∣∣(−∆)θu
∣∣∣) (−∆u) + ∆2u = 0, in Ω× ]0, T0[

u = 0 in Γ× ]0, T0[

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,
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where 0 ≤ θ ≤ α + 1.

(E4)

∣∣∣∣∣∣∣∣∣∣
u′′ + M

(∣∣∣(−∆ + I)θu
∣∣∣) (−∆u) + ∆2u = 0, in Ω× ]0, T0[

∂u
∂η

= 0 in Γ× ]0, T0[

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,

where η(x) is the exterior normal to x in Γ and 0 ≤ θ ≤ α + 1.
3o) As A−1 is not necessarily compact, we can consider problems defined on Ω × ]0, ∞[

with Ω an unbounded smooth open set of Rn.
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