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PICONE TYPE FORMULA FOR NON-SELFADJOINT IMPULSIVE

DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS

SOLUTIONS

A. ÖZBEKLER, A. ZAFER

Abstract. A Picone type formula for second order linear non-selfadjoint impul-
sive differential equations with discontinuous solutions having fixed moments of
impulse actions is derived. Applying the formula, Leighton and Sturm-Picone type
comparison theorems as well as several oscillation criteria for impulsive differential
equations are obtained.

1. Introduction

As the impulsive differential equations are useful in modelling many real processes
observed in physics, chemistry, biology, engineering, etc., see [1, 11, 13, 20, 21, 22,
25, 26, 27], there has been an increasing interest in studying such equations from the
point of view of stability, asymptotic behavior, existence of periodic solutions, and
oscillation of solutions. The classical theory can be found in the monographs [9, 18].
Recently, the oscillation theory of impulsive differential equations has also received
considerable attention, see [2, 14] for the Sturmian theory of impulsive differential
equations, and [15] for a Picone type formula and its applications. Due to difficul-
ties caused by the impulsive perturbations the solutions are usually assumed to be
continuous in most works in the literature. In this paper, we consider second order
non-selfadjoint linear impulsive differential equations with discontinuous solutions.
Our aim is to derive a Picone type identity for such impulsive differential equations,
and hence extend and generalize several results in the literature.

We consider second order linear impulsive differential equations of the form

l0[x] = (k(t)x′)′ + r(t)x′ + p(t)x = 0, t 6= θi

l1[x] = ∆x+ (1 + pi)x− k(t)x′ = 0, t = θi

l2[x] = ∆(k(t)x′) + (1 − p̃i)k(t)x
′ + (1 + pip̃i)x = 0, t = θi

(1.1)

and

L0[y] = (m(t)y′)′ + s(t)y′ + q(t)y = 0, t 6= θi

L1[y] = ∆y + (1 + qi)y −m(t)y′ = 0, t = θi

L2[y] = ∆(m(t)y′) + (1 − q̃i)m(t)y′ + (1 + qiq̃i)y = 0, t = θi

(1.2)

where ∆z(t) = z(t+)−z(t−) and z(t±) = limτ→t± z(τ). For our purpose, we fix t0 ∈ R

and let I0 be an interval contained in [t0,∞). We assume without further mention
that
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(i) {pi}, {p̃i}, {qi} and {q̃i} are real sequences and {θi} is a strictly increasing
unbounded sequence of real numbers;

(ii) k, r, p,m, s, q ∈ PLC(I0) :=
{

h : I0 → R is continuous on each interval

(θi, θi+1), h(θ
±
i ) exist, h(θi) = h(θ−i ) for i ∈ N

}

with k(t) > 0, m(t) > 0
for all t ∈ I0.

Note that if z ∈ PLC(I0) and ∆z(θi) = 0 for all i ∈ N, then z becomes continuous
and conversely. If τ ∈ R is a jump point of the function z(t) i.e. ∆z(τ) 6= 0, then
there exists a j ∈ N such that θj = τ . Throughout this work, we denote by jτ , the
index j satisfying θj = τ .

By a solution of the impulsive system (1.1) on an interval I0 ⊂ [t0,∞), we mean
a nontrivial function x which is defined on I0 such that x, x′, (kx′)′ ∈ PLC(I0) and
that x satisfies (1.1) for all t ∈ I0.

Definition 1.1. A function z ∈ PLC(I0) is said to have a generalized zero at t = t∗
if z(t+∗ )z(t∗) ≤ 0 for t∗ ∈ I0. A solution is called oscillatory if it has arbitrarily large
generalized zeros, and a differential equation is oscillatory if every solution of the
equation is oscillatory.

2. The Main Results

Let I be a nondegenerate subinterval of I0. In what follows we shall make use of
the following condition:

k(t) 6= m(t) whenever r(t) 6= s(t) for all t ∈ I. (C)

We will see that condition (C) is quite crucial in obtaining a Picone type formula as
in the case of nonimpulsive differential equations. If (C) fails to hold then a device
of Picard is helpful.

The Picone type formula is obtained by making use of the following Picone type
identity, consisting of a pair of identities.

Lemma 2.1 (Picone type identity). Let u′, v′, (ku′)′, (mv′)′ ∈ PLC(I), and (C) hold.
If v(t) 6= 0 for any t ∈ I, then

d

dt

{

u

v
(vku′ − umv′)

}

=

{

q − p−
(s− r)2

4(k −m)
−

s2

4m

}

u2 + (k −m)

{

u′ +
(s− r)

2(k −m)
u

}2

+
m

v2

{

u′v − uv′ −
s

2m
uv

}2

+
u

v

{

vl0[u] − uL0[v]

}

, t 6= θi; (2.1)
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and

∆

{

u

v
(vku′ − umv′)

}

= (p̃i − q̃i)u
2
+(qi − pi)u

2 +
1

vv+

{

v∆u− u∆v

}2

+
u

v

{

vl1[u] − uL1[v]

}

+
u+

v+

{

v+l2[u] − u+L2[v]

}

+
u+

v+

{

q̃iu+L1[v] − p̃iv+l1[u]

}

, t = θi, (2.2)

where the notations z+ = z(t+) and z = z(t) are used.

Proof. Let t ∈ I. If t 6= θi, then we have

d

dt

{

u

v
(vku′ − umv′)

}

= (k −m)(u′)2 + (q − p)u2 +m(u′ −
u

v
v′)2 + u2 sv

′

v
− ruu′

+
u

v

{

vl0[u] − uL0[v]

}

= (k −m)

{

(u′)2 +
s− r

k −m
uu′ +

(s− r)2

4(k −m)2
u2

}

+ (q − p)u2

+m

{

(u′ −
uv′

v
)2 −

su

m
(u′ −

uv′

v
) +

s2u2

4m2

}

−
s2u2

4m
−

(s− r)2

4(k −m)
u2

+
u

v

{

vl0[u] − uL0[v]

}

.

Rearranging we get

d

dt

{

u

v
(vku′ − umv′)

}

=

{

q − p−
(s− r)2

4(k −m)
−

s2

4m

}

u2 + (k −m)

{

u′ +
(s− r)

2(k −m)
u

}2

+
m

v2

{

u′v − uv′ −
s

2m
uv

}2

+
u

v

{

vl0[u] − uL0[v]

}

.
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If t = θi, then the computation becomes more involved. We see that

∆

{

u

v
(vku′ − umv′)

}

= u+

{

l2[u] + p̃iku
′ − (1 + pip̃i)u

}

− uku′ +
u2

v
mv′

−
u2

+

v+

{

L2[v] + q̃imv
′ − (1 + qiq̃i)v

}

=

{

p̃iu+ − u

}

ku′ − (1 + pip̃i)uu+

+

{

u2

v
− q̃i

u2
+

v+

}

mv′ + (1 + qiq̃i)
u2

+v

v+
+
u+

v+

{

v+l2[u] − u+L2[v]

}

=

{

p̃iu+ − u

}{

u+ + piu− l1[u]

}

+

{

u2

v
− q̃i

u2
+

v+

}{

v+ + qiv − L1[v]

}

−(1 + pip̃i)uu+ + (1 + qiq̃i)
u2

+v

v+

+
u+

v+

{

v+l2[u] − u+L2[v]

}

= (p̃i − q̃i)u
2
+ + (qi − pi)u

2 +
1

vv+

{

uv+ − u+v

}2

+ul1[u] −
u2

v
L1[v] + q̃i

u2
+

v+
L1[v] − p̃iu+l1[u] +

u+

v+

{

v+l2[u] − u+L2[v]

}

= (p̃i − q̃i)u
2
+ + (qi − pi)u

2 +
1

vv+

{

v∆u− u∆v

}2

+
u

v

{

vl1[u] − uL1[v]

}

+
u+

v+

{

v+l2[u] − u+L2[v]

}

+
u+

v+

{

q̃iu+L1[v] − p̃iv+l1[u]

}

�
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Theorem 2.1 (Picone type formula). Let (C) be satisfied. Suppose that u′, v′, (ku′)′,
(mv′)′ ∈ PLC(I). If v(t) 6= 0 for any t ∈ I, and [α, β] ⊆ I then

u

v
(vku′ − umv′)

∣

∣

∣

∣

t=β

t=α

=

∫ β

α

{[

q − p−
(s− r)2

4(k −m)
−

s2

4m

]

u2 + (k −m)

[

u′ +
(s− r)

2(k −m)
u

]2

+
m

v2

[

u′v − uv′ −
s

2m
uv

]2

+
u

v

[

vl0[u] − uL0[v]

]}

dt

+
∑

α≤θi<β

{

(p̃i − q̃i)u
2(θ+

i ) + (qi − pi)u
2(θi)

+
1

v(θi)v(θ
+
i )

[

v(θi)∆u(θi) − u(θi)∆v(θi)

]2

+
u(θi)

v(θi)

[

v(θi)l1[u] − u(θi)L1[v]

]

+
u(θ+

i )

v(θ+
i )

[

v(θ+
i )l2[u] − u(θ+

i )L2[v]

]

+
u(θ+

i )

v(θ+
i )

[

q̃iu(θ
+
i )L1[v] − p̃iv(θ

+
i )l1[u]

]}

. (2.3)

Proof. Using (2.1) and (2.2), and employing Lemma 2.1 with

ν(β) − ν(α) =

∫ β

α

ν ′(t)dt+
∑

α≤θi<β

∆ν(θi)

where

ν(t) =
u(t)

v(t)

[

v(t)k(t)u′(t) − u(t)m(t)v′(t)

]

, t ∈ I,

we easily see that (2.3) holds. �

The following corollary is an extension of the classical comparison theorem of
Leighton [10, Corollary 1].

Theorem 2.2 (Leighton type comparison). Let x be a solution of (1.1) having two
generalized zeros a, b ∈ I. Suppose that (C) holds, and that

∫ b

a

{[

q − p−
(s− r)2

4(k −m)
−

s2

4m

]

x2 + (k −m)

[

x′ +
s− r

2(k −m)
x

]2}

dt > 0,(2.4)

and

p̃i ≥ q̃i, qi ≥ pi (2.5)

for all i for which θi ∈ [a, b], then every solution y of (1.2) must have at least one
generalized zero on [a, b].
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Proof. Assume that y has no generalized zero in [a, b]. Since x and y are solutions of
(1.1) and (1.2) respectively, lk[x] = Lk[y] = 0, k = 0, 1, 2. Let ǫ > 0 be sufficiently
small. From Theorem 2.1 we obtain

x

y
(ykx′ − xmy′)

∣

∣

∣

∣

t=b−ǫ

t=a+ǫ

=

∫ b−ǫ

a+ǫ

{[

q − p−
(s− r)2

4(k −m)
−

s2

4m

]

x2

+(k −m)

{

x′ +
(s− r)

2(k −m)
x

}2

+
m

y2

(

x′y − xy′ −
s

2m
xy

)2}

dt

+
∑

a+ǫ≤θi<b−ǫ

{

(p̃i − q̃i)x
2(θ+

i ) + (qi − pi)x
2(θi)

+
1

y(θi)y(θ
+
i )

[

y(θi)∆x(θi) − x(θi)∆y(θi)

]2}

. (2.6)

As ǫ→ 0+ the left-hand side of (2.6) tends to

x(b−)

y(b−)

[

y(b−)k(b−)x′(b−) − x(b−)m(b−)y′(b−)

]

−
x(a+)

y(a+)

[

y(a+)k(a+)x′(a+) − x(a+)m(a+)y′(a+)

]

= x(b−)x(b+) + x(a−)x(a+) + (pib − qib)x
2(b−) − (p̃ia − q̃ia)x

2(a+)

−x2(b−)
y(b+)

y(b−)
− x2(a+)

y(a−)

y(a+)
≤ 0. (2.7)

Using (2.5) and (2.7) in (2.6) we get

L[x] :=

∫ b

a

{[

q − p−
(s− r)2

4(k −m)
−

s2

4m

]

x2 + (k −m)

[

x′ +
s− r

2(k −m)
x

]2}

dt ≤ 0,

a contradiction to (2.4). �

Remark 2.1. It is clear that, if the solution x(t) of equation (1.1) is continuous at
both t = a and t = b (i.e. x(a±) = x(b±) = 0) then (2.6) implies L[x] ≤ 0 which
contradicts (2.4). If x(t) is continuous at t = b (i.e. x(b±) = 0) but not at t = a, then
it follows from (2.6) that

L[x] ≤ −(p̃ia − q̃ia)x
2(a+) + x(a)x(a+) − x2(a+)

y(a)

y(a+)
≤ 0 (2.8)

and similarly, if x(t) is continuous at t = a (i.e. x(a±) = 0) but not at t = b, then

L[x] ≤ x(b)x(b+) − x2(b)
y(b+)

y(b)
+ (pib − qib)x

2(b) ≤ 0. (2.9)

Both inequalities (2.8) and (2.9) contradict (2.4). Hence y(t) must have a generalized
zero on [a, b].
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From Theorem 2.2 we obtain the following corollary. The result gives an extension
and improvement for [2, Corollary 1].

Corollary 2.1 (Sturm-Picone type comparison). Let x be a solution of (1.1) having
two consecutive generalized zeros a, b ∈ I. Suppose that (C) holds, and that

k ≥ m, (2.10)

q ≥ p+
(s− r)2

4(k −m)
+

s2

4m
(2.11)

for all t ∈ [a, b], and that (2.5) holds for all i for which θi ∈ [a, b].
If either (2.10) or (2.11) is strict in a subinterval of [a, b], or one of the inequalities

in (2.5) is strict for some i ∈ N, then every solution y of (1.2) must have at least
one generalized zero on [a, b].

Corollary 2.2. Suppose that the conditions (2.10)-(2.11) are satisfied for all t ∈
[t∗,∞) for some integer t∗ ≥ t0, and that (2.5) is satisfied for all i for which θi ≥ t∗.
If one of the inequalities in (2.5) or in (2.10)-(2.11) is strict, then every solution y
of (1.2) is oscillatory whenever a solution x of (1.1) is oscillatory.

As a consequence of Theorem 2.2 and Corollary 2.1, we have the following oscilla-
tion criterion.

Corollary 2.3. Suppose for any given T ≥ t0 there exists an interval (a, b) ⊂ [T,∞)
for which either the conditions of Theorem 2.2 or Corollary 2.1 are satisfied, then
every solution y of (1.2) is oscillatory.

3. Device of Picard

If the condition (C) fails to hold, then we introduce the so called device of Picard
[16] (see also [7, p. 12]), and thereby obtain different versions of Corollary 2.1.

Clearly, for any h ∈ PLC(I),

d

dt
(x2h) = 2xx′h+ x2h′, t 6= θi.

Let

u :=
x

y
(ykx′ − xmy′) + x2h, t ∈ I.

It is not difficult to see that

u′ =

{

q − p+ h′ −
(s− r + 2h)2

4(k −m)
−

s2

4m

}

x2 + (k −m)

{

x′ +
s− r + 2h

2(k −m)
x

}2

+
m

y2

{

x′y − xy′ −
s

2m
xy

}2

, t 6= θi

and

∆u = [p̃i − q̃i + h+]x2
+ +

[

qi − pi − h(θi)

]

x2 +
1

yy+

[

y∆x− x∆y

]2

, t = θi.
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Assuming r′, s′ ∈ PLC(I), and taking h = (r − s)/2 we get

u′ =

{

q − p−
s′ − r′

2
−

s2

4m

}

x2 + (k −m)(x′)2 +
m

y2

{

x′y − xy′ −
s

2m
xy

}2

, t 6= θi

and

∆u =

{

p̃i − q̃i +
r+ − s+

2

}

x2
+ +

{

qi − pi −
r − s

2

}

x2 +
1

yy+

[

y∆x− x∆y

]2

, t 6= θi.

Thus we obtain the following results in a similar manner as in the previous section.

Theorem 3.1. Let r′, s′ ∈ PLC(I) and x be a solution of (1.1) having two consecutive
generalized zeros a and b in I. Suppose that

k ≥ m, (3.1)

q ≥ p+
s′ − r′

2
+

s2

4m
(3.2)

are satisfied for all t ∈ [a, b], and that

p̃i ≥ q̃i −
[

r(θ+
i ) − s(θ+

i )
]

/2, qi ≥ pi +
[

r(θi) − s(θi)
]

/2 (3.3)

for all i for which θi ∈ [a, b].
If either (3.1) or (3.2) is strict in a subinterval of [a, b], or one of the inequalities

in (3.3) is strict for some i, then every solution y of (1.2) must have at least one
generalized zero in [a, b].

Corollary 3.1. Suppose that the conditions (3.1)-(3.2) are satisfied for all t ∈ [t∗,∞)
for some integer t∗ ≥ t0, and that the conditions in (3.3) are satisfied for all i for
which θi ≥ t∗. If r′, s′ ∈ PLC[t∗,∞) and one of the inequalities (3.1)-(3.3) is strict,
then (1.2) is oscillatory whenever a solution x of (1.1) is oscillatory.

Theorem 3.2 (Leighton type comparison). Let r′, s′ ∈ PLC[a, b] and x be a solution
of (1.1) having two generalized zeros a, b ∈ I such that

∫ b

a

[(

q − p−
s′ − r′

2
−

s2

4m

)

x2 +
(

k −m
)

(x′)2

]

dt > 0,

and that the inequalities in (3.3) hold for all i for which θi ∈ [a, b]. Then every
solution y of (1.2) must have at least one generalized zero on [a, b].

From Theorem 3.1 and Theorem 3.2, we have the following oscillation criterion.

Corollary 3.2. Suppose for any given t1 ≥ t0 there exists an interval (a, b) ⊂ [t1,∞)
for which either the conditions of Theorem 3.1 or Theorem 3.2 are satisfied, then
(1.2) is oscillatory.

EJQTDE, 2010 No. 35, p. 8



4. Further results

The lemma below, cf. [2, Lemma 1.] and [14, Lemma 3.1.], is used for comparison
purposes. The proof is a straightforward verification.

Lemma 4.1. Let ψ be a positive function for t ≥ α with ψ′, ψ′′ ∈ PLC[α,∞), where
α is a fixed real number. Then the function

x(t) =
1

√

ψ(t)
sin

(
∫ t

α

ψ(s)ds

)

, t ≥ α (4.1)

is a solution of equation

(a2(t)x
′)′ + a1(t)x

′ + a0(t)x = 0, t 6= θi,
∆x+ (1 + ei)x− a2(t)x

′ = 0, t = θi,
∆(a2(t)x

′) + (1 − ẽi)a2(t)x
′ + (1 + eiẽi)x = 0, t = θi (i ∈ N)

(4.2)

where aj
j ∈ PLC[α,∞), j = 0, 1, 2, {ei} and {ẽi} are real sequences, with

a0 =
1

2

(

a′′2 + a′1 + a1
a′2
a2

+
a2

1

a2

)

−
(a′2 + a1)

2

4a2

+ a2

[

ψ2 +
ψ′′

2ψ
−

3

4

(

ψ′

ψ

)2 ]

, (4.3)

ei = ψ(θi) cot

(
∫ θi

ψ(s)ds

)

−

(

a2(θi)ψ(θi)

a2(θ
+
i )ψ(θ+

i )

)1/2

−
(a2ψ)′(θi)

2ψ(θi)
−
a1(θi)

2
, (4.4)

ẽi =

{

a2(θi)

a2(θ
+
i )

}1/2 {

ψ(θi)ψ(θ+
i )

}1/2

cot

(
∫ θi

ψ(s)ds

)

+

(

a2(θ
+
i )ψ(θ+

i )

a2(θi)ψ(θi)

)1/2

−
(a2ψ)′(θ+

i )

2ψ(θ+
i )

−
a1(θ

+
i )

2
, θi > α. (4.5)

In view of Lemma 4.1 and Corollary 2.2, we can state the next theorem.

Theorem 4.1. Let the function ψ(t) satisfy the conditions of Lemma 4.1 and let the
functions aj

j ∈ PLC[α,∞), j = 0, 1, 2, and the sequences {ei} and {ẽi} be defined by
the equalities (4.3)-(4.5), respectively. Suppose that a2(t) 6= k(t) whenever a1(t) 6=
r(t),

∫ ∞

α

ψ(t)dt = ∞, (4.6)

a2 ≥ k, p ≥ a0 +
(r − a1)

2

4(a2 − k)
+
r2

4k
, for all t ≥ α (4.7)

and that

ẽi ≥ p̃i, pi ≥ ei, for all i for which θi > α. (4.8)

If one of the inequalities in (4.7) and (4.8) is strict, then every solution x of (1.1)
is oscillatory.

If r′ ∈ PLC[α,∞), then from Lemma 4.1 and Theorem 3.1 we have the following
theorem.
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Theorem 4.2. Let the function ψ(t) satisfy the conditions of Lemma 4.1 and let the
functions aj

j ∈ PLC[α,∞), j = 0, 1, 2., and the sequences {ei} and {ẽi} be defined by
the equalities (4.3)-(4.5), respectively. Suppose that (4.6) holds

a2 ≥ k, p ≥ a0 +
r′ − a′1

2
+
r2

4k
, for all t ≥ α, (4.9)

and that

ẽi ≥ p̃i −
a1(θ

+
i ) − r(θ+

i )

2
, pi ≥ ei +

a1(θi) − r(θi)

2
(4.10)

for all i for which θi > α.
If one of the inequalities in (4.9) and (4.10) is strict, then every solution x of (1.1)

is oscillatory.

It is clear that an impulsive differential equation with a known solution can be
used to obtain more concrete oscillation criteria. For instance, consider the impulsive
differential equation

x′′ − 2x′ + x = 0, t 6= i,
∆x+ (1 + pi) x− x′ = 0, t = i,
∆x′ + (1 − p̃i) x

′ + (1 + pip̃i) x = 0, t = i, (i ∈ N).
(4.11)

where

pi = (e+ 1)i−1 + 2 and p̃i = −i(1 + e−1) − e−1, (i ∈ N.)

It is easy to verify that x(t) = xi(t), where

xi(t) =

{

(e+ i)(t− i) + i

}

et−i, t ∈ (i− 1, i], (i ∈ N),

is an oscillatory solution with generalized zeros τi = i and ξi = i(e+ i− 1)(e+ i)−1 ∈
(i− 1, i). Indeed, x(τi)x(τ

+
i ) < 0 and x(ξi) = 0, i ∈ N.

Applying Corollary 2.2, we easily see that equation (1.1) with θi = i is oscillatory
if there exists an n0 ∈ N such that, for each fixed i ≥ n0 and for all t ∈ (i− 1, i], one
of the following conditions (a) or (b) is satisfied:
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(a) k(t) ≤ 1; k(t) < 1 whenever r(t) 6= −2;

p(t) ≥ 1 +
(r(t) + 2)2

4(1 − k(t))
+
r2(t)

4k(t)
;

p̃i ≤ − (i+ 1) e−1 − i;

pi ≥ (e+ 1)i−1 + 2.

(b) k(t) ≤ 1;

p(t) ≥ 1 +
r′(t)

2
+
r2(t)

4k(t)
;

p̃i ≤ − (i+ 1) e−1 − i− 1 −
r(i+)

2
;

pi ≥ (e+ 1)i−1 + 1 −
r(i)

2
.

We finally note that it is sometimes possible to exterminate the impulse effects
from a differential equation. In our case, if the condition

|p̃i − pi| > 2

holds, then by substituting

x(t) = ξi z(t), ξi =
1

2

{

p̃i − pi ±
√

(p̃i − pi)2 − 4
}

into equation (1.1), we find that z satisfies the non-selfadjoint differential equation

(k(t)z′)′ + r(t)z′ + p(t)z = 0.

The oscillatory nature of x and z are the same. However, the restriction imposed is
quite severe.
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[14] A. Özbekler and A. Zafer, Sturmian comparison theory for linear and half-linear impulsive
differential equations, Nonlinear Anal. 63 (2005), Issues 5-7, 289–297.
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