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1 Introduction and the main result

In this paper, we consider the existence of homoclinic solutions for the second order Hamiltonian

system:

ü(t) + Vu(t, u(t)) = f(t), (1.1)

where f ∈ L2(R, Rn) is continuous and bounded, V (t, u) = −K(t, u) + W (t, u) ∈ C1(R × R
n, R) is

T -periodic in t, T > 0.

Let us recall that a solution u(t) of (1.1) is homoclinic to 0 if u(t) 6≡ 0, u(t) → 0 and u̇(t) → 0

as t → ±∞.

In recent years, the existence of homoclinic solutions for (1.1) has been studied extensively

by variational methods(see, for instance, [6,7,11-13,15] ). Most of them considered (1.1) with W

satisfying the Ambrosetti-Rabinowitz condition, that is, there exists µ > 2 such that

0 < µW (t, u) ≤ (Wu(t, u), u) for all t ∈ R and u ∈ R
n \ {0}.

It is well known that the major difficulty is to check the Palais-Smale (PS) condition (a compactness

condition) when one considers (1.1) on the whole space R via variational methods. Recall that a

sequence {un} is said to be a (PS) sequence of ϕ provided that {ϕ(un)} is bounded and ϕ′(un) → 0.

ϕ satisfies the (PS) condition if any (PS) sequence possesses a convergent subsequence. Using

the Ambrosetti-Rabinowitz condition, one can easily establish the boundedness of (PS) sequences,

which is crucial to check the (PS) condition. Later some authors managed to weaken this condition

(see, e.g., [4] and [10]). Many authors also treated some new growth conditions. For example, [1,9]

considered the sub-quadratic case and [2, 14] dealt with the asymptotically quadratic case.

If L(t) and W (t, u) are either independent of t or periodic in t, the problem seems a little simple

and there are many results. In [8,10], the authors considered

ü(t) + Vu(t, u(t)) = 0
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with V (t, u) = −1
2(Lu, u) + W (u) being independent of t, i.e., the system is autonomous. They

obtained one homoclinic solution as a limit of solutions of a certain sequence of periodic systems.

By this method, [5] considered the case that L(t) and W (t, u) are periodic in t. It also assumed

that L(t) is positive definite and symmetric, W (t, u) satisfies the Ambrosetti-Rabinowitz growth

condition. Without periodicity condition, the problem is quite different from the ones just de-

scribed for the lack of compactness of the Sobolev embedding. Using the method in [5, 8, 10], [3]

considered (1.1). The authors replaced 1
2 (L(t)u, u) by K(t, u) which satisfies the following condition

∃b1, b2 > 0 such that for all (t, u) ∈ R × R
n, b1|u|2 ≤ K(t, u) ≤ b2|u|2

and

K(t, u) ≤ (u,Ku(t, u)) ≤ 2K(t, u).

Given W satisfied the Ambrosetti-Rabinowitz condition, they obtained one homoclinic solution.

We note that the nonlinearity W in all the papers mentioned above are nonnegative, which

ensures the variational functional possesses some good properties. If the nonlinearity is allowed

to be negative, new difficulties arise and there haven’t been too many results. In this paper, we

consider this case. we study homoclinic solutions of (1.1) on the whole space R. (1.1) is not periodic

in nature. We will consider some new nonlinearity W . Precisely, W is allowed to be negative near

the origin and satisfies asymptotically quadratic or super-quadratic growth condition at infinity.

It is obvious that W doesn’t satisfy the Ambrosetti-Rabinowitz condition. We will approximate a

solution of (1.1) by a limit of solutions of a sequence of periodic systems.

We make the following assumptions:

(A1) V (t, u) = −K(t, u) + W (t, u) is a C1 function on R × R
n, T -periodic in t, T > 0, and

Vu(t, u) → 0 as |u| → 0 uniformly in t ∈ R;

(A2) For all (t, u) ∈ R × R
n, 0 ≤ (u,Ku(t, u)) ≤ 2K(t, u), and there exist 0 < b ≤ b such that

b|u|2 ≤ K(t, u) ≤ b|u|2;
(A3) There exist constants d1 > 0, r ≥ 2 such that W (t, u) ≤ d1|u|r for all (t, u) ∈ R × R

n;

(A4) There exist constants d2 > 0, µ with r ≥ µ > r − 1 and β ∈ L1(R, R+) such that

(Wu(t, u), u) − 2W (t, u) ≥ d2|u|µ − β(t)

for all (t, u) ∈ R × R
n;

(A5) There exist positive constants R, ρ0 > 0 such that W (t,u)

|u|2
≥ 2π2

T 2 as |u| > R, t ∈ [−T, T ] and

W (t, u) ≤ 0 as |u| ≤ ρ0, t ∈ [−T, T ].

For each k ∈ N, let L2
2kT be the Hilbert space of 2kT -periodic functions on R with values in R

n

equipped with the norm

‖u‖L2

2kT
=
(

∫ kT

−kT

|u(t)|2dt
)

1

2

,

and L∞
2kT be the space of 2kT -periodic essentially bounded functions from R into R

n equipped with

the norm

‖u‖L∞

2kT
:= ess sup{|u(t)| : t ∈ [−kT, kT ]}.
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Denote Ek := W
1,2
2kT be the Hilbert space of 2kT -periodic functions on R with values in R

n

under the norm

‖u‖Ek
:=
(

∫ kT

−kT

(|u̇(t)|2 + |u(t)|2) dt
)

1

2

.

By Rabinowitz in [5], we have

Proposition 1 There is a constant C1 > 0 such that for each k ∈ N and u ∈ Ek the following

inequality holds:

‖u‖L∞

2kT
≤ C1‖u‖Ek

.

We also make the following assumption:

(A6) f is nonzero continuous and bounded, there is a constant C0 such that ‖f‖L2(R,Rn) =
(

∫

R

|f(t)|2 dt
)

1

2 ≤ C0 := min{1

2
, b} ρ0

2C1
.

Our main result reads as follows.

Theorem 1 If assumptions (A1) − (A6) are satisfied, then (1.1) possesses at least one homoclinic

solution u ∈ W 1,2(R, Rn).

Remark 1.1 (A5) shows that W may be either asymptotically quadratic or super-quadratic growth

at infinity.

Remark 1.2 There are functions which satisfy assumptions (A1) − (A5). For example,

K(t, x) =

{

(1 + 1
1+x2 )x2 x ≥ 0,

(1 + 2
1+x2 )x2 x < 0

and

W (t, x) = −2x2 + x4 (the super − quadratic case)

or

W (t, x) = x2 − 2x
4

3 (the asymptotically quadratic case)

Let fk : R → R
n be a 2kT -periodic extension of the restriction of f to the interval [−kT, kT ]

and uk be a 2kT -periodic solution of

ü(t) + Vu(t, u(t)) = fk(t) (1.2)

obtained by the Mountain Pass Theorem. We will show that the sequence {uk} possesses a subse-

quence which converges to a homoclinic solution of (1.1).

The main difficulties in treating (1.1) are caused by the fact that in order to get appropriate

convergence of the sequence of approximative functions {uk} we need the sequence {‖uk‖Ek
} to

be bounded uniformly in k ∈ N and the constants ρ and α appearing in the condition (3) of the

Mountain Pass Theorem (see Theorem 2) to be independent of k.
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2 Proof of the main result

For each k ∈ N, we consider the second order system (1.2) on Ek.

Define

ϕk(u) =

∫ kT

−kT

[1

2
|u̇(t)|2 − V (t, u(t)) + (fk(t), u(t))

]

dt.

It is clear that ϕk ∈ C1(Ek, R) and

ϕ′
k(u)v =

∫ kT

−kT

[

(u̇(t), v̇(t)) − (Vu(t, u(t)), v(t)) + (fk(t), v(t))
]

dt.

We all know that critical points of ϕk are classical 2kT -periodic solutions of (1.2).

Lemma 2.1 Under (A1) − (A6), for each k ∈ N, (1.2) possesses a 2kT -periodic solution.

We will prove this lemma via the Mountain Pass Theorem by Rabinowitz in [14]. We state this

theorem as follows.

Theorem 2 Let E be a real Banach space and ϕ : E → R be a C1 function. If ϕ satisfies the

following conditions:

(1) ϕ(0) = 0;

(2) ϕ satisfies the (PS) condition on E;

(3) There exist constants ρ, α > 0 such that ϕ|Sρ ≥ α;

(4) There exists e ∈ E\Bρ such that ϕ(e) ≤ 0,

where Bρ is a closed ball in E of radius ρ centred at 0 and Sρ is the boundary of Bρ. Then ϕ

possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

ϕ(g(s)),

where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Instead of the (PS) condition, we use condition (C). Recall a function ϕ satisfies condition (C)

on E if any sequence {uj} ⊂ E such that {ϕ(uj)} is bounded and (1 + ‖uj‖)‖ϕ′(uj)‖ → 0 has a

convergent subsequence. The Mountain Pass Theorem still holds true under condition (C).

Proof of Lemma 2.1 From our assumptions, it is easy to see that ϕk(0) = 0.

Step 1. ϕk satisfies condition (C).

Suppose {uj} ⊂ Ek, {ϕk(uj)} is bounded and (1+‖uj‖Ek
)‖ϕ′

k(uj)‖ → 0 as j → ∞. Then there

is a constant Mk > 0 such that

ϕk(uj) ≤ Mk, (1 + ‖uj‖Ek
)‖ϕ′

k(uj)‖ ≤ Mk (2.3)

for all j ∈ N.

By (2.3), (A2), and (A4),

3Mk ≥ 2ϕk(uj) − ϕ′
k(uj)uj

=

∫ kT

−kT

[

(Vu(t, uj(t)), uj(t)) − 2V (t, uj(t))
]

dt +

∫ kT

−kT

(fk(t), uj(t)) dt
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=

∫ kT

−kT

[

2K(t, uj(t)) −
(

Ku(t, uj(t)), uj(t)
)]

dt

+

∫ kT

−kT

[(

Wu(t, uj(t)), uj(t)
)

− 2W (t, uj(t))
]

dt +

∫ kT

−kT

(fk(t), uj(t)) dt

≥ d2

∫ kT

−kT

|uj(t)|µ dt −
∫ kT

−kT

β(t) dt − ‖fk‖L2

2kT
‖uj‖Ek

≥ d2

∫ kT

−kT

|uj(t)|µ dt − β0 − C0‖uj‖Ek
,

where β0 =

∫ kT

−kT

β(t) dt.

Therefore,
∫ kT

−kT

|uj(t)|µ dt ≤ 1

d2
(3Mk + β0 + C0‖uj‖Ek

). (2.4)

By (A2) and (A3),

1

2
‖u̇j‖2

L2

2kT
= ϕk(uj) −

∫ kT

−kT

K(t, uj(t)) dt +

∫ kT

−kT

W (t, uj(t)) dt

−
∫ kT

−kT

(fk(t), uj(t)) dt

≤ Mk − b

∫ kT

−kT

|uj(t)|2 dt + d1

∫ kT

−kT

|uj(t)|r dt

+C0‖uj‖Ek
.

Then one has

1

2
‖u̇j‖2

L2

2kT
+ b‖uj‖2

L2

2kT
≤ Mk + d1

∫ kT

−kT

|uj(t)|r dt + C0‖uj‖Ek
.

Therefore, by (2.4),

min{1

2
, b}‖uj‖2

Ek
≤ Mk + d1

∫ kT

−kT

|uj(t)|r dt + C0‖uj‖Ek

≤ Mk + d1‖uj‖r−µ
L∞

2kT

∫ kT

−kT

|uj(t)|µ dt + C0‖uj‖Ek

≤ Mk + d1C
r−µ
1 ‖uj‖r−µ

Ek

∫ kT

−kT

|uj(t)|µ dt + C0‖uj‖Ek

≤ Mk +
d1

d2
C

r−µ
1 ‖uj‖r−µ

Ek
(3Mk + β0 + C0‖uj‖Ek

) + C0‖uj‖Ek
.

Since r − µ < 1, we get {‖uj‖Ek
} is bounded. Going if necessary to a subsequence, we can

assume that there exists u ∈ Ek such that uj ⇀ u in Ek as j → +∞ , which implies uj → u

uniformly on [−kT, kT ].

Therefore

(ϕ′
k(uj) − ϕ′

k(u))(uj − u) → 0,

‖uj − u‖L2

2kT
→ 0

and
∫ kT

−kT

(

Vu(t, uj(t)) − Vu(t, u(t)), uj(t) − u(t)
)

dt → 0
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as j → +∞.

By an easy computation, we can see that

(ϕ′
k(uj) − ϕ′

k(u))(uj − u) = ‖u̇j − u̇‖2
L2

2kT
−
∫ kT

−kT

(

Vu(t, uj(t)) − Vu(t, u(t)), uj(t) − u(t)
)

dt.

Hence we have ‖u̇j − u̇‖2
L2

2kT

→ 0, and so uj → u in Ek.

Step 2. There are constants ρ > 0, α > 0 independent of k, such that ϕk|Sρ ≥ α, where Sρ = {u ∈
Ek|‖u‖Ek

= ρ}.
Choose ρ = ρ0

C1
, then for u ∈ Sρ we have ‖u‖L∞

2kT
≤ ρ0. Therefore, |u| ≤ ρ0 for all t ∈ [−kT, kT ],

and then by (A5), W (t, u) ≤ 0. Together with (A2), we obtain

ϕk(u) =

∫ kT

−kT

[1

2
|u̇(t)|2 + K(t, u(t)) − W (t, u(t))

]

dt +

∫ kT

−kT

(fk(t), u(t)) dt

≥ 1

2

∫ kT

−kT

|u̇(t)|2 dt + b

∫ kT

−kT

|u(t)|2 dt − ‖fk‖L2

2kT
‖u(t)‖Ek

≥ min{1

2
, b}‖u(t)‖2

Ek
− C0‖u‖Ek

= min{1

2
, b}ρ2 − C0ρ

= min{1

2
, b} ρ0

2

2C1
2 := α.

Step 3. For the ρ defined as above, there exists ek ∈ Ek such that ‖ek‖Ek
> ρ,ϕk(ek) ≤ 0.

By (A5),
W (t, u)

|u|2 ≥ 2π2

T 2

for all |u| > R and t ∈ [−T, T ].

Let δ = max{t∈[−T,T ],|u|≤R} |W (t, u)|, we obtain

W (t, u) ≥ 2π2

T 2
(|u|2 − R2) − δ (2.5)

for all u ∈ R
n, t ∈ R.

Set

ēk(t) =

{

s sin(ωt)e, t ∈ [−T, T ]

0, t ∈ [−kT, kT ]\[−T, T ]
(2.6)

where ω = π
T

, e = (1, 0, · · · , 0). Let ek be the 2kT-periodic extension of ēk, then ek ∈ Ek, and

‖ek‖Ek
→ ∞ as s → ∞. We assume s is large enough such that ‖ek‖Ek

≥ ρ. Combining (A2) and

(2.5), we obtain

ϕk(ek(t)) =

∫ kT

−kT

[1

2
|ėk(t)|2 + K(t, ek(t)) − W (t, ek(t)) + (fk(t), ek(t))

]

dt

≤
∫ T

−T

1

2
|ėk(t)|2dt + b̄

∫ T

−T

|ek(t)|2dt − 2π2

T 2

∫ T

−T

|ek(t)|2dt

+
(2π2R2

T 2
+ δ
)

2T + C0

(

∫ T

−T

|ek(t)|2 dt
)

1

2

≤ 1

2
s2ω2

∫ T

−T

| cos(ωt)|2 dt +
(

b̄s2 − 2π2s2

T 2

)

∫ T

−T

| sin(ωt)|2 dt
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+C0s
(

∫ T

−T

| sin(ωt)|2 dt
)

1

2

+ 2T
(

δ +
2π2R2

T 2

)

=
(1

2
ω2 + b̄ − 2π2

T 2

)

s2T + C0sT
1

2 + 2T
(

δ +
2π2R2

T 2

)

≤ −π2

T
s2 + C0sT

1

2 + 2T
(

δ +
2π2R2

T 2

)

→ −∞

as s → ∞. So for all k ∈ N, we can choose an s large enough such that ek defined as above satisfies

‖ek‖Ek
> ρ and ϕk(ek) ≤ 0.

Therefore, by the Mountain Pass Theorem, ϕk possesses a critical value ck defined by

ck = inf
g∈Γk

max
s∈[0,1]

ϕk(g(s))

satisfying ck ≥ α, where

Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek}.

By Lemma 2.1, we know for each k ∈ N, there exists uk ∈ Ek such that

ϕk(uk) = ck, ϕ′
k(uk) = 0.

Consequently uk is a classical 2kT -periodic solution of (1.2). Moreover, since ck ≥ α > 0, uk is a

nontrivial solution.

In the following, we will show that there exists a subsequence of {uk} which almost uniformly

converges to a C1 function. We denote C
p
loc(R, Rn)(p ∈ N∪{0}), the space of Cp functions on R with

values in R
n under the topology of almost uniformly convergence of functions and all derivatives

up to the order p. We have

Lemma 2.2 Let {uk}k∈N be the sequence given as above. Then it possesses a subsequence also

denoted by {uk} and a C1 function u0 : R → R
n such that uk → u0 in C1

loc(R, Rn), as k → +∞.

Proof We will prove this lemma by the Arzela-Ascoli Theorem. We first show that the sequence

{ck}k∈N and {‖uk‖Ek
}k∈N are bounded.

For each k ∈ N, let gk : [0, 1] → Ek be a curve given by gk(s) = sek, where ek is defined as

above. Then gk ∈ Γk and ϕk(gk(s)) = ϕ1(g1(s)) for all k ∈ N and s ∈ [0, 1].

Hence

ck = inf
g∈Γk

max
s∈[0,1]

ϕk(gk(s)) ≤ max
s∈[0,1]

ϕk(gk(s)) = max
s∈[0,1]

ϕ1(g1(s)) := M0

independently of k ∈ N.

Therefore

ϕk(uk) = ck ≤ M0

for all k ∈ N.

As ϕ′
k(uk) = 0, we have

(1 + ‖uk‖Ek
)‖ϕ′

k(uk)‖ = 0 ≤ M0

for all k ∈ N.

Along the proof of Step 1. in Lemma 2.1, it is easy to prove that{‖uk‖Ek
} is bounded uniformly

in k ∈ N, which means there exists a constant M1 > 0 independent of k such that

‖uk‖Ek
≤ M1.
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In order to show that {uk}k∈N and {u̇k}k∈N are equicontinuous, we first prove {uk}k∈N, {u̇k}k∈N

and {ük}k∈N are uniformly bounded in L∞
2kT .

By Proposition 1,

‖uk‖L∞

2kT
≤ C1M1 := M2 (2.7)

for all k ∈ N.

By (1.2) and the definition of fk, it is clear that

|ük(t)| ≤ |fk(t)| + |Vu(t, uk(t))| = |f(t)| + |Vu(t, uk(t))|

for t ∈ [−kT, kT ].

Together with (2.7), (A1) and (A6), we obtain there exists M3 > 0 independent of k such that

‖ük‖L∞

2kT
≤ M3. (2.8)

Since for each k ∈ N and t ∈ R there exists ξ ∈ [t − 1, t] such that

uk(t) − uk(t − 1) = u̇k(ξ),

we can see

|u̇k(t)| =

∣

∣

∣

∣

∫ t

ξ

ük(s) ds + u̇k(ξ)

∣

∣

∣

∣

≤
∫ t

t−1
|ük(s)|ds + |uk(t) − uk(t − 1)|

≤ M3 + 2M2 := M4.

Thus we have

‖u̇k‖L∞

2kT
≤ M4.

Therefore

|uk(t) − uk(t
′)| =

∣

∣

∣

∣

∫ t

t′
u̇k(s) ds

∣

∣

∣

∣

≤
∫ t

t′
|u̇k(s)|ds ≤ M4|t − t′|.

That is {uk}k∈N are equicontinuous.

Analogously, {u̇k}k∈N are also equicontinuous.

By the Arzela-Ascoli Theorem, there is a subsequence of {uk}, still denoted by {uk}, which

converges to a C1 function u0 in C1
loc(R, Rn).

Now we are coming to the point of proving Theorem 1. We need the following results from [3].

Proposition 2 Let u : R → R
n be a continuous mapping. If a weak derivative u̇ : R → R

n is

continuous at t0, then u is differential at t0 and

lim
t→t0

u(t) − u(t0)

t − t0
= u̇(t0).

Proposition 3 Let u : R → R
n be a continuous mapping such that u̇ ∈ L2

loc(R, Rn) (the space of

functions on R with values in R
n locally square integrable). For every t ∈ R the following inequality

holds:

|u(t)| ≤
√

2

(

∫ t+ 1

2

t− 1

2

(|u(s)|2 + |u̇(s)|2) ds

)
1

2

(2.9)
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Proof of Theorem 1 We prove u0 is exactly our desired homoclinic solution of (1.1).

Arguing just as Lemma 2.9 in [3], for each k ∈ N and t ∈ R, uk satisfies

ük(t) = fk(t) − Vu(t, uk(t)). (2.10)

Since uk → u0 and fk → f almost uniformly on R, we obtain

ük → f(t) − Vu(t, u0(t)).

For any finite interval [a, b], there is k0 ∈ N such that for all k ≥ k0 and t ∈ [a, b], (2.10) becomes

ük(t) = f(t) − Vu(t, uk(t)).

So ük(t) is continuous on [a, b] for each k ≥ k0. By Proposition 2, ük(t) is a derivative of u̇k(t)

in (a, b) for each k ≥ k0.

Combining ük → f(t) − Vu(t, u0(t)) and u̇k → u̇0 almost uniformly on R, we obtain

ü0(t) = f(t) − Vu(t, u0(t))

in (a, b) and then in R. So u0 satisfies (1.1).

We now prove u0(t) → 0 as t → ±∞.

Obviously, for each i ∈ N there is ki ∈ N such that for all k ≥ ki,

∫ iT

−iT

(|uk(t)|2 + |u̇k(t)|2) dt ≤ ‖uk‖2
Ek

≤ M2
1 .

Letting k → +∞, we obtain

∫ iT

−iT

(|u0(t)|2 + |u̇0(t)|2) dt ≤ M2
1 .

As i → ∞, we have
∫ +∞

−∞
(|u0(t)|2 + |u̇0(t)|2) dt ≤ M2

1 .

Hence we get
∫

|t|≥ρ

(|u0(t)|2 + |u̇0(t)|2) dt → 0 (2.11)

as ρ → +∞.

By Proposition 3 and (2.11), for all t > ρ + 1
2 we have

|u0(t)| ≤
√

2

(

∫ t+ 1

2

t− 1

2

(|u0(s)|2 + |u̇0(s)|2) ds

)
1

2

≤
√

2

(
∫ +∞

ρ

(|u0(s)|2 + |u̇0(s)|2) ds

)

1

2

≤
√

2

(

∫

|t|≥ρ

(|u0(s)|2 + |u̇0(s)|2) ds

)
1

2

.

Therefore, as ρ → +∞, t → +∞, we get u0(t) → 0.

Using the same method, we can obtain u0(t) → 0 as t → −∞.
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In the following we prove that u̇0(t) → 0 as t → ±∞.

Since u0(s) → 0 as s → ±∞, and
∫ t+ 1

2

t− 1

2

|f(s)|2 ds → 0 as t → ±∞, by (A1), we have

∫ t+ 1

2

t− 1

2

|ü0(s)|2 ds =

∫ t+ 1

2

t− 1

2

(|Vu(s, u0(s))|2 + |f(s)|2) ds

−2

∫ t+ 1

2

t− 1

2

(Vu(s, u0(s)), f(s)) ds → 0 (2.12)

as t → ±∞.

From Proposition 3, we get

|u̇0(t)|2 ≤ 2

∫ t+ 1

2

t− 1

2

(|u0(s)|2 + |u̇0(s)|2) ds + 2

∫ t+ 1

2

t− 1

2

|ü0(s)|2 ds.

Together with (2.11) and (2.12), we obtain u̇(t) → 0 as t → ±∞.

Since f is nonzero, we know u0 6≡ 0. So u0 is a homoclinic solution of (1.1).

References

[1] Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian

systems, Nonlinear Anal. 25 (11), 1095-1113 (1995).

[2] Y. H. Ding and L. Jeanjean, Homoclinic orbits for a nonperiodic Hamiltonian system. J.

Differential Equations 237 (2), 473-490 (2007).

[3] I. Marek, J. Joanna, Homoclinic solutions for a class of second order Hamiltonian systems, J.

Differential Equations 219 (2), 375-389 (2005).

[4] Z. Q. Ou, C. L. Tang, Existence of homoclinic solutions for the second order Hamiltonian

systems, J. Math. Anal. Appl. 291 (1), 203-213 (2004).

[5] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Ed-

inburgh Sect. A 114 (1-2), 33-38 (1990).

[6] C. O. Alves, P. C. Carriao, O. H. Miyagaki, Existence of homoclinic orbits for asymptotically

periodic systems involving Duffing-like equation, Appl. Math. Lett. 16 (5), 639-642 (2003).

[7] P. C. Carriao, O. H. Miyagaki, Existence of homoclinic solutions for a class of time-dependent

Hamiltonian systems, J. Math. Anal. Appl. 230 (1), 157-172 (1999).

[8] P. H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of Hamiltonian

systems, Math. Z. 206 (3), 473-499 (1991).

[9] A. Salvatore, Homoclinic orbits for a special class of nonautonomous Hamiltonian systems,

in: Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996),

Nonlinear Anal. 30 (8), 4849-4857 (1997).

[10] P. L. Felmer, E. A. De B.e. Silva, Homoclinic and periodic orbits for Hamiltonian systems,

Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 26 (2), 285-301 (1998).

EJQTDE, 2010 No. 31, p. 10



[11] E. Serra, M. Tarallo, S. Terracini, Subharmonic solutions to second-order differential equations

with periodic nonlinearities, Nonlinear Anal. 41 (5-6), 649-667 (2000).

[12] P. Korman, A. C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems,

Electron. J. Differential Equations 1994 (1), 1-10 (1994).

[13] S. Q. Zhang, Symmetrically homoclinic orbits for symmetric Hamiltonian systems, J. Math.

Anal. Appl. 247 (2), 645-652 (2000).

[14] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and appli-

cations, J. Funct. Anal. 14, 349-381 (1973).

[15] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems (Spring-Verlag, New

York, 1989).

(Received November 8, 2009)

EJQTDE, 2010 No. 31, p. 11


