
Electronic Journal of Qualitative Theory of Differential Equations

2010, No. 33, 1-13; http://www.math.u-szeged.hu/ejqtde/

Existence of multiple positive solutions of higher order multi-point

nonhomogeneous boundary value problem

Dapeng Xiea,∗, Yang Liua, Chuanzhi Baib

a Department of Mathematics, Hefei Normal University, Hefei, Anhui 230601, P R China
b School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223300, P R China

Abstract

In this paper, by using the Avery and Peterson fixed point theorem, we establish the existence of multiple
positive solutions for the following higher order multi-point nonhomogeneous boundary value problem

u(n)(t) + f(t, u(t), u′(t), . . . , u(n−2)(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(0) = 0, u(n−2)(1) −∑m

i=1 aiu
(n−2)(ξi) = λ,

where n ≥ 3 and m ≥ 1 are integers, 0 < ξ1 < ξ2 < · · · < ξm < 1 are constants, λ ∈ [0,∞) is a parameter,

ai > 0 for 1 ≤ i ≤ m and
∑

m

i=1 aiξi < 1, f(t, u, u′, · · · , u(n−2)) ∈ C([0, 1] × [0,∞)n−1, [0,∞)). We give an

example to illustrate our result.

Keywords: Multi-point boundary value problem; Cone; Nonhomogeneous; Positive solution; Fixed

point theorem.

1. Introduction

In this paper, we consider the existence of multiple positive solutions for the following higher

order multi-point nonhomogeneous boundary value problem
{

u(n)(t) + f(t, u(t), u′(t), . . . , u(n−2)(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(0) = 0, u(n−2)(1) −∑m
i=1 aiu

(n−2)(ξi) = λ,
(1.1)

where n ≥ 3 and m ≥ 1 are integers, λ ∈ [0,∞) is a parameter, and ai, ξi, f satisfying

(H1) ai > 0 for 1 ≤ i ≤ m, 0 < ξ1 < ξ2 < · · · < ξm < 1 and
∑m

i=1 aiξi < 1;

(H2) f : [0, 1] × [0,∞)n−1 → [0,∞) is continuous.

For the past few years, the existence of solutions for higher order ordinary differential equations

has received a wide attention. We refer the reader to [2-6,8,15-20] and references therein. However,

most of the above mentioned references only consider the cases in which f does not contain higher
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order derivatives of u and the parameter λ = 0. This is because the presence of higher order

derivatives in the nonlinear function f and the parameter λ 6= 0 make the study more difficult. For

example, in [6], Graef and Yang obtained existence and nonexistence results for positive solutions of

the following nth ordinary differential equation
{

u(n)(t) + µg(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(0) = u(n−2)(1) −∑m
i=1 aiu

(n−2)(ξi) = 0,
(1.2)

under the following assumptions:

(C1) f : [0, 1] → [0,∞) is a continuous function and µ > 0 is a parameter;

(C2) g : [0, 1] → [0,∞) is a continuous function with
∫ 1
0 g(t)dt > 0;

(C3) n ≥ 3 and m ≥ 1 are integers;

(C4) ai > 0 for 1 ≤ i ≤ m and
∑m

i=1 ai = 1;

(C5)
1
2 ≤ ξ1 < ξ2 < · · · < ξm < 1.

Obviously, condition (H1) in this paper is weaker than the conditions (C4) and (C5).

Often when authors deal with higher order boundary value problems in which the nonlinear

function f contains higher order derivatives, they transform the higher order equation into a second

order equation, see [7,9,14,22] and references therein. For instance, in [22], by using the fixed-point

principle in a cone and the fixed-point index theory for a strict-set-contraction operator, Zhang,

Feng and Ge established the existence and nonexistence of positive solutions for nth-order three-

point boundary value problems in Banach spaces
{

u(n)(t) + f(t, u(t), u′(t), . . . , u(n−2)(t)) = θ, t ∈ J,

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(0) = θ, u(n−2)(1) = ρu(n−2)(η),
(1.3)

where J = [0, 1], f ∈ C(J × Pn−1, P ), P is a cone of real Banach space, ρ ∈ (0, 1), and θ is the zero

element of the real Banach space.

Nonhomogeneous boundary value problems have received special attention from many authors

in recent years (see [10-13,17]). Recently, in the case of n = 3 and m = 1, by employing the Guo-

Krasnosel’skii fixed point theorem and Schauder’s fixed point theorem, Sun [17] established existence

and nonexistence of positive solutions to the problem (1.1) when f(t, u(t), u′(t)) = a(t)f(u(t)), λ ∈
(0,∞) and the nonlinearity f is either superlinear or sublinear. However, our problem is more

general than the problem of [2-4,6,8,15,17,22] and the aim of our paper is to investigate the existence

of two or three positive solutions for the problem (1.1). The key tool in our approach is the Avery

and Peterson fixed point theorem. We give an example to illustrate our result. To the best of our

knowledge, no previous results are available for triple positive solutions for the nth-order multi-point

boundary value problem with the higher order derivatives and the parameter λ by using the Avery

and Peterson fixed point theorem. The goal of this paper is to fill this gap.
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2. Preliminary Lemmas

Definition 2.1. The map α is said to be a nonnegative continuous concave functional on a cone K

of a real Banach space E provided that α : K → [0,∞) is continuous and

α(tx+ (1 − t)y) ≥ tα(x) + (1 − t)α(y), ∀x, y ∈ K, 0 ≤ t ≤ 1.

Similarly, we say the map β is a nonnegative continuous convex functional on a cone K of a real

Banach space E provided that β : K → [0,∞) is continuous and

β(tx+ (1 − t)y) ≤ tβ(x) + (1 − t)β(y), ∀x, y ∈ K, 0 ≤ t ≤ 1.

Let γ and θ be nonnegative continuous convex functionals on K, α be a nonnegative continuous

concave functional on K, and ψ be a nonnegative continuous functional on K. Then for positive real

numbers a, b, c and d, we define the following convex sets:

P (γ, d) = {x ∈ K | γ(x) < d},

P (γ, α, b, d) = {x ∈ K | b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ K | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

Q(γ, ψ, a, d) = {x ∈ K | a ≤ ψ(x), γ(x) ≤ d}.

Lemma 2.1.([1]) Let K be a cone in a real Banach space E. Let γ and θ be nonnegative continuous

convex functionals on K, α be a nonnegative continuous functional on K, and ψ be a nonnegative

continuous functional on K satisfying ψ(µx) ≤ µψ(x) for 0 ≤ µ ≤ 1, such that for some positive

numbers M and d,

α(x) ≤ ψ(x) and ‖x‖ ≤Mγ(x).

for all x ∈ P (γ, d). Suppose T : P (γ, d) → P (γ, d) is completely continuous and there exist positive

numbers a, b and c with a < b such that

(i) {x ∈ P (γ, θ, α, b, c, d) | α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);

(ii) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;

(iii) 0 6∈ Q(γ, ψ, a, d) and ψ(Tx) < a for x ∈ Q(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d), such that

γ(xi) ≤ d for i = 1, 2, 3, b < α(x1), a < ψ(x2) with α(x2) < b, ψ(x3) < a.

Lemma 2.2. Suppose that ∆ =:
∑m

i=1 aiξi 6= 0, then for y(t) ∈ C[0, 1], the boundary value problem
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{

u(n)(t) + y(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(0) = 0, u(n−2)(1) −∑m
i=1 aiu

(n−2)(ξi) = λ,
(2.1)

has a unique solution

u(t) =

∫ 1

0
G1(t, s)y(s)ds +

∑m
i=1 ait

n−1

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)y(s)ds +

λtn−1

(n− 1)!(1 − ∆)
, (2.2)

where

G1(t, s) =
1

(n− 1)!

{

tn−1(1 − s) − (t− s)n−1, 0 ≤ s ≤ t ≤ 1,
(1 − s)tn−1, 0 ≤ t ≤ s ≤ 1,

and

G2(t, s) =
∂n−2

∂tn−2
G1(t, s) =

{

s(1 − t), 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t ≤ s ≤ 1.

Proof. To prove this, we let

u(t) = −
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds+Atn−1 +

n−2
∑

i=1

Ait
i +B.

Since u(i)(0) = 0 for i = 0, 1, 2, · · · , n − 2, we get B = 0 and Ai = 0 for i = 1, 2, · · · , n − 2. Now we

solve for A by u(n−2)(1) −∑m
i=1 aiu

(n−2)(ξi) = λ, we see that

−
∫ 1

0
(1 − s)y(s)ds + (n− 1)!A+

m
∑

i=1

ai

∫ ξi

0
(ξi − s)y(s)ds− (n− 1)!A · ∆ = λ,

which implies

A =
1

(n− 1)!(1 − ∆)

(

∫ 1

0
(1 − s)y(s)ds−

m
∑

i=1

ai

∫ ξi

0
(ξi − s)y(s)ds+ λ

)

.

Therefore, the problem (2.1) has a unique solution

u(t) = −
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds+

1

(n− 1)!(1 − ∆)

(
∫ 1

0
(1 − s)tn−1y(s)ds

−
m
∑

i=1

ai

∫ ξi

0
(ξi − s)tn−1y(s)ds+ λtn−1

)

= −
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds+

1

(n− 1)!

∫ 1

0
(1 − s)tn−1y(s)ds+

∆

(n− 1)!(1 − ∆)

×
∫ 1

0
(1 − s)tn−1y(s)ds−

∑m
i=1 ai

(n− 1)!(1 − ∆)

∫ ξi

0
(ξi − s)tn−1y(s)ds +

λtn−1

(n − 1)!(1 − ∆)

=
1

(n− 1)!

∫ t

0
[(1−s)tn−1−(t−s)n−1]y(s)ds+

1

(n− 1)!

∫ 1

t

(1−s)tn−1y(s)ds+

∑m
i=1 ait

n−1

(n− 1)!(1 − ∆)

×
∫ 1

0
ξi(1 − s)y(s)ds −

∑m
i=1 ait

n−1

(n − 1)!(1 − ∆)

∫ ξi

0
(ξi − s)y(s)ds+

λtn−1

(n− 1)!(1 − ∆)
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=
1

(n− 1)!

∫ t

0
[(1 − s)tn−1 − (t− s)n−1]y(s)ds+

1

(n− 1)!

∫ 1

t

(1 − s)tn−1y(s)ds

+

∑m
i=1 ait

n−1

(n− 1)!(1 − ∆)

(
∫ ξi

0
s(1 − ξi)y(s)ds +

∫ 1

ξi

ξi(1 − s)y(s)ds

)

+
λtn−1

(n− 1)!(1 − ∆)

=

∫ 1

0
G1(t, s)y(s)ds+

∑m
i=1 ait

n−1

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)y(s)ds +

λtn−1

(n− 1)!(1 − ∆)
.

Lemma 2.3. Let 0 < τ < 1
2 . G1(t, s) and G2(t, s) have the following properties

(i) G2(t, t)G2(s, s) ≤ G2(t, s) ≤ G2(s, s), for all (t, s) ∈ [0, 1] × [0, 1], and max
t∈[0,1]

∫ 1

0
G2(t, s)ds =

1

8
;

(ii) G1(t, s) ≥ 0, for all (t, s) ∈ [0, 1] × [0, 1], G1(t, s) ≥ τn−1G1(1, s), for all (t, s) ∈ [τ, 1 − τ ] × [0, 1].

Proof. It is obvious that (i) holds. Next we check (ii). For all (t, s) ∈ [0, 1]× [0, 1], if s ≤ t, we have

G1(t, s) =
1

(n− 1)!
[(1 − s)tn−1 − (t− s)n−1]

≥ 1

(n− 1)!
[(1 − s)tn−1 − (t− ts)n−1]

=
tn−1

(n− 1)!
[(1 − s) − (1 − s)n−1]. (2.3)

If t ≤ s, we get

G1(t, s) =
tn−1

(n− 1)!
(1 − s) ≥ tn−1

(n− 1)!
[(1 − s) − (1 − s)n−1]. (2.4)

Therefore, it follows from (2.3) and (2.4) that

G1(t, s) ≥ 0, for all (t, s) ∈ [0, 1] × [0, 1],

and

G1(t, s) ≥
τn−1

(n− 1)!
[(1 − s) − (1 − s)n−1] = τn−1G1(1, s), for all (t, s) ∈ [τ, 1 − τ ] × [0, 1].

Lemma 2.4. We assume that conditions (H1) and (H2) hold, the unique solution u(t) of the BVP

(1.1) satisfies:

u(i)(t) ≥ 0 (i = 0, 1, · · · , n− 2), ∀t ∈ [0, 1]. (2.5)

Proof. Let v(t) = u(n−2)(t), for 0 ≤ t ≤ 1. Thus,

v′′(t) = u(n)(t) = −f(t, u(t), u′(t), . . . , u(n−2)(t)) ≤ 0, for 0 ≤ t ≤ 1,

v(0) = 0, v(1) −∑m
i=1 aiv(ξi) = λ.
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In the following we will show that v(1) ≥ 0. If otherwise, v(1) < 0. From v(0) = 0 and v(t) is

concave downward, we obtain

v(t) ≥ tv(1), for 0 ≤ t ≤ 1.

Hence,

λ = v(1) −∑m
i=1 aiv(ξi) ≤ v(1) −∑m

i=1 aiξiv(1) = (1 −∑m
i=1 aiξi)v(1) < 0,

which contradicts λ ∈ [0,∞), and so v(1) ≥ 0.

Since v(0) = 0, v(1) ≥ 0 and v(t) is concave downward, we have

v(t) = u(n−2)(t) ≥ 0, for 0 ≤ t ≤ 1. (2.6)

Combining (2.6) with u(i)(0) = 0 (i = 0, 1, · · · , n− 3), we obtain

u(i)(t) ≥ 0 (i = 0, 1, · · · , n− 3), for all t ∈ [0, 1]. (2.7)

Therefore, we have by (2.6) and (2.7) that (2.5) holds.

Lemma 2.5. We assume that conditions (H1) and (H2) hold, the unique solution u(t) of the BVP

(1.1) satisfies:

(i) u(n−2)(t) ≥ τ(1 − τ)|u(n−2)|0, ∀t ∈ [τ, 1 − τ ];

(ii) u(t) ≥ τn−1|u|0, ∀t ∈ [τ, 1 − τ ],

where |u(i)|0 = max
t∈[0,1]

|u(i)(t)| (i = 0, 1, · · · , n− 2), τ as in Lemma 2.3.

Proof. (i) From (2.2) and Lemma 2.3 (i), we have

u(n−2)(t) =

∫ 1

0
G2(t, s)f(s, u(s), · · · , u(n−2)(s))ds

+

∑m
i=1 ait

1 − ∆

∫ 1

0
G2(ξi, s)f(s, u(s), · · · , u(n−2)(s))ds +

λt

1 − ∆

≤
∫ 1

0
G2(s, s)f(s, u(s), · · · , u(n−2)(s))ds

+

∑m
i=1 ai

1 − ∆

∫ 1

0
G2(ξi, s)f(s, u(s), · · · , u(n−2)(s))ds +

λ

1 − ∆
,

which implies

|u(n−2)|0 ≤
∫ 1

0
G2(s, s)f(s, u(s), · · · , u(n−2)(s))ds
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+

∑m
i=1 ai

1 − ∆

∫ 1

0
G2(ξi, s)f(s, u(s), · · · , u(n−2)(s))ds +

λ

1 − ∆
. (2.8)

On the other hand, for each t ∈ [τ, 1 − τ ], we obtain by (2.2), (2.8) and Lemma 2.3 (i) that

u(n−2)(t) =

∫ 1

0
G2(t, s)f(s, u(s), · · · , u(n−2)(s))ds

+

∑m
i=1 ait

1 − ∆

∫ 1

0
G2(ξi, s)f(s, u(s), · · · , u(n−2)(s))ds +

λt

1 − ∆

≥ τ(1 − τ)

∫ 1

0
G2(s, s)f(s, u(s), · · · , u(n−2)(s))ds

+

∑m
i=1 aiτ

1 − ∆

∫ 1

0
G2(ξi, s)f(s, u(s), · · · , u(n−2)(s))ds +

λτ

1 − ∆

≥ τ(1 − τ)

(
∫ 1

0
G2(s, s)f(s, u(s), · · · , u(n−2)(s))ds

+

∑m
i=1 ai

1 − ∆

∫ 1

0
G2(ξi, s)f(s, u(s), · · · , u(n−2)(s))ds +

λ

1 − ∆

)

≥ τ(1 − τ)|u(n−2)|0.

(ii) It follows from (2.2), (2.5) and Lemma 2.3 (ii) that

|u|0 = max
t∈[0,1]

|u(t)| = u(1) =

∫ 1

0
G1(1, s)f(s, u(s), · · · , u(n−2)(s))ds

+

∑m
i=1 ai

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)f(s, u(s), · · · , u(n−2)(s))ds +

λ

(n − 1)!(1 − ∆)
. (2.9)

Thus, for any t ∈ [τ, 1 − τ ], in view of Lemma 2.3 (ii), (2.2) and (2.9), we get

u(t) ≥ τn−1

(
∫ 1

0
G1(1, s)f(s, u(s), · · · , u(n−2)(s))ds

+

∑m
i=1 ai

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)f(s, u(s), · · · , u(n−2)(s))ds +

λ

(n − 1)!(1 − ∆)

)

≥ τn−1|u|0.

From the above discussion, the proof is complete.

From Lemma 2.4, Lemma 2.5 (i) and the proof of lemma 2.4 in [21], we can easily check that the

following Lemma holds.

Lemma 2.6. Suppose that (H1) and (H2) hold, then the unique solution u(t) of the BVP (1.1)

satisfies

u(t) ≤ u′(t) ≤ · · · ≤ u(n−3)(t) ≤ |u(n−2)|0, ∀t ∈ [0, 1],
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and

u(n−3)(t) ≤ 1
τ(1−τ)u

(n−2)(t), ∀t ∈ [τ, 1 − τ ],

where τ is as in Lemma 2.3.

3. Main results

Let Cn−2[0, 1] be endowed with the norm ‖u‖ = max{|u|0, |u′|0, · · · , |u(n−2)|0},

where |u(i)|0 = max
t∈[0,1]

|u(i)(t)| (i = 0, 1, · · · , n− 2). Denote

E = {u ∈ Cn−2[0, 1], u(i)(t) ≥ 0 (i = 0, 1, · · · , n − 2) and u(i)(t) ≤ u(i+1)(t) ≤ |u(n−2)|0 (i =

0, 1, · · · , n− 4), ∀t ∈ [0, 1]},

P = {u ∈ E : u(t) ≥ τn−1|u|0 and u(n−3)(t) ≤ 1
τ(1−τ)u

(n−2)(t), ∀t ∈ [τ, 1 − τ ]}.

It is obvious that P is a cone in C(n−2)[0, 1].

We define the operator T on P by

Tu(t) =

∫ 1

0
G1(t, s)f(s, u(s), u′(s), . . . , u(n−2)(s))ds

+

∑m
i=1 ait

n−1

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)f(s, u(s), u′(s), . . . , u(n−2)(s))ds +

λtn−1

(n− 1)!(1 − ∆)
,

where G1(t, s) and G2(t, s) are given in Lemma 2.2. It is easy to see that the BVP (1.1) has a solution

u(t) if and only if u(t) is a fixed point of the operator T .

In order to obtain the results, we define the nonnegative continuous functional α, the nonnegative

continuous convex functional θ, γ, and the nonnegative continuous functional ψ be defined on the

cone P by

γ(u) = max
t∈[0,1]

|u(n−2)(t)|, ψ(u) = θ(u) = max
t∈[0,1]

|u(t)|, α(u) = min
t∈[τ,1−τ ]

|u(t)|,

where τ as in Lemma 2.3. We observe here that, for all u ∈ P ,

τn−1θ(u) ≤ α(u) ≤ θ(u) = ψ(u), ‖u‖ = max{|u|0, |u′|0, · · · , |u(n−2)|0} = γ(u). (3.1)

We use the following notations. Let

M =
1

4
+

2
∑i=m

i=1 ai

1 − ∆

∫ 1

0
G2(ξi, s)ds,

N = 2

∫ 1

0
G1(1, s)ds +

2
∑i=m

i=1 ai

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)ds,
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R =

∫ 1

0
G1(τ, s)ds+

∑i=m
i=1 aiτ

n−1

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)ds.

To present our main results, we assume there exist constants 0 < a < b < τn−1d and the following

assumptions hold.

(H3) f(t, u, u′, · · · , u(n−2)) ≤ d
M

, for (t, u, u′, · · · , u(n−2)) ∈ [0, 1] × [0, d]n−1;

(H4) f(t, u, u′, · · · , u(n−2)) > b
R

, for (t, u, u′, · · · , u(n−2)) ∈ [τ, 1−τ ]× [b, b
τn−1 ]× [b, d]n−3× [τ(1−τ)b, d];

(H5) f(t, u, u′, · · · , u(n−2)) < a
N

, for (t, u, u′, · · · , u(n−2)) ∈ [0, 1] × [0, a] × [0, d]n−2.

Theorem 3.1. Assume that (H1) − (H5) hold, in addition, suppose λ satisfy

0 ≤ λ ≤ min{d, (n − 1)!a}1 − ∆

2
. (3.2)

Then the BVP (1.1) has at least two positive solutions u1, u2 and one nonnegative solution u3 such

that

max
t∈[0,1]

|u(n−2)
i (t)| ≤ d, for i = 1, 2, 3; min

t∈[τ,1−τ ]
|u1(t)| > b;

a < max
t∈[0,1]

|u2(t)|, with min
t∈[τ,1−τ ]

|u2(t)| < b; max
t∈[0,1]

|u3(t)| < a.

Proof. First we show T : P (γ, d) → P (γ, d) is a completely continuous operator.

If u ∈ P , then from Lemma 2.4 and Lemma 2.6, (Tu)(i)(t) ≥ 0 (i = 0, 1, · · · , n − 2), (Tu)(i)(t) ≤
(Tu)(i+1)(t) ≤ |(Tu)(n−2)|0 (i = 0, 1, · · · , n − 4), ∀t ∈ [0, 1] and (Tu)(n−3)(t) ≤ 1

τ(1−τ)(Tu)
(n−2)(t),

∀t ∈ [τ, 1−τ ], and by Lemma 2.5 (ii), Tu(t) ≥ τn−1|Tu|0, ∀t ∈ [τ, 1−τ ]. This shows that T : P → P .

It can be shown that T : P → P is completely continuous by the Arzela-Ascoli theorem.

If u ∈ P (γ, d), then γ(u) = max
t∈[0,1]

|u(n−2)(t)| ≤ d, and so 0 ≤ u(i)(t) ≤ d (i = 0, 1, · · · , n − 2), for

all t ∈ [0, 1], then assumption (H3) implies f(t, u, u′, · · · , u(n−2)) ≤ d
M

. Then, it follows by Lemma

2.3 (i) and (3.2) that

γ(Tu) = max
t∈[0,1]

|(Tu)(n−2)(t)| = max
t∈[0,1]

(Tu)(n−2)(t)

= max
t∈[0,1]

{
∫ 1

0
G2(t, s)f(s, u(s), u′(s), . . . , u(n−2)(s))ds

+

∑m
i=1 ait

1 − ∆

∫ 1

0
G2(ξi, s)f(s, u(s), u′(s), . . . , u(n−2)(s))ds +

λt

1 − ∆

}

≤ d

M
·
(

max
t∈[0,1]

∫ 1

0
G2(t, s)ds+

∑m
i=1 ai

1 − ∆

∫ 1

0
G2(ξi, s)ds

)

+
λ

1 − ∆

≤ d

M
·
(

1

8
+

∑m
i=1 ai

1 − ∆

∫ 1

0
G2(ξi, s)ds

)

+
d

2
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=
d

2
+
d

2
= d.

Therefore, T : P (γ, d) → P (γ, d).

Next, we show all the conditions of Lemma 2.1 are satisfied.

To check condition (i) of Lemma 2.1, we take u(t) = b
τn−1 , for t ∈ [0, 1]. It is easy to see that

u(t) = b
τn−1 ∈ P (γ, θ, α, b, b

τn−1 , d) and α(u) = α( b
τn−1 ) > b, and so {u ∈ P (γ, θ, α, b, b

τn−1 , d)|α(u) >

b} 6= ∅. For u ∈ P (γ, θ, α, b, b
τn−1 , d), we have

b ≤ u(t) ≤ b
τn−1 , for t ∈ [τ, 1 − τ ], and max

t∈[0,1]
|u(n−2)(t)| ≤ d,

then,

b ≤ u(i)(t) ≤ d (i = 1, · · · , n− 3), for t ∈ [τ, 1 − τ ],

and so

τ(1 − τ)b ≤ τ(1 − τ)u(n−3)(t) ≤ u(n−2)(t) ≤ d, for t ∈ [τ, 1 − τ ].

Thus, assumption (H4) implies f(t, u, u′, · · · , u(n−2)) > b
R

, and by the definitions of α and the cone

P , we have

α(Tu) = min
t∈[τ,1−τ ]

|Tu(t)| = Tu(τ) =

∫ 1

0
G1(τ, s)f(s, u(s), u′(s), . . . , u(n−2)(s))ds

+

∑m
i=1 aiτ

n−1

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)f(s, u(s), u′(s), . . . , u(n−2)(s))ds +

λτn−1

(n− 1)!(1 − ∆)

>
b

R
·
(
∫ 1

0
G1(τ, s)ds +

∑m
i=1 aiτ

n−1

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)ds

)

= b.

So, condition (i) of Lemma 2.1 is satisfied.

Secondly, we show (ii) of Lemma 2.1 is satisfied. From (3.1) and b ≤ τn−1d, we get

α(Tu) ≥ τn−1θ(Tu) > τn−1 b
τn−1 = b, for all u ∈ P (γ, α, a, d) with θ(Tu) > b

τn−1 .

Finally, we show condition (iii) of Lemma 2.1 is also satisfied. Obviously, as ψ(0) = 0 < a,

there holds 0 /∈ Q(α,ψ, a, d). Suppose u ∈ Q(α,ψ, a, d) with ψ(u) = a. Then we have by (3.2), the

assumption (H5), the definitions of ψ and the cone P that

ψ(Tu) = max
t∈[0,1]

|Tu(t)| = Tu(1)

=

∫ 1

0
G1(1, s)f(s, u(s), u′(s), . . . , u(n−2)(s))ds

+

∑m
i=1 ai

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)f(s, u(s), u′(s), . . . , u(n−2)(s))ds +

λ

(n− 1)!(1 − ∆)
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<
a

N
·
(
∫ 1

0
G1(1, s)ds +

∑m
i=1 ai

(n− 1)!(1 − ∆)

∫ 1

0
G2(ξi, s)ds

)

+
a

2

=
a

2
+
a

2
= a.

This shows condition (iii) of Lemma 2.1 is also satisfied. Therefore, the hypotheses of Lemma 2.1 are

satisfied and there exist two positive solutions u1, u2 and one nonnegative solution u3 for the BVP

(1.1) such that

max
t∈[0,1]

|u(n−2)
i (t)| ≤ d, for i = 1, 2, 3; min

t∈[τ,1−τ ]
|u1(t)| > b;

a < max
t∈[0,1]

|u2(t)|, with min
t∈[τ,1−τ ]

|u2(t)| < b; max
t∈[0,1]

|u3(t)| < a.

Remark 3.2. By Theorem 3.1, there are three non-negative solutions, two positive and a third u3

which may be zero.

4. Example

In this section, in order to illustrate our main result, we consider an example.

Example 4.1. Consider the boundary value problem
{

u′′′(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1),
u(0) = u′(0) = 0, u′(1) − 1

4u
′(1

3 ) − 3
4u

′(2
3) = λ,

(4.1)

where

f(t, u, v) =



























sinπt+ u6 +

√
v

30
, 0 ≤ t ≤ 1, 0 ≤ u < 2, v ≥ 0,

sinπt+ 64 +
15

2

√
u− 2 +

√
v

30
, 0 ≤ t ≤ 1, 2 ≤ u < 18, v ≥ 0,

sinπt+ 94 +
√
u− 18 +

√
v

30
, 0 ≤ t ≤ 1, u ≥ 18, v ≥ 0.

To show the problem (4.1) has at least two positive solutions and one nonnegative solution, we

apply Theorem 3.1 with n = 3, m = 2, a1 = 1
4 , a2 = 3

4 , ξ1 = 1
3 and ξ2 = 2

3 . Clearly (H1) and (H2)

are satisfied. We take τ = 1
3 . After some simple calculations, we get M = 47

60 , N = 13
30 and R = 59

1620 .

If we take a = 1, b = 2 and d = 81, we obtain

f(t, u, v) ≤ 103.237 < 103.404 =
d

M
, for 0 ≤ t ≤ 1, 0 ≤ u ≤ 81, 0 ≤ v ≤ 81,

f(t, u, v) ≥ 64.888 > 54.915 =
b

R
, for 1

3 ≤ t ≤ 2
3 , 2 ≤ u ≤ 18, 4

9 ≤ v ≤ 81,

f(t, u, v) ≤ 2.3 < 2.308 =
a

N
, for 0 ≤ t ≤ 1, 0 ≤ u ≤ 1, 0 ≤ v ≤ 81.

Thus, for 0 ≤ λ ≤ min{d, (n − 1)!a}1−∆
2 = 1

2 , by Theorem 3.1, the problem (4.1) has at least two

positive solutions u1, u2 and one nonnegative solution u3 such that
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max
t∈[0,1]

|u(n−2)
i (t)| ≤ 81, for i = 1, 2, 3; min

t∈[ 1
3
, 2
3
]
|u1(t)| > 2;

1 < max
t∈[0,1]

|u2(t)|, with min
t∈[ 1

3
, 2
3
]
|u2(t)| < 2; max

t∈[0,1]
|u3(t)| < 1.

Since 0 is not a solution for any λ ∈ [0, 1/2], it follows that u3 is also a positive solution.
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