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Abstract. We introduce the most general class of linear boundary-value problems for
systems of first-order ordinary differential equations whose solutions belong to the
complex Hölder space Cn+1,α, with 0 ≤ n ∈ Z and 0 ≤ α ≤ 1. The boundary conditions
can contain derivatives y(r), with 1 ≤ r ≤ n + 1, of the solution y to the system. For
parameter-dependent problems from this class, we obtain a constructive criterion under
which their solutions are continuous in the normed space Cn+1,α with respect to the
parameter.
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1 Introduction

Questions concerning the validity of passage to the limit in parameter-dependent differential
equations arise in various problems. These questions are best cleared up for the Cauchy
problem for systems of first-order ordinary differential equations. Gikhman [3], Krasnosel’skii
and S. Krein [15], Kurzweil and Vorel [16] obtained fundamental results relating to continuous
dependence on the parameter of solutions to the Cauchy problem for nonlinear systems. For
linear systems, these results were refined and supplemented by Levin [17], Opial [23], Reid
[24], and Nguyen [22].

Parameter-dependent boundary-value problems are far less studied than the Cauchy prob-
lem. Kiguradze [9–11] and Ashordia [1] introduced and investigated the class of general linear
boundary-value problems for systems of first-order ordinary differential equations. The so-
lutions y to these problems are supposed to be absolutely continuous on a compact interval
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[a, b], and the boundary condition is of the form By = q where B is an arbitrary linear con-
tinuous operator from C([a, b], Rm) to Rm (m is the number of differential equations in the
system). Kiguradze and Ashordia obtained conditions under which the solutions to an ar-
bitrary parameter-dependent problem from this class are continuous in C([a, b], Rm) with re-
spect to the parameter. Recently these results were refined and generalized to complex-valued
functions and systems of higher-order differential equations [14, 19, 21].

In this paper we introduce a new class of boundary-value problems for systems of first-
order linear differential equations. In contrast to the usual boundary-value problems, this
class relates to a given function space. We consider systems whose coefficients and right-hand
sides belong to the Hölder space Cn,α := Cn,α([a, b], C), with 0 ≤ n ∈ Z and 0 ≤ α ≤ 1.
Since the solutions y to each of these systems run through the whole space (Cn+1,α)m :=
Cn+1,α([a, b], Cm), we consider the most general boundary condition of the form By = q where
B is an arbitrary linear continuous operator from (Cn+1,α)m to Cm. This condition can contain
the derivatives y(r), with 1 ≤ r ≤ n + 1, of the solution. We say that these boundary-value
problems are generic with respect to the Hölder space Cn+1,α.

We investigate parameter-dependent boundary-value problems from the class introduced.
We will find sufficient and necessary constructive conditions under which the solutions to
these problems are continuous in (Cn+1,α)m with respect to the parameter. We will also prove
a two-sided estimate for the degree of convergence of the solutions.

Note that the generic boundary-value problems with respect to the Sobolev spaces and to
the spaces C(n+1) were introduced in [4,13,20] and [18,26], where sufficient conditions for con-
tinuous dependence in parameter of solutions were obtained. These results were applied to
the investigation of multipoint boundary-value problems [12], Green’s matrices of boundary-
value problems [14, 19], in the spectral theory of differential operators with distributional
coefficients [5–7].

The approach developed in this paper can be applied to generic boundary-value problems
with respect to other function spaces.

2 Main results

Throughout the paper we arbitrarily fix a compact interval [a, b] ⊂ R, integers n ≥ 0 and
m ≥ 1, and a real number α such that 0 ≤ α ≤ 1. We use the Hölder spaces

(Cl,α)m := Cl,α([a, b], Cm) and (Cl,α)m×m := Cl,α([a, b], Cm×m), (2.1)

with 0 ≤ l ∈ Z. They consist respectively of all vector-valued functions and (m×m)-matrix-
valued functions whose components belong to Cl,α := Cl,α([a, b], C), with the norm of the
functions being equal to the sum of the norms in Cl,α of all their components. We denote all
these norms by ‖ · ‖l,α. Certainly, if α = 0, then Cl,α stands for the space C(l) := C(l)([a, b], C)

of all l times continuously differentiable functions on [a, b]. We will recall the definition of the
Hölder space Cl,α at the end of this section.

Let the parameter ε runs through the set [0, ε0), with the number ε0 > 0 being fixed. We
consider the following parameter-dependent boundary value-problem:

L(ε)y(t, ε) ≡ y′(t, ε) + A(t, ε)y(t, ε) = f (t, ε), a ≤ t ≤ b, (2.2)

B(ε)y(·, ε) = q(ε). (2.3)
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Here, for every ε ∈ [0, ε0), we suppose that y(·, ε) ∈ (Cn+1,α)m is an unknown vector-valued
function, whereas the matrix-valued function A(·, ε) ∈ (Cn,α)m×m, vector-valued function
f (·, ε) ∈ (Cn,α)m, continuous linear operator

B(ε) : (Cn+1,α)m → Cm (2.4)

and vector q(ε) ∈ Cm are arbitrarily given. Note that we interpret vectors as columns.
The boundary condition (2.3) with the continuous operator (2.4) is the most general for

equation (2.2) in view of Lemma 3.2, which will be given in the next section. This condi-
tion covers all the classical types of boundary conditions such as initial conditions in the
Cauchy problem, various multipoint conditions, integral conditions, conditions used in mixed
boundary-value problems, and also nonclassical conditions containing the derivatives y(r)(·, ε)

with 1 ≤ r ≤ n + 1.
By analogy with papers [13] and [26] we say that the boundary-value problem (2.2), (2.3)

is generic with respect to the space Cn+1,α. (In these papers, the notion of a generic (or, in
other words, total) boundary-value problem is introduced with respect to the Sobolev spaces
and spaces of continuously differentiable functions respectively).

For the boundary-value problem (2.2), (2.3), we consider the following four

Limit Conditions as ε→ 0+:

(I) A(·, ε)→ A(·, 0) in (Cn,α)m×m;

(II) B(ε)y→ B(0)y in Cm for every y ∈ (Cn+1,α)m;

(III) f (·, ε)→ f (·, 0) in (Cn,α)m;

(IV) q(ε)→ q(0) in Cm.

We also consider

Condition (0). The limiting homogeneous boundary-value problem

L(0) y(t, 0) = 0, a ≤ t ≤ b, and B(0) y(·, 0) = 0

has only the trivial solution.

Let us formulate our

Basic Definition. We say that the solution to the boundary-value problem (2.2), (2.3) is con-
tinuous in the parameter ε at ε = 0 if the following two conditions are fulfilled.

(∗) There exists a positive number ε1 < ε0 such that for arbitrary ε ∈ [0, ε1), f (·, ε) ∈ (Cn,α)m,
and q(ε) ∈ Cm this problem has a unique solution y(·, ε) ∈ (Cn+1,α)m.

(∗∗) Limit Conditions (III) and (IV) imply that

y(·, ε)→ y(·, 0) in (Cn+1,α)m as ε→ 0 + . (2.5)

Main Theorem. The solution to the boundary-value problem (2.2), (2.3) is continuous in the param-
eter ε at ε = 0 if and only if this problem satisfies Condition (0) and Limit Conditions (I) and (II).

We supplement the Main Theorem by the following theorem.
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Theorem 2.1. Assume that the boundary-value problem (2.2), (2.3) satisfies Condition (0) and Limit
Conditions (I) and (II). Then there exist positive numbers ε2 < ε1 and κ1 and κ2 such that for every
ε ∈ (0, ε2) we have the two-sided estimate

κ1
(
‖L(ε)y(·, 0)− f (·, ε)‖n,α + ‖B(ε)y(·, 0)− q(ε)‖Cm

)
≤ ‖y(·, 0)− y(·, ε)‖n+1,α

≤ κ2
(
‖L(ε)y(·, 0)− f (·, ε)‖n,α + ‖B(ε)y(·, 0)− q(ε)‖Cm

)
.

(2.6)

Here, the numbers ε2, κ1, and κ2 do not depend on y(·, 0), y(·, ε), f (·, ε), and q(ε).

According to (2.6), the error and discrepancy of the solution y(·, ε) to the boundary-value
problem (2.2), (2.3) are of the same degree. Here, we consider y(·, 0) as an approximate
solution to this problem.

We will prove the Main Theorem and Theorem 2.1 in Section 4.

Remark 2.2. Let us discuss the boundary-value problem (2.2), (2.3) and the Main Theorem in
the important case where α = 0. In this case an arbitrary linear continuous operator (2.4) can
be uniquely represented in the form

B(ε)z =
n+1

∑
k=1

βk(ε) z(k−1)(a) +
∫ b

a
(dΦ(t, ε))z(n+1)(t), z ∈ (C(n+1))m. (2.7)

Here, each βk(ε) is a number m×m-matrix, whereas Φ(·, ε) is an m×m-matrix-valued func-
tion formed by scalar functions that are of bounded variation on [a, b], right-continuous on
(a, b), and equal to zero at t = a. Here, the integral is understood in the Riemann–Stieltjes
sense. This representation follows from the known description of the dual of C(n+1); see,
e.g., [2, p. 344]. Applying (2.7), we can reformulate Limit Condition (II) in an explicit form.
Namely, Limit Condition (II) is equivalent to that the following four conditions are fulfilled as
ε→ 0+:

(2a) βk(ε)→ βk(0) for every k ∈ {1, . . . , n + 1};

(2b) ‖Vb
a Φ(·, ε)‖Cm×m = O(1);

(2c) Φ(b, ε)→ Φ(b, 0);

(2d)
∫ t

a Φ(s, ε)ds→
∫ t

a Φ(s, 0)ds for every t ∈ (a, b].

(Here, of course, the convergence is considered in Cm×m.) This equivalence follows from the
Riesz theorem on the weak convergence of linear continuous functionals on C(0)([a, b], C) (see,
e.g., [25, Ch. III, Sect. 55]). It is useful to compare these conditions with the criterion of the
convergence B(ε) → B(0) as ε → 0+ in the uniform operator topology. According to this
criterion, the latter convergence is equivalent to that condition (2a) and

Vb
a
(
Φ(·, ε)−Φ(·, 0)

)
→ 0 (2.8)

are fulfilled as ε → 0+. Condition (2.8) is much stronger than the system of conditions
(2b)–(2d). This becomes especially clear if we observe that condition (2.8) implies the uniform
convergence of the functions Φ(t, ε) to Φ(t, 0) on [a, b] as ε→ 0+ whereas conditions (2b)–(2d)
do not imply the pointwise convergence of these functions at least in one point of (a, b).
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At the end of this section, we recall the definition of the Hölder spaces and discuss some
notions and designations relating to these spaces. Let an integer l ≥ 0. We endow the Banach
space C(l) := C(l)([a, b], C) of all l times continuously differentiable functions x : [a, b] → C

with the norm

‖x‖l :=
l

∑
j=0

max
{
|x(j)(t)| : t ∈ [a, b]

}
.

By definition, the Hölder space Cl,α := Cl,α([a, b], C), with 0 < α ≤ 1, consists of all functions
x ∈ C(l) such that

‖x(l)‖′α := sup

{
|x(l)(t2)− x(l)(t1)|

|t2 − t1|α
: t1, t2 ∈ [a, b], t1 6= t2

}
< ∞.

This space is Banach with respect to the norm

‖x‖l,α := ‖x‖l + ‖x(l)‖′α.

For the sake of uniformity, we use the designations Cl,0 := C(l) and ‖ · ‖l,0 := ‖ · ‖l .
Note that each Cl,α, with 0 ≤ α ≤ 1, is a Banach algebra with respect to a certain norm

which is equivalent to ‖ · ‖l,α. The norms in the spaces (2.1) are also denoted by ‖ · ‖l,α. It
will be always clear from the context to which space (scalar or vector-valued or matrix-valued
functions) these norms relate.

3 Preliminaries

In this section, we investigate the boundary-value problem (2.2), (2.3) provided that the pa-
rameter ε is fixed. We establish basic properties of this problem; they will be used in our proof
of the Main Theorem. Fixing and then omitting ε in the problem (2.2), (2.3), we write it in the
form

Ly(t) ≡ y′(t) + A(t)y(t) = f (t), a ≤ t ≤ b, (3.1)

By = q. (3.2)

So, we consider an arbitrary boundary-value problem (3.1), (3.2) which is generic with
respect to the function space Cn+1,α. The latter means that y ∈ (Cn+1,α)m, A ∈ (Cn,α)m×m,
f ∈ (Cn,α)m, B is a linear continuous operator from (Cn+1,α)m to Cm, and q ∈ Cm. We rewrite
the problem (3.1), (3.2) in the brief form (L, B)y = ( f , q) with the help of the continuous linear
operator

(L, B) : (Cn+1,α)m → (Cn,α)m ×Cm. (3.3)

Theorem 3.1. The operator (3.3) is Fredholm with index zero.

In connection with this theorem, we recall that a linear continuous operator T : E1 → E2

between Banach spaces E1 and E2 is called Fredholm if its kernel ker T and co-kernel E2/T(E1)

are both finite-dimensional. If this operator is Fredholm, then its range T(E1) is closed in E2

(see, e.g., [8, Lemma 19.1.1]). The finite index of the Fredholm operator T is defined by the
formula

ind T := dim ker T − dim(E2/T(E1)).

Before we prove Theorem 3.1, let us establish the following lemma.
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Lemma 3.2. Let A ∈ (Cn,α)m×m. If a differentiable function y : [a, b]→ Cm is a solution to equation
(3.1) for a certain right-hand side f ∈ (Cn,α)m, then y ∈ (Cn+1,α)m. Moreover, if f runs through the
whole space (Cn,α)m, then the solutions to (3.1) run through the whole space (Cn+1,α)m.

Proof. We suppose that a differentiable function y is a solution to equation (3.1) for certain
f ∈ (Cn,α)m. Let us prove that y ∈ (Cn+1,α)m. Since A and f are at least continuous on [a, b],
we get y′ = f − Ay ∈ (C(0))m. Hence, y ∈ (C(1))m ⊂ (C0,α)m. Moreover,(

y ∈ (Cl,α)m ⇒ y ∈ (Cl+1,α)m ) for every l ∈ Z∩ [0, n]. (3.4)

Indeed, if y ∈ (Cl,α)m for some integer l ∈ [0, n], then y′ = f − Ay ∈ (Cl,α)m and therefore
y ∈ (Cl+1,α)m. Now the inclusion y ∈ (C0,α)m and property (3.4) imply the required inclusion
y ∈ (Cn+1,α)m.

Let us now prove the last assertion of this lemma. For arbitrary f ∈ (Cn,α)m there exists
a solution y to equation (3.1). We have just proved that y ∈ (Cn+1,α)m. This in view of the
evident implication

y ∈ (Cn+1,α)m ⇒ Ly ∈ (Cn,α)m

means the last assertion of Lemma 3.2.

Proof of Theorem 3.1. Let Cy := y(a) for arbitrary y ∈ (Cn+1,α)m. The linear mapping y 7→
(Ly, Cy), with y ∈ (Cn+1,α)m, sets an isomorphism

(L, C) : (Cn+1,α)m ↔ (Cn,α)m ×Cm. (3.5)

Indeed, for arbitrary f ∈ (Cn,α)m and q ∈ Cm, the Cauchy problem (3.1) and y(a) = q has
a unique solution y. Owing to Lemma 3.2 we have the inclusion y ∈ (Cn+1,α)m. Therefore
the above-mentioned mapping sets the one-to-one linear operator (3.5). Since this operator is
continuous, it is an isomorphism by the Banach theorem on inverse operator.

We now note that the operator (3.3) is a finite-dimensional perturbation of this isomor-
phism. Hence, (3.3) is a Fredholm operator with index zero (see, e.g., [8, Corollary 19.1.8]).

Let us give a criterion for the operator (3.3) to be invertible. We arbitrarily choose a point
t0 ∈ [a, b] and let Y denote the matriciant of system (3.1) relating to t0. Thus, Y is the unique
solution to the matrix boundary-value problem

Y′(t) = −A(t)Y(t), a ≤ t ≤ b, (3.6)

Y(t0) = Im. (3.7)

Here and below, Im is the identity (m × m)-matrix. Note that Y ∈ (Cn+1,α)m×m due to
Lemma 3.2.

Writing Y := (yj,k)
m
j,k=1, we let

[BY] :=

B

y1,1
...

ym,1

 · · · B

y1,m
...

ym,m


 . (3.8)

Thus, the number matrix [BY] is obtained by the action of B on the columns of Y.
Note that

B(Yp) = [BY]p for every p ∈ Cm.

This equality is directly verified.
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Theorem 3.3. The operator (3.3) is invertible if and only if det[BY] 6= 0.

Proof. By Theorem 3.1, the operator (3.3) is invertible if and only if its kernel is trivial. There-
fore Theorem 3.3 will be proved if we show that

ker(L, B) 6= {0} ⇔ det[BY] = 0.

Assume first that ker(L, B) 6= {0}. Then there exists a nontrivial solution y ∈ (Cn+1,α)m

to the homogeneous boundary-value problem (L, B)y = (0, 0). Using the matriciant Y we can
write this solution in the form y = Yp for a certain vector p ∈ Cm \ {0} and get the formula

0 = By = B(Yp) = [BY]p.

Hence, det[BY] = 0.
Conversely, assume that det[BY] = 0. Then there exists a vector p ∈ Cm \ {0} such that

[BY]p = 0. The function y := Yp ∈ (Cn+1,α)m is a nontrivial solution to the homogeneous
system Ly(t) = 0 for t ∈ [a, b]. Moreover,

By = B(Yp) = [BY]p = 0.

Hence, 0 6= y ∈ ker(L, B).

Given t0 ∈ [a, b], we let Yn+1,α
t0

denote the set of all matrix-valued functions Y∈ (Cn+1,α)m×m

such that Y(t0) = Im and det Y(t) 6= 0 for every t ∈ [a, b]. This set is endowed with the metric
from the Banach space (Cn+1,α)m×m.

Theorem 3.4. Consider the nonlinear mapping Λ : A 7→ Y that associates with any A ∈ (Cn,α)m×m

the unique solution Y ∈ (Cn+1,α)m×m to the boundary-value problem (3.6), (3.7). This mapping is a
homeomorphism of the Banach space (Cn,α)m×m onto the metric space Yn+1,α

t0
.

Our proof of this theorem uses some properties of an integral operator VA associated with
the boundary-value problem (3.6), (3.7) with A ∈ (Cn,α)m×m. This operator transforms any
function Y ∈ (Cn+1,α)m×m into the function

(VAY)(t) :=
∫ t

t0

A(s)Y(s) ds of t ∈ [a, b]. (3.9)

Note that
ΛA = Y ⇔ (I + VA)Y = Im (3.10)

for arbitrarily given Y ∈ (Cn+1,α)m×m. Henceforth I denotes the identity operator in the
relevant space.

Lemma 3.5. Let A ∈ (Cn,α)m×m. Then the linear operator VA is compact on (Cn+1,α)m×m, and its
norm satisfies the inequality

‖VA‖ ≤ κ ‖A‖n,α, (3.11)

where κ is a certain positive number that does not depend on A. Besides, this operator is quasinilpotent;
i.e., for every λ ∈ C we have an isomorphism

I − λVA : (Cn+1,α)m×m ↔ (Cn+1,α)m×m. (3.12)
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Proof. Given Y ∈ (Cn,α)m×m we can write

‖VAY‖n+1,α = ‖VAY‖0 + ‖AY‖n,α ≤ (b− a) ‖AY‖0 + ‖AY‖n,α

≤ (b− a) c0 ‖A‖0 ‖Y‖0 + c1 ‖A‖n,α ‖Y‖n,α.

Here c0 and c1 are certain positive numbers that do not depend on A and Y. Hence,

‖VAY‖n+1,α ≤ c2 ‖A‖n,α ‖Y‖n,α

with c2 := ((b − a)c0 + c1). Thus, the mapping Y 7→ VAY is a bounded operator from
(Cn,α)m×m to (Cn+1,α)m×m, and its norm does not exceed c2‖A‖n,α. Hence, owing to the com-
pact embedding (Cn+1,α)m×m ↪→ (Cn,α)m×m, we conclude that the restriction of this mapping
on (Cn+1,α)m×m is a compact operator on (Cn+1,α)m×m and that the norm of this operator
satisfies (3.11) with κ := c2c3. Here, c3 is the norm of this compact embedding.

Let λ ∈ C and deduce the isomorphism (3.12). Since A is at least continuous on [a, b], the
mapping Y 7→ Y− λVAY, with Y ∈ (C(0))m×m, is an isomorphism of the space (C(0))m×m onto
itself. This fact is well known if m = 1; its proof for m ≥ 2 is analogous to those for m = 1.
The restriction of this isomorphism to (C0,α)m×m is a bounded injective operator on (C0,α)m×m

according to what we have proved in the previous paragraph. This operator is also surjective.
Indeed, if F ∈ (C0,α)m×m, then there exists a function Y ∈ (C(0))m×m such that Y− λVAY = F;
hence,

Y = λVAY + F ∈ (C0,α)m×m.

Thus, we have the isomorphism

I − λVA : (Ck,α)m×m ↔ (Ck,α)m×m (3.13)

in the case of k = 0.
We now choose an integer l ∈ [0, n] arbitrarily and assume that the isomorphism (3.13)

holds true for k = l. Reasoning analogously, we can deduce from our assumption that this
isomorphism holds for k = l + 1. Namely, the restriction of the isomorphism (3.13) for k = l
to (Cl+1,α)m×m is a bounded injective operator on (Cl+1,α)m×m. Besides, if F ∈ (Cl+1,α)m×m,
then there exists a function Y ∈ (Cl,α)m×m such that Y− λVAY = F; hence,

Y = λVAY + F ∈ (Cl+1,α)m×m.

Therefore we obtain the isomorphism (3.13) for k = l + 1.
Thus, we have proved the required isomorphism (3.12) by the induction with respect to

the integer k ∈ [0, n] in (3.13).

Proof of Theorem 3.4. If A ∈ (Cn,α)m×m, then Y := ΛA ∈ Yn+1,α
t0

according to Lemma 3.2 and
the Liouville–Jacobi formula and then A(t) = −Y′(t)(Y(t))−1 for every t ∈ [a, b]. Therefore
we have the injective mapping

Λ : (Cn,α)m×m → Yn+1,α
t0

. (3.14)

Moreover, it is surjective. Indeed, if Y ∈ Yn+1,α
t0

, then ΛA = Y for

A := −Y′ Y−1 ∈ (Cn,α)m×m.

Let us show that the operator (3.14) is continuous. Assume that Ak → A in (Cn,α)m×m as
k → ∞. According to Lemma 3.5 we get the convergence I + VAk → I + VA, as k → ∞, of
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bounded operators on (Cn+1,α)m×m, the convergence being in the uniform operator topology.
Hence, owing to the same lemma and equivalence (3.10), we conclude that

ΛAk = (I + VAk)
−1 Im → (I + VA)

−1 Im = ΛA

in (Cn+1,α)m×m as k→ ∞. Thus, the operator (3.14) is continuous.
Its inverse is also continuous. Indeed, if Yk → Y in Yn+1,α

t0
as k → ∞, then Y′k → Y′ in

(Cn,α)m×m and Y−1
k → Y−1 in (Cn+1,α)m×m as k→ ∞. Therefore

Λ−1Yk = −Y′k Y−1
k → −Y′ Y−1 = Λ−1Y

in (Cn,α)m×m as k→ ∞.

4 Proof of the main results

We will divide the Main Theorem into three lemmas and prove them.
We associate the continuous linear operator

(L(ε), B(ε)) : (Cn+1,α)m → (Cn,α)m ×Cm (4.1)

with the boundary-value problem (2.2), (2.3), where ε ∈ [0, ε0). According to Theorem 3.1, this
operator is Fredholm with index zero.

Therefore Condition (0) is equivalent to that the operator (4.1) for ε = 0 is an isomorphism

(L(0), B(0)) : (Cn+1,α)m ↔ (Cn,α)m ×Cm. (4.2)

Lemma 4.1. Assume that Condition (0) and Limit Conditions (I) and (II) are fulfilled. Then there
exists a positive number ε1 < ε0 such that the operator (4.1) is invertible for every ε ∈ [0, ε1).

Remark 4.2. Let Condition (0) be fulfilled. Then Limit Conditions (I) and (II) taken together
do not imply that the operator (4.1) with 0 < ε� 1 is a small perturbation of the isomorphism
(4.2) in the operator norm. This implication would be true if Limit Condition (II) were replaced
by the essentially stronger condition of the convergence B(ε) → B(0), as ε → 0+, in the
uniform operator topology. Therefore the conclusion of Lemma 4.1 does not follow from
the known fact that the set of all isomorphisms between given Banach spaces is open in the
uniform operator topology.

Proof of Lemma 4.1. In view of Theorem 3.4 we let

Y(·, ε) := ΛA(·, ε) ∈ Yn+1,α
t0

for each ε ∈ [0, ε0).

Limit Condition (I) implies by this theorem that

Y(·, ε)→ Y(·, 0) in (Cn+1,α)m×m as ε→ 0 + . (4.3)

Hence, owing to Limit Condition (II), we obtain the convergence

[B(ε)Y(·, ε)]→ [B(0)Y(·, 0)] in Cm×m as ε→ 0 + . (4.4)

Observe that det[B(0)Y(·, 0)] 6= 0 by Condition (0) and in view of Theorems 3.1 and 3.3.
Therefore there exists a number ε1 ∈ (0, ε0) such that

det[B(ε)Y(·, ε)] 6= 0 for each ε ∈ [0, ε1). (4.5)

Thus, by Theorem 3.3, the operator (4.1) is invertible whenever 0 ≤ ε < ε1.
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Lemma 4.3. Assume that Condition (0) and all Limit Conditions (I)–(IV) are fulfilled. Then the unique
solution y(·, ε) ∈ (Cn+1,α)m to the boundary-value problem (2.2), (2.3) with ε ∈ (0, ε1) has the limit
property (2.5).

Proof. We divide it into two steps.

Step 1. Here, we will prove Lemma 4.3 in the case where f (t, ε) = 0 for arbitrary t ∈ [a, b]
and ε ∈ [0, ε0). We use considerations given in the proof of Lemma 4.1. According to this
lemma, the boundary-value problem (2.2), (2.3) has a unique solution y(·, ε) ∈ (Cn+1,α)m for
each ε ∈ [0, ε1). Since f (·, ε) ≡ 0, there exists a vector p(ε) ∈ Cm such that y(·, ε) = Y(·, ε)p(ε).
By Limit Condition (IV), we have the convergence

[B(ε)Y(·, ε)]p(ε) = q(ε)→ q(0) = [B(0)Y(·, 0)]p(0) in Cm as ε→ 0 + .

Here, the equalities hold true because

q(ε) = B(ε)y(·, ε) = B(ε)(Y(·, ε)p(ε)) = [B(ε)Y(·, ε)]p(ε)

for each ε ∈ [0, ε0). This convergence implies by (4.4) and (4.5) that

p(ε) = [B(ε)Y(·, ε)]−1q(ε)→ [B(0)Y(·, 0)]−1q(0) = p(0)

in Cm as ε→ 0+. This property and (4.3) yield (2.5); namely,

y(·, ε) = Y(·, ε)p(ε)→ Y(·, 0)p(0) = y(·, 0)

in (Cn+1,α)m as ε→ 0+.

Step 2. Here, we will deduce the limit property (2.5) in the general situation from the case
examined on step 1. For each ε ∈ [0, ε1), we can represent the unique solution y(·, ε) ∈
(Cn+1,α)m to the boundary-value problem (2.2), (2.3) in the form y(·, ε) = x(·, ε) + ŷ(·, ε). Here,
x(·, ε) ∈ (Cn+1,α)m is the unique solution to the Cauchy problem

L(ε)x(t, ε) = f (t, ε), a ≤ t ≤ b, and x(a, ε) = 0,

whereas ŷ(·, ε) ∈ (Cn+1,α)m is the unique solution to the boundary-value problem

L(ε)ŷ(t, ε) = 0, a ≤ t ≤ b, and B(ε)ŷ(·, ε) = q̂(ε),

with
q̂(ε) := q(ε)− B(ε)x(·, ε).

The existence and uniqueness of these three solutions is due to Lemma 4.1.
Let Cx := x(a) for arbitrary x ∈ (Cn+1,α)m. Owing to Lemma 3.2 and the Banach theorem

on inverse operator, we have an isomorphism

(L(ε), C) : (Cn+1,α)m ↔ (Cn,α)m ×Cm

for each ε ∈ [0, ε0). According to Limit Condition (I) we obtain the convergence L(ε) → L(0),
as ε → 0+, of bounded operators from (Cn+1,α)m to (Cn,α)m, this convergence being in the
uniform operator topology. Indeed, for arbitrary ε ∈ [0, ε0) and z ∈ (Cn+1,α)m, we can write

‖(L(ε)− L(0))z‖n,α = ‖(A(·, ε)− A(·, 0))z‖n,α

≤ c0 ‖A(·, ε)− A(·, 0)‖n,α ‖z‖n,α

≤ c0 c1 ‖A(·, ε)− A(·, 0)‖n,α ‖z‖n+1,α;



Continuity in a parameter of solutions to generic problems 11

here, c0 and c1 are certain positive numbers that do not depend on ε and z. The latter conver-
gence implies the convergence (L(ε), C)−1 → (L(0), C)−1, as ε → 0+, of bounded operators
from (Cn,α)m × Cm to (Cn+1,α)m, the convergence holding in the uniform operator topology.
Hence, we conclude by Limit Condition (III) that

x(·, ε) = (L(ε), C)−1( f (·, ε), 0)→ (L(0), C)−1( f (·, 0), 0) = x(·, 0)

in (Cn+1,α)m as ε→ 0 + .
(4.6)

It follows from this convergence and Limit Conditions (II) and (IV) that

q̂(ε) = q(ε)− B(ε)x(·, ε)→ q(0)− B(0)x(·, 0) = q̂(0)

in Cm as ε → 0+. Hence, according to step 1, Limit Conditions (I), (II), and (IV) imply the
convergence

ŷ(·, ε)→ ŷ(·, 0) in (Cn+1,α)m as ε→ 0 + . (4.7)

Now the relations (4.6) and (4.7) yield the required property (2.5) for y(·, ε) = x(·, ε) + ŷ(·, ε).

Lemma 4.4. Assume that the boundary-value problem (2.2), (2.3) satisfies the Basic Definition. Then
this problem satisfies Limit Conditions (I) and (II).

Proof. We divide it into three steps.

Step 1. We will prove here that the boundary-value problem (2.2), (2.3) satisfies Limit Condi-
tion (I). According to condition (∗) of the Basic Definition, the operator (4.1) is invertible for
each ε ∈ [0, ε1). Given ε ∈ [0, ε1), we consider the matrix boundary-value problem

Y′(t, ε) + A(t, ε)Y(t, ε) = 0 · Im, a ≤ t ≤ b, (4.8)

[B(ε)Y(·, ε)] = Im. (4.9)

Note that it is a union of m boundary-value problem (2.2), (2.3) whose right-hand sides are
independent of ε. Therefore the matrix problem (4.8), (4.9) has a unique solution Y(·, ε) ∈
(Cn+1,α)m×m. Moreover, it follows from condition (∗∗) of the Basic Definition that

Y(·, ε)→ Y(·, 0) in (Cn+1,α)m×m as ε→ 0 + . (4.10)

We assert that
det Y(t, ε) 6= 0 for each t ∈ [a, b]. (4.11)

Indeed, if (4.11) were wrong, the function columns of the matrix Y(·, ε) would be linearly
dependent, which would contradict (4.9). Now, formulas (4.10) and (4.11) yield the required
convergence

A(·, ε) = −Y′(·, ε)(Y(·, ε))−1 → −Y′(·, 0)(Y(·, 0))−1 = A(·, 0)

in (Cn,α)m×m as ε → 0+. So, the boundary-value problem (2.2), (2.3) satisfies Limit Condi-
tion (I). Note that then

sup
{
‖A(ε)‖n,α : ε ∈ [0, ε3)

}
< ∞ for some number ε3 ∈ (0, ε1). (4.12)
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Step 2. To prove that this problem satisfies Limit Condition (II), we will show on this step that

sup
{
‖B(ε)‖ : ε ∈ [0, ε4)

}
< ∞ for some number ε4 ∈ (0, ε1). (4.13)

Here, ‖ · ‖ stands for the norm of a bounded operator from (Cn+1,α)m to Cm. Suppose the
contrary; then there exists a sequence of numbers ε(k) ∈ (0, ε1), with 1 ≤ k ∈ Z, such that
ε(k) → 0 and

0 < ‖B(ε(k))‖ → ∞ as k→ ∞. (4.14)

Given an integer k ≥ 1, we can choose a function zk ∈ (Cn+1,α)m such that

‖zk‖n+1,α = 1 and ‖B(ε(k))zk‖Cm ≥ 1
2
‖B(ε(k))‖. (4.15)

We let

y(·, ε(k)) := ‖B(ε(k))‖−1 zk ∈ (Cn+1,α)m,

f (·, ε(k)) := L(ε(k)) y(·, ε(k)) ∈ (Cn,α)m,

q(ε(k)) := B(ε(k)) y(·, ε(k)) ∈ Cm.

It follows from (4.14) and (4.15) that

y(·, ε(k))→ 0 in (Cn+1,α)m as k→ ∞. (4.16)

This implies that
f (·, ε(k))→ 0 in (Cn,α)m as k→ ∞ (4.17)

because A(·, ε) satisfies Limit Condition (I) as we have proved on step 1. Besides, it follows
from (4.15) that

1
2
≤ ‖q(ε(k))‖Cm ≤ 1.

Hence, there is a convergent subsequence (q(ε(k j)))∞
j=1 of the sequence (q(ε(k)))∞

k=1, with

q(0) := lim
j→∞

q(ε(k j)) 6= 0 in Cm. (4.18)

Thus, for every integer j ≥ 1, the function y(·, ε(k j)) ∈ (Cn+1,α)m is a unique solution to the
boundary-value problem

L(ε(k j)) y(t, ε(k j)) = f (t, ε(k j)), a ≤ t ≤ b,

B(ε(k j)) y(·, ε(k j)) = q(ε(k j)).

According to condition (∗∗) of the Basic Definition, it follows from (4.17) and (4.18) that
the function y(·, ε(k j)) converges to the unique solution y(·, 0) of the limiting boundary-value
problem

L(0)y(t, 0) = 0, a ≤ t ≤ b, and B(0)y(·, 0) = q(0).

This convergence holds in (Cn+1,α)m as ε → 0+. Owing to (4.16) we conclude that y(·, 0) = 0,
which contradicts the boundary condition B(0)y(·, 0) = q(0) with q(0) 6= 0. So, our assump-
tion is wrong, and we have thereby proved (4.13).
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Step 3. Let us prove that the boundary-value problem (2.2), (2.3) satisfies Limit Condition (II).
Owing to (4.12) and (4.13) we have

κ′ := sup
{
‖(L(ε), B(ε))‖ : ε ∈ [0, ε′2)

}
< ∞, (4.19)

with ε′2 := min{ε3, ε4} < ε1 and with ‖(L(ε), B(ε))‖ denoting the norm of the operator (4.1).
Choose a function y ∈ (Cn+1,α)m arbitrarily and put f (·, ε) := L(ε)y ∈ (Cn,α)m and q(ε) :=
B(ε)y ∈ Cm for each ε ∈ [0, ε0). Thus,

y = (L(ε), B(ε))−1( f (·, ε), q(ε)) for every ε ∈ [0, ε1). (4.20)

Here, of course, (L(ε), B(ε))−1 stands for the bounded operator

(L(ε), B(ε))−1 : (Cn,α)m ×Cm → (Cn+1,α)m, (4.21)

the inverse of (4.1). According to condition (∗∗) of the Basic Definition, we conclude that

(L(ε), B(ε))−1( f , q)→ (L(0), B(0))−1( f , q) in (Cn+1,α)m as ε→ 0+

for arbitrary f ∈ (Cn,α)m and q ∈ Cm.
(4.22)

Making use of (4.19), (4.20), and (4.22) successively, we now obtain the following relations for
every ε ∈ [0, ε′2):∥∥B(ε)y− B(0)y

∥∥
Cm ≤

∥∥( f (·, ε), q(ε))− ( f (·, 0), q(0))
∥∥
(Cn,α)m×Cm

=
∥∥(L(ε), B(ε))(L(ε), B(ε))−1(( f (·, ε), q(ε))− ( f (·, 0), q(0))

)∥∥
(Cn,α)m×Cm

≤ κ′
∥∥(L(ε), B(ε))−1(( f (·, ε), q(ε))− ( f (·, 0), q(0))

)∥∥
n+1,α

= κ′
∥∥(L(0), B(0))−1( f (·, 0), q(0))− (L(ε), B(ε))−1( f (·, 0), q(0))

∥∥
n+1,α → 0

as ε→ 0+. Since y ∈ (Cn+1,α)m is arbitrarily chosen, we have proved that the boundary-value
problem (2.2), (2.3) satisfies Limit Condition (II).

We can see that Lemmas 4.1, 4.3, and 4.4 constitute the Main Theorem.

Proof of Theorem 2.1. Let us first prove the left-hand part of the two-sided estimate (2.6). Ac-
cording to Limit Conditions (I) and (II) the bounded operator (4.1) converges strongly to the
bounded operator (4.2) as ε → 0+. Hence, there exists a positive number ε′2 < ε1 such that
(4.19) holds true, with ‖ · ‖ denoting the norm of the operator (4.1). Indeed, supposing the
contrary, we obtain a sequence of positive numbers ε(k), with 1 ≤ k ∈ Z, such that ε(k) → 0
and ‖(L(ε(k)), B(ε(k))‖ → ∞ as k → ∞. In view of the Banach–Steinhaus theorem, this con-
tradicts the strong convergence of (L(ε(k)), B(ε(k))) to ((L(0), B(0)) as k → ∞. So, for every
ε ∈ (0, ε′2) we have the bound

‖L(ε)y(·, 0)− f (·, ε))‖n,α + ‖B(ε)y(·, 0)− q(ε)‖Cm ≤ κ′‖y(·, 0)− y(·, ε)‖n+1,α;

i.e., we obtain the left-hand part of the two-sided estimate (2.6) with κ1 := 1/κ′.
Let us now prove the right-hand part of this estimate. According to Lemma 4.1, the oper-

ator (4.1) has a bounded inverse operator (4.21) for every ε ∈ [0, ε1). Moreover, (L(ε), B(ε))−1

converges strongly to (L(0), B(0))−1 as ε → 0+. Indeed, choosing f ∈ (Cn,α)m and q ∈ Cm

arbitrarily, we conclude by Lemma 4.3 that

(L(ε), B(ε))−1( f , q) =: y(·, ε)→ y(·, 0) := (L(0), B(0))−1( f , q)
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in (Cn+1,α)m as ε→ 0+. Hence, there exists a positive number ε2 < ε′2 such that

κ2 := sup
{
‖(L(ε), B(ε))−1‖ : ε ∈ [0, ε2)

}
< ∞,

with ‖ · ‖ denoting the norm of the operator (4.21). This follows from the Banach–Steinhaus
theorem in a way analogous to that used in the previous paragraph. So, for every ε ∈ (0, ε2)

we have the bound

‖y(·, 0)− y(·, ε)‖n+1,α ≤ κ2
(
‖L(ε)(y(·, 0)− y(·, ε))‖n,α + ‖B(ε)(y(·, 0)− y(·, ε))‖Cm

)
,

i.e. the right-hand part of the the two-sided estimate (2.6).

5 Concluding remarks

It is easy to verify that conditions (∗) and (∗∗) of the Basic Definition are separately equivalent
to the following conditions respectively:

(z) there exists a positive number ε1 < ε0 that the continuous operator (L(ε), B(ε)) from
(Cn+1,α)m to (Cn,α)m ×Cm is invertible for each ε ∈ [0, ε1);

(zz) the inverse operator (L(ε), B(ε))−1 converges to (L(0), B(0))−1 as ε→ 0+ in the strong
operator topology.

It is also easy to show that Limit Conditions (I) and (II) taken together are equivalent to
the following condition:

(V) the operator (L(ε), B(ε)) converges to (L(0), B(0)) as ε → 0+ in the strong operator
topology.

Thus, it follows from the Main Theorem that under Condition (0) we have the equivalence

(V) ⇔
(
(z) ∧ (zz)

)
.

At first sight this is a surprising result. Indeed, if X and Y are arbitrary infinite-dimensional
Banach spaces and if L(X, Y) is the linear space of all continuous linear operators from X to
Y, then the set of all irreversible operators from L(X, Y) is dense in L(X, Y) in the strong
operator topology. Moreover, if the space X has Schauder basis, then this set is not only dense
but also sequentially dense. Besides in this case, the mapping Inv : T 7→ T−1 given on the
set of all invertible operators T ∈ L(X, Y) is everywhere discontinuous in the strong operator
topology.

As has been noted at the end of Section 1, the approach proposed in our paper is of
general nature. The approach is based on multiplicative properties of functions from the
Banach space Cn+1,α, rather than on the explicit form of the norm in this space. Specifically,
we have repeatedly used the fact that the space Cn+1,α forms a Banach algebra, in which, as is
known, the mapping Inv is continuous in the topology induced by the norm. Therefore our
approach is applicable to some other function spaces.
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