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Abstract

This paper deals with the existence of positive solutions for a boundary value problem involving a nonlinear
functional differential equation of fractional order α given by Dαu(t) + f(t, ut) = 0, t ∈ (0, 1), 2 < α ≤ 3,
u′(0) = 0, u′(1) = bu′(η), u0 = φ. Our results are based on the nonlinear alternative of Leray-Schauder type
and Krasnosel’skii fixed point theorem.

Keywords: Fractional derivative; Boundary value problem; Functional differential equation; Positive solution;

Fixed point theorem

1. Introduction

Recently, an increasing interest in studying the existence of solutions for boundary value problems

of fractional order functional differential equations has been observed [1-3]. Fractional differential equa-

tions describe many phenomena in various fields of science and engineering such as physics, mechanics,

chemistry, control, engineering, etc. In view of the importance and applications of fractional differential

equations, a significant progress has been made in this direction by exploring several aspects of these

equations, see, for instance, [4-21].

For τ > 0, we denote by Cτ the Banach space of all continuous functions ψ : [−τ, 0] → R endowed

with the sup-norm

‖ψ‖[−τ,0] := sup{|ψ(s)| : s ∈ [−τ, 0]}.

If u : [−τ, 1] → R, then for any t ∈ [0, 1], we denote by ut the element of Cτ defined by

ut(θ) = u(t+ θ), for θ ∈ [−τ, 0].

In this paper we investigate a fractional order functional differential equation of the form

Dαu(t) + f(t, ut) = 0, t ∈ (0, 1), 2 < α ≤ 3, (1.1)

where Dα is the standard Riemann-Liouville fractional order derivative, f(t, ut) : [0, 1] × Cτ → R is a
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continuous function, associated with the boundary condition

u′(0) = 0, u′(1) = bu′(η), (1.2)

and the initial condition

u0 = φ, (1.3)

where 0 < η < 1, 1 < b < 1
ηα−2 , and φ is an element of the space

C+
τ (0) := {ψ ∈ Cτ : ψ(s) ≥ 0, s ∈ [−τ, 0], ψ(0) = 0}.

To the best of the authors knowledge, no one has studied the existence of positive solutions for

problem (1.1)-(1.3). The aim of this paper is to fill the gap in the relevant literatures. The key tools in

finding our main results are the nonlinear alternative of Leray-Schauder type and Krasnosel’skii fixed

point theorem.

2. Preliminaries

First of all, we recall some definitions of fractional calculus [16-19].

Definition 2.1. The Riemann-Liouville fractional derivative of order α > 0 of a continuous function

f : (0,∞) → R is given by

Dαf(t) =
1

Γ(n− α)

(

d

dt

)n ∫ t

0

f(s)

(t− s)α−n+1
ds,

where n = [α]+1 and [α] denotes the integer part of number α, provided that the right side is pointwise

defined on (0,∞).

Definition 2.2. The Riemann-Liouville fractional integral of order α of a function f : (0,∞) → R is

defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds,

provided that the integral exists.

The following lemma is crucial in finding an integral representation of the boundary value problem

(1.1)-(1.3).

Lemma 2.1 [11]. Suppose that u ∈ C(0, 1) ∩L(0, 1) with a fractional derivative of order α > 0. Then

IαDαu(t) = u(t) + c1t
α−1 + c2t

α−2 + · · · + cnt
α−n.

for some ci ∈ R, i = 1, 2, ..., n.
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Lemma 2.2. Let 0 < η < 1 and b 6= 1
ηα−2 . If g ∈ C[0, 1], then the boundary value problem

Dαu(t) + g(t) = 0, 0 < t < 1, (2.1)

u(0) = u′(0) = 0, u′(1) = bu′(η), (2.2)

has a unique solution

u(t) =

∫ 1

0

G(t, s)g(s)ds+
btα−1

(α − 1)(1 − bηα−2)

∫ 1

0

H(η, s)g(s)ds, (2.3)

where

G(t, s) =
1

Γ(α)

{

tα−1(1 − s)α−2 − (t− s)α−1, s ≤ t,
tα−1(1 − s)α−2, t ≤ s,

(2.4)

and

H(t, s) :=
∂G(t, s)

∂t
=
α− 1

Γ(α)

{

tα−2(1 − s)α−2 − (t− s)α−2, s ≤ t,
tα−2(1 − s)α−2, t ≤ s.

(2.5)

Proof. By Lemma 2.1, the solution of (2.1) can be written as

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 −

∫ t

0

(t− s)α−1

Γ(α)
g(s)ds.

Using the boundary conditions (2.2), we find that

c2 = c3 = 0, and

c1 =
1

(1 − bηα−2)Γ(α)

[
∫ 1

0

(1 − s)α−2g(s)ds−
∫ η

0

b(η − s)α−2g(s)ds

]

.

Hence, the unique solution of BVP (2.1), (2.2) is

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
g(s)ds+

(

tα−1

Γ(α)
+

bηα−2tα−1

(1 − bηα−2)Γ(α)

)
∫ 1

0

(1 − s)α−2g(s)ds

− btα−1

(1 − bηα−2)Γ(α)

∫ η

0

(η − s)α−2g(s)ds

=
1

Γ(α)

∫ t

0

(tα−1(1 − s)α−2 − (t− s)α−1)g(s)ds+
1

Γ(α)

∫ 1

t

tα−1(1 − s)α−2g(s)ds

+
bηα−2tα−1

(1 − bηα−2)Γ(α)

∫ 1

0

(1 − s)α−2g(s)ds− btα−1

(1 − bηα−2)Γ(α)

∫ η

0

(η − s)α−2g(s)ds

=

∫ 1

0

G(t, s)h(s)ds+
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)g(s)ds.

The proof is complete.

To establish the existence of solutions for (1.1)-(1.3), we need the following known results.

Theorem 2.3 (Nonlinear alternative of Leray-Schauder [22]). Let E be a Banach space with C ⊂ E
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closed and convex. Assume that U is a relatively open subset of C with 0 ∈ U and T : U → C is

completely continuous. Then either

(i) T has a fixed point in U , or

(ii) there exists u ∈ ∂U and γ ∈ (0, 1) with u = γTu.

Theorem 2.4 (Krasnosel’skii [23]). Let E be a Banach space and let K be a cone in E. Assume that

Ω1 and Ω2 are open subsets of E, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let A : K ∩ (Ω2 \ Ω1) → K be a

completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2,

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Lemma 2.5. G(t, s) has the following properties.

(i) 0 ≤ G(t, s) ≤ h(s), t, s ∈ [0, 1],

where

h(s) =
(1 − s)α−2 − (1 − s)α−1

Γ(α)
;

(ii) G(t, s) ≥ tα−1h(s), for 0 ≤ t, s ≤ 1.

Proof. It is easy to check that (i) holds. Next, we prove (ii) holds. If t ≥ s, then

G(t, s)

h(s)
=
tα−1(1 − s)α−2 − (t− s)α−1

(1 − s)α−2 − (1 − s)α−1

=
t(t− ts)α−2 − (t− s)(t− s)α−2

(1 − s)α−2 − (1 − s)α−1

≥ t(t− ts)α−2 − (t− s)(t− ts)α−2

(1 − s)α−2 − (1 − s)α−1

=
(t− ts)α−2

(1 − s)α−2
= tα−2 ≥ tα−1.

If t ≤ s, then

G(t, s)

h(s)
=

tα−1(1 − s)α−2

(1 − s)α−2 − (1 − s)α−1
=
tα−1

s
≥ tα−1.

The proof is complete.
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Lemma 2.6. Let g ∈ C+[0, 1] := {u ∈ C[0, 1], u(t) ≥ 0, t ∈ [0, 1]}. If 1 < b < 1
ηα−2 , then the unique

solution u(t) of BVP (2.1), (2.2) is positive, and satisfying

min
t∈[τ,1]

u(t) ≥ τα−1‖u‖,

where 0 < τ < 1.

Proof. Let g ∈ C+[0, 1], we have from (2.3)-(2.5) that u(t) ≥ 0. By Lemma 2.3, we get

‖u‖ = max
0≤t≤1

|u(t)| =

∫ 1

0

G(t, s)g(s)ds +
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)g(s)ds

≤
∫ 1

0

h(s)g(s)ds+
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)g(s)ds. (2.6)

On the other hand, from Lemma 2.3 and (2.6), we obtain for each t ∈ [0, 1] that

u(t) =

∫ 1

0

G(t, s)g(s)ds+
btα−1

(α − 1)(1 − bηα−2)

∫ 1

0

H(η, s)g(s)ds

≥ tα−1

∫ 1

0

h(s)g(s)ds+
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)g(s)ds

≥ tα−1

[
∫ 1

0

h(s)g(s)ds+
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)g(s)ds

]

≥ tα−1‖u‖.

Thus,

min
t∈[τ,1]

u(t) ≥ τα−1‖u‖, 0 < τ < 1.

3. Main results

In the sequel we shall denote by C0[0, 1] the space of all continuous functions x : [0, 1] → R with

x(0) = 0. This is a Banach space when it is furnished with the usual sup-norm

‖u‖ = maxt∈[0,1] |u(t)|.

For each φ ∈ C+
τ (0) and x ∈ C0[0, 1] we define

xt(s;φ) :=

{

x(t + s), t+ s ≥ 0,
φ(t + s), t+ s ≤ 0, s ∈ [−τ, 0],

and observe that xt(s;φ) ∈ Cτ .

By a solution of the boundary value problem (1.1)-(1.3) we mean a function u ∈ C0[0, 1] such that

Dαu exists on [0, 1] and u satisfies boundary condition (1.2) and for a certain φ the relation
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Dαu(t) + f(t, ut(·;φ)) = 0

holds for all t ∈ [0, 1].

Since f : [0, 1] × Cτ → R is a continuous function, set f(t, ut(·;φ)) := g(t) in Lemma 2.2, we have

by Lemma 2.2 that a function u is a solution of the boundary value problem (1.1)-(1.3) if and only if it

satisfies

u(t) =

∫ 1

0

G(t, s)f(s, us(·;φ))ds+
btα−1

(α − 1)(1 − bηα−2)

∫ 1

0

H(η, s)f(s, us(·;φ))ds, t ∈ [0, 1].

(3.1)

We set

C+
0 [0, 1] = {u ∈ C0[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}.

Define the cone P ⊂ C0[0, 1] by

P =

{

y ∈ C+
0 [0, 1] : min

τ≤t≤1
y(t) ≥ τα−1‖y‖

}

,

where 0 < τ < 1.

For u ∈ P , we define the operator Tφ as follows:

(Tφu)(t) =

∫ 1

0

G(t, s)f(s, us(·;φ))ds+
btα−1

(α − 1)(1 − bηα−2)

∫ 1

0

H(η, s)f(s, us(·;φ))ds, t ∈ [0, 1].

(3.2)

It is easy to know that fixed points of Tφ are solutions of the BVP (1.1)-(1.3).

In this paper, we assume that 0 < τ < 1, φ ∈ C+
τ (0), and we make use of the following assumption:

(H1) f : [0, 1]× C+
τ (0) → [0,+∞) is a continuous function.

Lemma 3.1. Let (H1) holds. Then Tφ : P → P is completely continuous.

Proof. By (H1), we have (Tφu)(t) ≥ 0, for u ∈ P and t ∈ [0, 1]. It follows from (3.2) and Lemma 2.5

that

‖Tφu‖ = max
0≤t≤1

|(Tφu)(t)| ≤
∫ 1

0

h(s)f(s, us(·;φ))ds +
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)f(s, us(·;φ))ds.

In view of Lemma 2.5, we have

(Tφu)(t) ≥
∫ 1

0

tα−1h(s)f(s, us(·;φ))ds +
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)f(s, us(·;φ))ds
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≥ tα−1

[
∫ 1

0

h(s)f(s, us(·;φ))ds +
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)f(s, us(·;φ))ds

]

≥ tα−1‖Tφu‖, t ∈ [0, 1].

So,

min
τ≤t≤1

(Tφu)(t) ≥ τα−1‖Tφu‖,

which shows that TφP ⊂ P . Moreover, similar to the proof of Lemma 3.2 in [10], it is easy to check

that Tφ : P → P is completely continuous.

Lemma 3.2. If 0 < τ < 1 and u ∈ P , then we have

‖ut(·;φ)‖[−τ,0] ≥ τα−1‖u‖, t ∈ [τ, 1].

Proof. From the definition of ut(s;φ), for t ≥ τ , we have

ut(s;φ) = u(t+ s), s ∈ [−τ, 0].

Thus, we get for u ∈ P that

‖ut(·;φ)‖[−τ,0] = max
s∈[−τ,0]

u(t+ s) ≥ u(t) ≥ tα−1‖u‖ ≥ τα−1‖u‖, t ≥ τ.

We are now in a position to present and prove our main results.

Theorem 3.3. Let (H1) holds. Suppose that the following conditions are satisfied:

(H2) there exist a continuous function a : [0, 1] → [0,+∞) and a continuous, nondecreasing function

F : [0,+∞) → [0,+∞) such that

f(t, ψ) ≤ a(t)F (‖ψ‖[−τ,0]), (t, ψ) ∈ [0, 1] × C+
τ (0),

(H3) there exists r > ‖φ‖[−τ,0], with

r

F (r)
>

∫ 1

0

h(s)a(s)ds +
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)a(s)ds. (3.3)

then BVP (1.1)-(1.3) has at least one positive solution.

Proof. We shall apply Theorem 2.3 (the nonlinear alternative of Leray-Schauder type) to prove that

Tφ has at least one positive solution.

Let U = {u ∈ P : ‖u‖ < r}, where r is as in (H3). Assume that there exist u ∈ P and λ ∈ (0, 1)

such that u = λTφu, we claim that ‖u‖ 6= r. In fact, if ‖u‖ = r, we have

u(t) = λ

∫ 1

0

G(t, s)f(s, us(·;φ))ds +
λbtα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)f(s, us(·;φ))ds
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≤
∫ 1

0

h(s)a(s)F (‖us(·;φ)‖[−τ,0])ds

+
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)a(s)F (‖us(·;φ)‖[−τ,0])ds. (3.4)

By the definition of us(·;φ), we easily obtain that

‖us(·;φ)‖[−τ,0] ≤ max{‖u‖, ‖φ‖[−τ,0]} = max{r, ‖φ‖[−τ,0]} = r. (3.5)

Thus by (3.4), (3.5) and the nondecreasing of F , we get that

r = ‖u‖ ≤
∫ 1

0

h(s)a(s)F (r)ds +
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)a(s)F (r)ds.

Consequently

r

F (r)
≤

∫ 1

0

h(s)a(s)ds + +
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)a(s)ds,

which contradict (3.3). Hence u /∈ ∂U . By Theorem 2.3, Tφ has a fixed point u ∈ U . Therefore, BVP

(1.1)-(1.3) has at least one positive solution.

Theorem 3.4. Let (H1) holds. Suppose that the following conditions are satisfied:

(H4) There exist constant r2 > ‖φ‖[−τ,0], as well as continuous function p ∈ C[0, 1] and nondecreasing

continuous functions L : R+ → R+ such that

f(t, ψ) ≤ p(t)L(‖ψ‖[−τ,0]), (t, ψ) ∈ [0, 1]× C+
τ (0), ‖ψ‖[−τ,0] ≤ r2. (3.6)

(H5) There exist functions ω : [0, 1] → [0, τ ], continuous c : [0, 1] → R+, and nondecreasing J :

R+ → R+ such that

f(t, ψ) ≥ c(t)J(ψ(−ω(t))), (t, ψ) ∈ [0, 1] × C+
τ (0), (3.7)

If r2 ( as in (H4)) satisfying

L(r2)

r2

(
∫ 1

0

h(s)p(s)ds+
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)p(s)ds

)

≤ 1. (3.8)

And there exists a constant r1 > 0 (r1 < r2) satisfying

J(τα−1r1)

r1

∫ 1

τ

τα−1h(s)c(s)ds ≥ 1. (3.9)

Then BVP (1.1)-(1.3) has a positive solution.

Proof. If u ∈ P with ‖u‖ = r2, then from (3.6), (3.5), and Lemma 2.5, we get for any t ∈ [0, 1] that
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(Tφu)(t) =

∫ 1

0

G(t, s)f(s, us(·;φ))ds +
btα−1

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)f(s, us(·;φ))ds

≤
∫ 1

0

h(s)f(s, us(·;φ))ds +
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)f(s, us(·;φ))ds

≤
∫ 1

0

h(s)p(s)L(‖us(·;φ)‖[−τ,0])ds

+
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)p(s)L(‖us(·;φ)‖[−τ,0])ds

≤ L(r2)

(
∫ 1

0

h(s)p(s)ds+
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)p(s)ds

)

≤ r2. (3.10)

Now if we set

Ω1 = {u ∈ C[0, 1] : ‖u‖ < r2},

then (3.10) shows that ‖Tφu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

For u ∈ P with ‖u‖ = r1, we have from (3.7), (3.9), and Lemmas 2.5 and 3.2 that

(Tφu)(t) ≥
∫ 1

0

G(t, s)f(s, us(·;φ))ds

≥
∫ 1

τ

G(t, s)f(s, us(·;φ))ds ≥
∫ 1

τ

τα−1h(s)f(s, us(·;φ))ds

≥
∫ 1

τ

τα−1h(s)c(s)J(us(−ω(s);φ))ds

≥ J(τα−1‖u‖)
∫ 1

τ

τα−1h(s)c(s)ds

= J(τα−1r1)

∫ 1

τ

τα−1h(s)c(s)ds

≥ r1. (3.11)

Now if we set

Ω2 = {u ∈ C[0, 1] : ‖u‖ < r1},

then (3.11) shows that ‖Tφu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Hence by the second part of Theorem 2.4, Tφ has a fixed point u ∈ P ∩ (Ω1 \ Ω2), and accordingly,

u is a solution of BVP (1.1)-(1.3).
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Set

M =

(

1

(α− 1)Γ(α+ 1)
+

bηα−2(1 − η)

(α− 1)Γ(α)(1 − bηα−2)

)−1

, (3.12)

m =
(α − 1)Γ(α+ 1)

τ2(α−1)[α(1 − τ)α−1 − (α− 1)(1 − τ)α]
. (3.13)

Corollary 3.5. Let (H1) holds. If there exist two positive constants r2 > r1 > 0 (r2 > ‖φ‖[−τ,0]) such

that

(H6) f(t, ψ) ≤Mr2, (t, ψ) ∈ [0, 1]× C+
τ (0), ‖ψ‖[−τ,0] ≤ r2. (3.14)

(H7) f(t, ψ) ≥ mr1, (t, ψ) ∈ [0, 1]× ∈ C+
τ (0), ‖ψ‖[−τ,0] ≤ r1. (3.15)

Then BVP (1.1)-(1.3) has a positive solution.

Proof. In (H4), let p(t) ≡ M and L(x) ≡ x, then by (3.12) and (3.14), we have that (3.8) holds. In

fact, we have

L(r2)

(
∫ 1

0

h(s)p(s)ds+
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)p(s)ds

)

= r2M

(
∫ 1

0

h(s)ds+
b

(α − 1)(1 − bηα−2)

∫ 1

0

H(η, s)ds

)

= r2M

(

1

(α − 1)Γ(α+ 1)
+

bηα−2(1 − η)

(α− 1)Γ(α)(1 − bηα−2)

)

= r2.

Moreover, let c(t) ≡ m and J(x) ≡ x in (H5), then by (3.13) and (3.15), we have that (3.9) holds. In

fact, we have

J(τα−1r1)

∫ 1

τ

τα−1h(s)c(s)ds = τ2(α−1)r1m

∫ 1

τ

h(s)ds

= τ2(α−1)r1m
α(1 − τ)α−1 − (α− 1)(1 − τ)α

(α− 1)Γ(α+ 1)
= r1.

So all conditions of Theorem 3.4 are satisfied. By Theorem 3.4, BVP (1.1)-(1.3) has at least one positive

solution.

Having in mind the proof of Theorem 3.4, one can easily conclude the following results.

Theorem 3.6. Let (H1), (H4), (H5) and (3.8) hold. If the function η satisfies the condition

lim sup
x→0+

J(x)

x
>

1

τ2(α−1)
∫ 1

τ
h(s)c(s)ds

. (3.16)

Then BVP (1.1)-(1.3) has a positive solution.
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4. Examples

To illustrate our results we present the following examples.

Example 4.1. Consider the boundary value problem of fractional order functional differential equations

D2.5u(t) +
1

2
(1 + t2)u2

(

t− 1

3

)

+ 3 = 0, 0 < t < 1, (4.1)

u′(0) = 0, u′(1) = bu′(η), (4.2)

u(t) = φ(t), t ∈ [−τ, 0], (4.3)

where b = 1.2, η = 2
3 , τ = 1

2 , and φ ∈ C+
τ (0) with ‖φ‖[−τ,0] <

3
2 .

Let f(t, ψ) = 1
2 (1+t2)ψ2(− 1

3 )+3, (t, ψ) ∈ [0, 1]×C+
τ , and α = 2.5. Obviously, 1 < b < 1

ηα−2 = 1.2247.

By simple calculation, we obtain that

M =

(

1

(α− 1)Γ(α+ 1)
+

bηα−2(1 − η)

(α− 1)Γ(α)(1 − bηα−2)

)−1

= 3.0864,

m =
(α − 1)Γ(α+ 1)

τ2(α−1)[α(1 − τ)α−1 − (α− 1)(1 − τ)α]
= 64.489.

Choosing r1 = 1
22 , r2 = 3

2 > ‖φ‖[−τ,0], we have

f(t, ψ) =
1

2
(1 + t2)ψ2

(

−1

3

)

+ 3 ≤ ‖ψ‖[−τ,0] + 3 ≤ 4.5

< 4.6026 = 3.0864 · 1.5 = Mr2, (t, ψ) ∈ [0, 1] × C+
τ with ‖ψ‖[−τ,0] ≤

3

2
,

f(t, ψ) =
1

2
(1 + t2)ψ2

(

−1

3

)

+ 3 ≥ 3 > 2.9313

= 64.489 · 1

22
= mr1, (t, ψ) ∈ [0, 1]× C+

τ with ‖ψ‖[−τ,0] ≤
1

22
,

Hence all conditions of Corollary 3.5 are satisfied. By Corollary 3.5, BVP (4.1)-(4.3) has at least one

positive solution u such that 1
22 ≤ ‖u‖ ≤ 3

2 .

Example 4.2. Consider the boundary value problem of fractional order functional differential equations

D2.2u(t) +
√
t sin2 t · u4

(

t− 1

4

)

= 0, 0 < t < 1, (4.4)

u′(0) = 0, u′(1) = bu′(η), (4.5)

u(t) = φ(t), t ∈ [−τ, 0], (4.6)
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where b = 1.1, η = 0.2, τ = 1
3 and φ ∈ C+

τ (0) with ‖φ‖[−τ,0] <
3
4 .

Let f(t, ψ) =
√
t sin2 t · u4

(

t− 1
4

)

, (t, ψ) ∈ [0, 1]× C+
τ , and α = 2.2.

Obviously, 1 < b < 1
ηα−2 = 1.3797, and

f(t, ψ) =
√
t sin2 t · ψ4

(

−1

4

)

≤ a(t)F (‖ψ‖[−τ,0]),

where a(t) =
√
t and F (x) = x4, which implies that (H2) holds.

With the aid of computation we have that

∫ 1

0

h(s)a(s)ds +
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)a(s)ds

=
1

Γ(2.2)

∫ 1

0

((1 − s)0.2 − (1 − s)1.2))s0.5ds

+
1.1

1.2(1 − 1.1 · 0.20.2)

[
∫ 0.2

0

1.2

Γ(2.2)
(0.20.2 · (1 − s)0.2 − (0.2 − s)0.2)s0.5ds

+

∫ 1

0.2

1.2

Γ(2.2)
0.20.2 · (1 − s)0.2s0.5ds

]

≤ 1

Γ(2.2)

∫ 1

0

(1 − s)0.2s0.5ds− 1

Γ(2.2)

∫ 1

0

(1 − s)1.2s0.5ds

+
1.1

1.2(1 − 1.1 · 0.20.2)
· 1.2

Γ(2.2)
0.20.2

∫ 1

0

(1 − s)0.2s0.5ds

=
1

Γ(2.2)
B(1.5, 1.2)− 1

Γ(2.2)
B(1.5, 2.2) +

1.1 · 0.20.2

(1 − 1.1 · 0.20.2)Γ(2.2)
B(1.5, 1.2)

= 2.1458,

where B(·, ·) is a Beta function. Choosing r = 3
4 , then r > ‖φ‖[−τ,0], and

r

F (r)
=

1

r3
= 2.3704

> 2.1458 =

∫ 1

0

h(s)a(s)ds+
b

(α− 1)(1 − bηα−2)

∫ 1

0

H(η, s)a(s)ds,

that is, condition (H3) holds. Thus all conditions of Theorem 3.3 are satisfied. By Theorem 3.3, BVP

(4.4)-(4.6) has at least one positive solution.
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