On a superlinear periodic boundary value problem with vanishing Green's function

Dang Dinh Hai ${ }^{\boxtimes}$
Department of Mathematics and Statistics, Mississippi State University
Mississippi State, MS 39762, USA

Received 31 March 2016, appeared 24 July 2016
Communicated by Jeff R. L. Webb

Abstract

We prove the existence of positive solutions for the boundary value problem $$
\left\{\begin{array}{l} y^{\prime \prime}+a(t) y=\lambda g(t) f(y), \quad 0 \leq t \leq 2 \pi, \\ y(0)=y(2 \pi), \quad y^{\prime}(0)=y^{\prime}(2 \pi), \end{array}\right.
$$ where λ is a positive parameter, f is superlinear at ∞ and could change sign, and the associated Green's function may have zeros.

Keywords: superlinear, periodic, vanishing Green's function.
2010 Mathematics Subject Classification: 34B15, 34B27.

1 Introduction

In this paper, we consider the existence of nonnegative solutions for the periodic boundary value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+a(t) y=\lambda g(t) f(y), \quad 0 \leq t \leq 2 \pi \tag{1.1}\\
y(0)=y(2 \pi), \quad y^{\prime}(0)=y^{\prime}(2 \pi)
\end{array}\right.
$$

where the associated Green's function is nonnegative and f is allowed to change sign. When $a(t)=m^{2}$, where m is a positive constant and $m \neq 1,2, \ldots$, the Green's function for (1.1) is given by

$$
G(t, s)=\frac{\sin (m|t-s|)+\sin m(2 \pi-(|t-s|)}{2 m(1-\cos 2 m \pi)}, \quad s, t \in[0,2 \pi] .
$$

Note that $G(t, s)>0$ on $[0,2 \pi] \times[0,2 \pi]$ iff $m<1 / 2$ and $G(t, s) \geq 0=G(s, s)$ on $[0,2 \pi] \times$ $[0,2 \pi]$ if $m=1 / 2$. For a general nonnegative time-dependent $a \in L^{p}(0,2 \pi), 1 \leq p \leq \infty$, Torres [14] showed that the Green's function for (1.1) is positive (resp. nonnegative) provided that $a>$

[^0]0 on a set of positive measure, $\|a\|_{p}<K\left(2 p^{*}\right)$ (resp. $\left.\|a\|_{p} \leq K\left(2 p^{*}\right)\right)$, where $p^{*}=p /(p-1)$ and

$$
K(q)= \begin{cases}\frac{1}{q(2 \pi)^{1 / q}}\left(\frac{2}{2+q}\right)^{1-2 / q}\left(\frac{\Gamma\left(\frac{1}{q}\right)}{\Gamma\left(\frac{1}{2}+\frac{1}{q}\right)}\right)^{2} & \text { if } 1 \leq q<\infty, \\ \frac{1}{2 \pi} & \text { if } q=\infty .\end{cases}
$$

In particular, when $a \in L^{\infty}(0,2 \pi)$, the Green's function is positive if $\|a\|_{\infty}<1 / 4$ and nonnegative if $\|a\|_{\infty} \leq 1 / 4$, which have been obtained in [12] when a is a constant. These conditions were extended to sign-changing $a(t)$ with nonnegative average in [5]. Existence results for positive solutions of (1.1) when the associated Green's function is positive have been obtained in $[2,4,7,8,11,13,14,18]$ using Krasnosel'skii's fixed point theorem on the cone

$$
K=\left\{u \in C[0,2 \pi]: u(t) \geq \frac{A}{B}\|u\|_{\infty} \forall t\right\},
$$

where A and B denote the minimum and maximum values of $G(t, s)$ on $[0,2 \pi] \times[0,2 \pi]$ respectively. When $A=0$, this cone becomes the cone of nonnegative functions and is not effective in obtaining the desired estimates. The case when the Green's function $G(t, s)$ is nonnegative but $\beta=\min _{0 \leq s \leq 2 \pi} \int_{0}^{2 \pi} G(t, s) d t$ is positive was studied by Graef et al. in [6]. Specifically, assume g is continuous with $g(t)>0 \forall t \in[0,2 \pi]$, they proved that (1.1) has a nonnegative solution for all $\lambda>0$ when f is continuous, nonnegative with $f_{0}=\infty, f_{\infty}=0$ (sublinear), or when $f_{0}=0, f_{\infty}=\infty$ (superlinear) and f is convex. Here $f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}, f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u}$. The method used in [6] is Krasnosel'skii's fixed point theorem on the cone

$$
K=\left\{u \in C[0,2 \pi]: u \geq 0 \text { on }[0,2 \pi] \text { and } \int_{0}^{2 \pi} u(t) d t \geq \frac{\beta}{B}\|u\|_{\infty}\right\} .
$$

The results in [6] were improved by Webb [16], in which g is allowed to be 0 at some points and the existence of nonnegative nontrivial solutions were obtained when $f \geq 0$ and either $f_{\infty}<\mu_{1, \lambda}<f_{0}$ (sublinear) or $f_{0}<\mu_{1, \lambda}, \frac{f(R)}{R}$ is large enough and f is convex on $\left[0, T_{\lambda}\right]$ for a specific $T_{\lambda}>0$ (superlinear), where $\mu_{1, \lambda}$ denote the principal characteristic value of the linear operator

$$
L_{\lambda} u=\lambda \int_{0}^{2 \pi} G(t, s) g(s) u(s) d s
$$

on $C[0,2 \pi]$. The approach in [16] depends on fixed point theory on the modified cone

$$
\tilde{K}=\left\{u \in C[0,2 \pi]: u \geq 0 \text { on }[0,2 \pi] \text { and } \int_{0}^{2 \pi} g(t) u(t) d t \geq B_{0}\|u\|_{\infty}\right\},
$$

where B_{0} is a suitable positive constant. For results on the system

$$
\left\{\begin{array}{l}
y_{i}^{\prime \prime}+a_{i}(t) y=\lambda g_{i}(t) f_{i}(y), \quad 0 \leq t \leq 2 \pi \\
y_{i}(0)=y_{i}(2 \pi), \quad y_{i}^{\prime}(0)=y_{i}^{\prime}(2 \pi), \quad i=1, \ldots, n
\end{array}\right.
$$

see [9], where both the sublinear and superlinear cases were discussed. Note that convexity is needed for one of the f_{i} in the superlinear case. Related results in the sublinear case when the Green's function is nonnegative can be found in [4]. We refer to [10] for results in the case when the Green's function may change sign. In this paper, motivated by the results in [6,16], we shall establish the existence of positive solutions to (1.1) when the Green's function is nonnegative, and f is superlinear at ∞ without assuming convexity of f. We also allow
the case when f can change sign. Note that nonnegative and convexity assumptions of f are essential for some of the proofs in $[6,16]$. Our approach depends on a Krasnosel'skii type fixed point theorem in a Banach space.

We shall make the following assumptions:
(A1) $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous;
(A2) $a:[0,2 \pi] \rightarrow[0, \infty)$ is continuous, $a(t) \leq 1 / 4$ for all t, and $a \not \equiv 0$;
(A3) $g \in L^{1}(0,2 \pi), g \geq 0$ and $g \not \equiv 0$ on any subinterval of $(0,2 \pi)$.
Our main result is the following.
Theorem 1.1. Let (A1)-(A3) hold. Then
(i) if $f_{0}=0, f_{\infty}=\infty$, and $f \geq 0$ then (1.1) has a positive solution for all $\lambda>0$;
(ii) if $f_{\infty}=\infty$, then there exists a constant $\lambda^{*}>0$ such that (1.1) has a positive solution y_{λ} for $\lambda<\lambda^{*}$. Furthermore $\left\|y_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow 0^{+}$.

Example 1.2. Let c be a nonnegative constant, g satisfy (A3), and a satisfy (A2). Let $f(y)=$ $y^{\alpha} \cos ^{2}\left(\frac{1}{y}\right)-c$ for $y>0, f(0)=-c$, where $\alpha>1$. Then Theorem 1.1 (i) gives the existence of a positive solution to (1.1) for $c=0$ and $\lambda>0$, while if $c>0$, Theorem 1.1 (ii) gives the existence of a large positive solution to (1.1) for $\lambda>0$ small. Note that when $\alpha>1, f$ is not convex on $[0, T)$ for any $T>0$ since it is easy to see that $f\left(\frac{y}{2}\right) \not \leq \frac{1}{2}(f(y)+f(0)$ when $y=\left(\frac{\pi}{2}+2 n \pi\right)^{-1}, n \in \mathbb{N}$. Hence the results in $[6,16]$ cannot be applied here.

2 Preliminary results

Let $A C^{1}[0,2 \pi]=\left\{u \in C^{1}[0,2 \pi]: u^{\prime}\right.$ is absolutely continuous on $\left.[0,2 \pi]\right\}$. We first recall the following fixed point result of Krasnosel'skii type in a Banach space (see e.g. [1, Theorem 12.3]).

Lemma A. Let X be a Banach space and $T: X \rightarrow X$ be a compact operator. Suppose there exist $h \in X, h \neq 0$ and positive constants r, R with $r \neq R$ such that
(a) If $y \in X$ satisfies $y=\theta T y$ for some $\theta \in(0,1]$, then $\|y\| \neq r$;
(b) If $y \in X$ satisfies $y=T y+\xi h$ for some $\xi \geq 0$, then $\|y\| \neq R$.

Then T has a fixed point $y \in X$ with $\min (r, R)<\|y\|<\max (r, R)$.
Lemma 2.1. Let $\alpha, \beta \in \mathbb{R}$ with $\alpha<\beta$ and let $y \in A C^{1}[\alpha, \beta]$ be a nonnegative solution of

$$
\begin{equation*}
y^{\prime \prime}+\frac{1}{4} y \geq 0 \quad \text { a.e. on }(\alpha, \beta) . \tag{2.1}
\end{equation*}
$$

Suppose one of the following conditions holds
(i) $y^{\prime}(\alpha)=y(\beta)=0$ or $y(\alpha)=y^{\prime}(\beta)=0$ and $\beta-\alpha<\pi$,
(ii) $y(\alpha)=y(\beta)=0$ and $\beta-\alpha<2 \pi$,
(iii) $y(\alpha)=y(\beta)=0, y^{\prime}(\alpha)=y^{\prime}(\beta)$, and $\beta-\alpha=2 \pi$.

Then $y \equiv 0$ on $[\alpha, \beta]$.

Proof. (i) Suppose $y^{\prime}(\alpha)=y(\beta)=0$. Multiplying (2.1) by $\sin \left(\frac{\pi(\beta-t)}{2(\beta-\alpha)}\right)$ and integrating on $[\alpha, \beta]$, we obtain

$$
0 \geq\left(\frac{1}{4}-\left(\frac{\pi}{2(\beta-\alpha)}\right)^{2}\right) \int_{\alpha}^{\beta} y(t) \sin \left(\frac{\pi(\beta-t)}{2(\beta-\alpha)}\right) d t \geq 0
$$

which implies $y \equiv 0$ on $[\alpha, \beta]$. On the other hand, if $y(\alpha)=y^{\prime}(\beta)=0$ then the function $\tilde{y}(t)=y(\beta+\alpha-t)$ satisfies $\tilde{y}^{\prime}(\alpha)=\tilde{y}(\beta)=0$ and (2.1). Hence $\tilde{y} \equiv 0$ i.e. $y \equiv 0$ on $[\alpha, \beta]$, which completes the proof.
(ii) Multiplying (2.1) by $\sin \left(\frac{\pi(\beta-t)}{\beta-\alpha}\right)$ and integrating on $[\alpha, \beta]$, we obtain

$$
0 \geq\left(\frac{1}{4}-\left(\frac{\pi}{\beta-\alpha}\right)^{2}\right) \int_{\alpha}^{\beta} y(t) \sin \left(\frac{\pi(\beta-t)}{\beta-\alpha}\right) d t \geq 0
$$

which implies $y \equiv 0$ on $[\alpha, \beta]$.
(iii) Let $\tau \in[\alpha, \beta]$ and $h(t)=y^{\prime \prime}(t)+\frac{1}{4} y(t)$.

Multiplying the equation

$$
\begin{equation*}
y^{\prime \prime}+\frac{1}{4} y=h(t) \tag{2.2}
\end{equation*}
$$

by $\sin \left(\frac{\tau-t}{2}\right)$ and integrating on $[\alpha, \tau]$ gives

$$
\begin{equation*}
\frac{1}{2} y(\tau)-y^{\prime}(\alpha) \sin \left(\frac{\tau-\alpha}{2}\right)=\int_{\alpha}^{\tau} h(t) \sin \left(\frac{\tau-t}{2}\right) d t \tag{2.3}
\end{equation*}
$$

Next, multiplying (2.2) by $\sin \left(\frac{t-\tau}{2}\right)$ and integrating on $[\tau, \beta]$ gives

$$
\begin{equation*}
\frac{1}{2} y(\tau)+y^{\prime}(\beta) \sin \left(\frac{\beta-\tau}{2}\right)=\int_{\tau}^{\beta} h(t) \sin \left(\frac{t-\tau}{2}\right) d t \tag{2.4}
\end{equation*}
$$

Adding (2.3), (2.4) and using $y^{\prime}(\alpha)=y^{\prime}(\beta)$ together with $\beta=\alpha+2 \pi$, we obtain

$$
\begin{equation*}
y(\tau)=\int_{\alpha}^{\tau} h(t) \sin \left(\frac{\tau-t}{2}\right) d t+\int_{\tau}^{\beta} h(t) \sin \left(\frac{t-\tau}{2}\right) d t \tag{2.5}
\end{equation*}
$$

Since $y(\alpha)=0$ and $h(t) \sin \left(\frac{t-\alpha}{2}\right) \geq 0$ on (α, β), it follows that $h(t) \sin \left(\frac{t-\alpha}{2}\right)=0$ for a.e. $t \in(\alpha, \beta)$. Hence $h \equiv 0$ and therefore (2.5) implies $y(\tau)=0$ for all $\tau \in[\alpha, \beta]$, which completes the proof.

As a consequence of Lemma 2.1, we have the following result, which was obtained in [15] (see also [12] when a is a constant). However, our proof is new and simple. We refer to [17] for related results when $a \in L^{1}(S, \mathbb{R})$, where S is the circle of length 1 .

Corollary 2.2. Let $y \in A C^{1}[0,2 \pi]$ satisfy

$$
\begin{cases}y^{\prime \prime}+a(t) y \geq 0 & \text { a.e. on }[0,2 \pi] \tag{2.6}\\ y(0)=y(2 \pi), & y^{\prime}(0)=y^{\prime}(2 \pi)\end{cases}
$$

Then either $y>0$ on $[0,2 \pi]$ or $y \equiv 0$ on $[0,2 \pi]$. In particular, if $y_{i}, i=1,2$, satisfy

$$
\left\{\begin{array}{l}
y_{1}^{\prime \prime}+a(t) y_{1} \geq y_{2}^{\prime \prime}+a(t) y_{2} \quad \text { a.e. on }[0,2 \pi] \\
y_{i}\left(0=y_{i}(2 \pi), \quad y_{i}^{\prime}(0)=y_{i}^{\prime}(2 \pi), \quad i=1,2\right.
\end{array}\right.
$$

then $y_{1} \geq y_{2}$ on $[0,2 \pi]$.

Proof. Extend y to be a 2π-periodic function on \mathbb{R}. Then $y \in C^{1}(\mathbb{R})$ and y^{\prime} is absolutely continuous on \mathbb{R}. Suppose $y(\tau)>0$ for some $\tau \in[0,2 \pi]$. We claim that $y>0$ on $[0,2 \pi]$. Suppose to the contrary that $y\left(\tau_{0}\right) \leq 0$ for some $\tau_{0} \in[0,2 \pi]$. Since $y\left(\tau_{0}\right)=y\left(\tau_{0} \pm 2 \pi\right)$, there exists an interval (α, β) containing τ such that $y>0$ on $(\alpha, \beta), y(\alpha)=y(\beta)=0,0<$ $\beta-\alpha \leq 2 \pi$, and (2.1) holds, which contradicts Lemma 2.1(ii) and (iii). Hence $y>0$ on $[0,2 \pi]$ as claimed. On the other hand, if $y \leq 0$ on $[0,2 \pi]$ then $y^{\prime \prime} \geq 0$ a.e. on $[0,2 \pi]$. Let $y\left(\tau_{1}\right)=\max _{t \in[0,2 \pi]} y(t)$. Then $y^{\prime}\left(\tau_{1}\right)=0$, and hence $y(t)=y\left(\tau_{1}\right)$ for all $t \in[0,2 \pi]$. Hence (2.6) immediately gives $y \geq 0$ on $[0,2 \pi]$. Consequently $y \equiv 0$, which completes the proof of the first part. The second part follows by using the first part with $y=y_{1}-y_{2}$.

Let $I_{1}=\left[\frac{\pi}{2}, \frac{3 \pi}{4}\right], I_{2}=\left[\pi, \frac{5 \pi}{4}\right], I_{3}=\left[\frac{3 \pi}{2}, \frac{7 \pi}{4}\right], I_{4}=\left[\frac{5 \pi}{4}, \frac{3 \pi}{2}\right]$ and $J_{1}=\left[0 \frac{\pi}{2}\right], J_{2}=\left[\frac{\pi}{2}, \pi\right]$, $J_{3}=\left[\pi, \frac{3 \pi}{2}\right], J_{4}=\left[\frac{3 \pi}{2}, 2 \pi\right]$. The next result plays an important role in the proof of the main results.

Lemma 2.3. There exists a positive constant m such that all solutions $y \in A C^{1}[0,2 \pi]$ of (2.6) satisfy

$$
y(t) \geq m\|y\|
$$

for $t \in I_{i}$ for some $i \in\{1,2,3,4\}$.
Proof. Let $y \in A C^{1}[0,2 \pi]$ be a solution of (2.6). Then $y \geq 0$ on $[0,2 \pi]$ by Corollary 2.2. Let $\|y\|=y(\tau)$ for some $\tau \in[0,2 \pi]$. Then $y^{\prime}(\tau)=0$. Let z_{τ} satisfy

$$
\left\{\begin{array}{l}
z_{\tau}^{\prime \prime}+a(t) z_{\tau}=0 \quad \text { on }[0,2 \pi] \tag{2.7}\\
z_{\tau}(\tau)=1, \quad z_{\tau}^{\prime}(\tau)=0
\end{array}\right.
$$

Note that the existence of a unique solution $z_{\tau} \in C^{2}[0,2 \pi]$ follows from the basic theory for linear differential equations (see e.g. [3, Theorem 3.7.1]). We shall verify that z_{τ} is bounded in $C^{2}[0,2 \pi]$ by a constant independent of $\tau \in[0,2 \pi]$. Indeed, by integrating the equation in (2.7), we get

$$
z_{\tau}(t)=1-\int_{\tau}^{t}(t-s) a(s) z_{\tau}(s) d s
$$

for $t \in[0,2 \pi]$, which, together with (A2), implies

$$
\left|z_{\tau}(t)\right| \leq 1+\frac{\pi}{2} \int_{\tau}^{t}\left|z_{\tau}(s)\right| d s \quad \text { for } t \geq \tau
$$

and

$$
\left|z_{\tau}(t)\right| \leq 1+\frac{\pi}{2} \int_{t}^{\tau}\left|z_{\tau}(s)\right| d s \quad \text { for } t \leq \tau
$$

Hence Gronwall's inequality gives

$$
\begin{equation*}
\left|z_{\tau}(t)\right| \leq e^{(\pi / 2)|t-\tau|} \leq e^{\pi^{2}} \tag{2.8}
\end{equation*}
$$

for $t \in[0,2 \pi]$. Since $z_{\tau}^{\prime}(t)=-\int_{\tau}^{t} a(s) z_{\tau}(s) d s$ and $z_{\tau}^{\prime \prime}=-a(t) z_{\tau}$ on [$\left.0,2 \pi\right]$, it follows from (2.8) that z_{τ} is bounded in $C^{2}[0,2 \pi]$ by a constant independent of $\tau \in[0,2 \pi]$.
Claim 1: There exists a constant $m>0$ such that $z_{\tau}(t) \geq m$ for all $\tau \in J_{i}$ and $t \in I_{i}, i \in\{1,2,3,4\}$.
Suppose to the contrary that there exists $i \in\{1,2,3,4\}$ and sequences $\left(\tau_{n}\right) \subset J_{i},\left(t_{n}\right) \subset$ $I_{i},\left(z_{n}\right) \subset C^{2}[0,2 \pi]$ such that $z_{n}\left(t_{n}\right) \leq \frac{1}{n}$ for all n and

$$
\left\{\begin{array}{l}
z_{n}^{\prime \prime}+a(t) z_{n}=0 \quad \text { on }[0,2 \pi] \\
z_{n}\left(\tau_{n}\right)=1, \quad z_{n}^{\prime}\left(\tau_{n}\right)=0
\end{array}\right.
$$

Since $\left(z_{n}\right)$ is bounded in $C^{2}[0,2 \pi]$ by the above discussion, and $\left(\tau_{n}\right),\left(t_{n}\right)$ are bounded in J_{i}, I_{i} respectively, by passing to a subsequence if necessary, we can assume that there exist $\tau_{i} \in J_{i}, t_{i} \in I_{i}$, and $z \in C^{1}[0,2 \pi]$ such that $\tau_{n} \rightarrow \tau_{i}, t_{n} \rightarrow t_{i}$, and $z_{n} \rightarrow z$ in $C^{1}[0,2 \pi]$. Note that $t_{n} \geq \tau_{n}$ for $i<4$ and $n \in \mathbb{N}$, and so $t_{i} \geq \tau_{i}$ for $i<4$. Since

$$
z_{n}(t)=1-\int_{\tau_{n}}^{t}(t-s) a(s) z_{n}(s) d s,
$$

by passing to the limit as $n \rightarrow \infty$, we obtain

$$
z(t)=1-\int_{\tau_{i}}^{t}(t-s) a(s) z(s) d s,
$$

i.e. z satisfies

$$
\left\{\begin{array}{l}
z^{\prime \prime}+a(t) z=0 \quad \text { on }[0,2 \pi], \\
z\left(\tau_{i}\right)=1, \quad z^{\prime}\left(\tau_{i}\right)=0
\end{array}\right.
$$

Since $z\left(t_{i}\right)=\lim _{n \rightarrow \infty} z_{n}\left(t_{n}\right) \leq 0$, we obtain for $i<4$ that $t_{i}>\tau_{i}$ (since $t_{i} \neq \tau_{i}$), and there exists $\tilde{t}_{i} \in\left(\tau_{i}, t_{i}\right]$ such that $z>0$ on $\left(\tau_{i}, \tilde{t}_{i}\right)$ and $z\left(\tilde{t}_{i}\right)=0$. Since $\tilde{t}_{i}-\tau_{i} \leq \frac{3 \pi}{4}$, Lemma 2.1 (i) gives $z=0$ on $\left(\tau_{i}, \tilde{t}_{i}\right)$, a contradiction. On the other hand, if $i=4$ then $t_{4}<\tau_{4}$ and there exists $\tilde{t}_{4} \in\left[t_{4}, \tau_{4}\right)$ such that $z>0$ on $\left(\tilde{t}_{4}, \tau_{4}\right)$ and $z\left(\tilde{t}_{4}\right)=0$. Since $\tau_{4}-\tilde{t}_{4} \leq \frac{3 \pi}{4}$, we obtain a contradiction with Lemma 2.1 (i). This proves the claim.

Let $u=y-\|y\| z_{\tau}$. Then u satisfies

$$
\left\{\begin{array}{l}
u^{\prime \prime}+a(t) u \geq 0 \quad \text { a.e. on }[0,2 \pi] \\
u(\tau)=0, \quad u^{\prime}(\tau)=0
\end{array}\right.
$$

Claim 2: $u \geq 0$ on $[0,2 \pi]$.
Indeed, suppose $u(\tilde{\tau})<0$ for some $\tilde{\tau} \in[0,2 \pi]$ with $\tilde{\tau}<\tau$. Then there exists $\tilde{\tau}_{0} \in(\tilde{\tau}, \tau]$ such that $u<0$ on $\left(\tilde{\tau}, \tilde{\tau}_{0}\right)$ and $u\left(\tilde{\tau}_{0}\right)=0$. Hence

$$
\begin{equation*}
u^{\prime \prime} \geq-a(t) u \geq 0 \quad \text { a.e. on }\left(\tilde{\tau}, \tilde{\tau}_{0}\right] . \tag{2.9}
\end{equation*}
$$

If $u^{\prime}\left(\tilde{\tau}_{0}\right) \leq 0$, then (2.9) implies $u^{\prime} \leq 0$ on $\left(\tilde{\tau}, \tilde{\tau}_{0}\right]$ and so $u(t) \geq u\left(\tilde{\tau}_{0}\right)=0$ on $\left(\tilde{\tau}, \tilde{\tau}_{0}\right]$, a contradiction. On the other hand, if $u^{\prime}\left(\tilde{\tau}_{0}\right)>0$ then there exists $\tilde{\tau}_{1} \in\left(\tilde{\tau}_{0}, \tau\right]$ such that $u>0$ on ($\tilde{\tau}_{0}, \tilde{\tau}_{1}$) and $u\left(\tilde{\tau}_{1}\right)=0$. Since $\tilde{\tau}_{1}-\tilde{\tau}_{0}<2 \pi$, Lemma 2.1 (ii) implies $u \equiv 0$ on ($\tilde{\tau}_{0}, \tilde{\tau}_{1}$), a contradiction. Similarly, we reach a contradiction in the case $\tilde{\tau}>\tau$, which proves claim 2.

Since $\tau \in \cup_{i=1}^{4} J_{i}$, it follows from claims 1 and 2 that there exists $i \in\{1,2,3,4\}$ such that

$$
y(t) \geq\|y\| z_{\tau}(t) \geq m\|y\|
$$

for all $t \in I_{i}$, which completes the proof of Lemma 2.3.
By Lemma 2.6 below, there exists $z \in A C^{1}[0,2 \pi]$ satisfying

$$
\left\{\begin{array}{l}
z^{\prime \prime}+a(t) z=g(t) \quad \text { a.e. on }[0,2 \pi] \tag{2.10}\\
z(0)=z(2 \pi), \quad z^{\prime}(0)=z^{\prime}(2 \pi) .
\end{array}\right.
$$

Since $g \not \equiv 0$, Corollary 2.2 gives $z>0$ on $[0,2 \pi]$.

Corollary 2.4. Let k be a positive constant and $y \in A C^{1}[0,2 \pi]$ satisfy

$$
\left\{\begin{array}{l}
y^{\prime \prime}+a(t) y \geq-\lambda k g(t) \quad \text { a.e. on }[0,2 \pi], \tag{2.11}\\
y(0)=y(2 \pi), \quad y^{\prime}(0)=y^{\prime}(2 \pi) .
\end{array}\right.
$$

Then
(i) $y \geq-\lambda k z$ on $[0,2 \pi]$
(ii) If $\|y\| \geq 2 \lambda k\|z\|(m+1) m^{-1}$ then

$$
\begin{equation*}
y(t) \geq m_{0}\|y\| \tag{2.12}
\end{equation*}
$$

for $t \in I_{i}$ for some $i \in\{1,2,3,4\}$, where $m_{0}=m / 2$ and m is given by Lemma 2.3.
Proof. Let $u=y+\lambda k z$. Then u satisfies

$$
u^{\prime \prime}+a(t) u \geq 0 \quad \text { a.e. on }[0,2 \pi],
$$

from which Corollary 2.2 and Lemma 2.3 give $u \geq 0$ on $[0,2 \pi]$ and

$$
y(t)+\lambda k z(t)=u(t) \geq\|u\| m=\|y+\lambda k z\| m
$$

for $t \in I_{i}$ for some $i \in\{1,2,3,4\}$. Thus $y \geq-\lambda k z$ on $[0,2 \pi]$ and

$$
y(t) \geq\|y\| m-\lambda k\|z\|(m+1),
$$

from which (2.12) follows if $\|y\| \geq 2 \lambda k\|z\|(m+1) m^{-1}$.
Lemma 2.5. Let $U, V \in C^{2}[0,2 \pi]$ be the solutions of

$$
\left\{\begin{array}{l}
U^{\prime \prime}+a(t) U=0 \quad \text { on }[0,2 \pi] \\
U(0)=1, \quad U^{\prime}(0)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
V^{\prime \prime}+a(t) V=0 \quad \text { on }[0,2 \pi] \\
V(0)=0, \quad V^{\prime}(0)=1
\end{array}\right.
$$

Then $U(2 \pi), V^{\prime}(2 \pi)<1$.
Proof. Suppose $U(2 \pi) \geq 1$. If there exists $\tau \in(0,2 \pi)$ such that $U(\tau)<0$ then, since $U(0)>0$, there exists an interval $[\alpha, \beta] \subset(0,2 \pi)$ such that $U<0$ on (α, β) and $U(\alpha)=$ $U(\beta)=0$. Since $a(t) \leq 1 / 4$, it follows from Lemma 2.1 (ii) with $y=-U$ that $U=0$ on (α, β), a contradiction. On the other hand, if $U \geq 0$ on $(0,2 \pi)$ then $U^{\prime \prime} \leq 0$ on $(0,2 \pi)$ i.e. U^{\prime} is nonincreasing on $[0,2 \pi]$. Hence $U^{\prime} \leq 0$ on $[0,2 \pi]$, which implies $U(2 \pi) \leq U(0)=1$. Thus $U(2 \pi)=1=U(0)$ and since U is nonincreasing, we deduce that $U=1$ on $[0,2 \pi]$. Consequently, the equation in U gives $a(t)=0$ for all $t \in[0,2 \pi]$, a contradiction. Hence $U(2 \pi)<1$. Next, we show that $V^{\prime}(2 \pi)<1$. Since $V(0)=0$ and $V^{\prime}(0)>0$, it follows that $V(t)>0$ for $t>0$ near 0 . Hence if $V\left(\tau_{0}\right)<0$ for some $\tau_{0} \in(0,2 \pi)$ then there exists $\beta \in\left(0, \tau_{0}\right)$ such that $V>0$ on $(0, \beta)$ and $V(\beta)=0=V(0)$, a contradiction with Lemma 2.1 (ii). Hence $V \geq 0$ on $(0,2 \pi)$, which implies $V^{\prime \prime} \leq 0$ on $(0,2 \pi)$. Consequently, $V^{\prime}(2 \pi) \leq V^{\prime}(0)=1$. If $V^{\prime}(2 \pi)=1$ then $V^{\prime}=1$ on $[0,2 \pi]$, which implies $V(t)=t$ for $t \in[0,2 \pi]$. Using the equation in V, we see that $a(t)=0$ for all $t \in[0,2 \pi]$, a contradiction. Hence $V^{\prime}(2 \pi)<1$, which completes the proof.

Lemma 2.6. Let $h \in L^{1}(0,2 \pi)$. Then the problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+a(t) y=h(t) \quad \text { a.e. on }[0,2 \pi] \tag{2.13}\\
y(0)=y(2 \pi), \quad y^{\prime}(0)=y^{\prime}(2 \pi)
\end{array}\right.
$$

has a unique solution $y \in A C^{1}[0,2 \pi]$, which is given by

$$
\begin{equation*}
y(t)=\int_{0}^{2 \pi} G(t, s) h(s) d s \tag{2.14}
\end{equation*}
$$

where

$$
G(t, s)=c_{1} V(t) V(s)-c_{2} U(t) U(s)+ \begin{cases}c_{3} U(s) V(t)-c_{4} U(t) V(s), & 0 \leq s \leq t \leq 2 \pi \\ c_{3} U(t) V(s)-c_{4} U(s) V(t), & 0 \leq t \leq s \leq 2 \pi\end{cases}
$$

$c_{1}=\frac{U^{\prime}(2 \pi)}{D}, c_{2}=\frac{V(2 \pi)}{D}, c_{3}=\frac{U(2 \pi)-1}{D}, c_{4}=\frac{V^{\prime}(2 \pi)-1}{D}, D=U(2 \pi)+V^{\prime}(2 \pi)-2$, and U, V are defined in Lemma 2.5.

Proof. By Corollary 2.2, the only solution of

$$
\begin{cases}y^{\prime \prime}+a(t) y=0 & \text { a.e. on }[0,2 \pi] \\ y(0)=y(2 \pi), & y^{\prime}(0)=y^{\prime}(2 \pi)\end{cases}
$$

is the trivial one. Hence Fredholm's alternative theorem implies that the inhomogeneous problem (2.13) has a unique solution, which is given by (2.14) (see [2, Theorem 2.4]). Note that $G(t, s)$ is defined since $D<0$ in view of Lemma 2.5. From (2.14), a calculation shows that

$$
\begin{aligned}
y^{\prime}(t)= & c_{1}\left(\int_{0}^{2 \pi} V(s) h(s) d s\right) V^{\prime}(t)-c_{2}\left(\int_{0}^{2 \pi} U(s) h(s) d s\right) U^{\prime}(t) \\
& +c_{3}\left(\int_{0}^{t} U(s) h(s) d s\right) V^{\prime}(t)-c_{4}\left(\int_{0}^{t} V(s) h(s) d s\right) U^{\prime}(t) \\
& +c_{3}\left(\int_{t}^{2 \pi} V(s) h(s) d s\right) U^{\prime}(t)-c_{4}\left(\int_{t}^{2 \pi} U(s) h(s) d s\right) V^{\prime}(t)
\end{aligned}
$$

from which we see that $y \in A C^{1}[0,2 \pi]$ and satisfies (2.13).

3 Proof of the main results

Let X be the Banach space $C[0,2 \pi]$ equipped with the norm $\|u\|=\sup _{t \in[0,2 \pi]}|u(t)|$. For $u \in X$, define

$$
T u(t)=\lambda \int_{0}^{2 \pi} G(t, s) g(s) f(|u(s)|) d s
$$

for $t \in[0,2 \pi]$, where $G(t, s)$ is the Green's function of $y^{\prime \prime}+a(t) y$ with the periodic boundary conditions in (1.1) given by Lemma 2.6. Then $y=T u \in A C^{1}[0,1]$ satisfies

$$
\left\{\begin{array}{l}
y^{\prime \prime}+a(t) y=\lambda g(t) f(|u|) \quad \text { a.e. on }[0,2 \pi] \\
y(0)=y(2 \pi), \quad y^{\prime}(0)=y^{\prime}(2 \pi)
\end{array}\right.
$$

It is easy to see that $T: X \rightarrow X$ is continuous and since T maps bounded sets in X into bounded sets in $C^{1}[0,2 \pi], T$ is a compact operator. For the rest of the paper, we shall use the following notations:

$$
f^{0, z}=\sup _{0 \leq t \leq z}|f(t)| \quad \text { and } \quad f_{z, \infty}=\inf _{t \geq z} f(t) \quad \text { for } z \geq 0
$$

Note that $f^{0, z}$ and $f_{z, \infty}$ are nondecreasing on $[0, \infty)$.
Proof of Theorem 1.1. (i) By Corollary 2.2, Tu ≥ 0 for all u. Let $0<\varepsilon<\frac{1}{\lambda\|z\|}$, where z is defined by (2.10). Since $f_{0}=0$, there exists a constant $r>0$ such that

$$
f(z)<\varepsilon z \quad \text { for } z \in(0, r] .
$$

We shall verify that the conditions of Lemma A with $h \equiv 1$ are satisfied.
(a) Let $y \in X$ satisfy $y=\theta$ Ty for some $\theta \in(0,1]$. Then $\|y\| \neq r$.

Indeed, suppose to the contrary that $\|y\|=r$. Then

$$
y^{\prime \prime}+a(t) y=\lambda \theta g(t) f(|y|) \leq \lambda \varepsilon g(t)\|y\| \quad \text { a.e. on }[0,2 \pi],
$$

from which Corollary 2.2 implies

$$
y \leq \lambda \varepsilon z\|y\| \quad \text { on }[0,2 \pi] .
$$

Hence $\lambda \varepsilon\|z\| \geq 1$, a contradiction with the choice of ε.
(b) Let $y \in X$ satisfy $y=T y+\xi$ for some $\xi \geq 0$. Then $\|y\|<R$ for $R \gg 1$.

Note that y satisfies

$$
y^{\prime \prime}+a(t) y=a(t) \xi+\lambda g(t) f(|y|) \quad \text { a.e. on }[0,2 \pi] .
$$

Let M be a constant such that $\lambda M m c>\pi / 2$, where $c=\min _{1 \leq i \leq 4} \int_{I_{i}} g(t) d t$ and m is given by Lemma 2.3. Since $f_{\infty}=\infty$, there exists a constant $A>0$ such that

$$
f(z)>M z \quad \text { for } z \geq A
$$

We claim that $\|y\|<R$ for $R>A / m$. Indeed, suppose $\|y\| \geq R>A / m$. By Lemma 2.3, there exists $i \in\{1,2,3,4\}$ such that

$$
y(t) \geq\|y\| m \geq R m>A
$$

for $t \in I_{i}$, which implies

$$
f(y(t))>M y(t) \geq M m\|y\|
$$

for $t \in I_{i}$. Thus

$$
y^{\prime \prime}+a(t) y \geq\left\{\begin{array}{ll}
\lambda M m\|y\| g(t), & t \in I_{i}, \\
0 & t \notin I_{i}
\end{array} \text { a.e. on }[0,2 \pi],\right.
$$

and upon integrating on $[0,2 \pi]$, we get

$$
\int_{0}^{2 \pi} a(t) y(t) d t \geq \lambda M m\|y\| \int_{I_{i}} g(t) d t \geq \lambda M m c\|y\| .
$$

Since $a \leq 1 / 4$ on $[0,2 \pi]$, this implies

$$
\frac{\pi}{2}\|y\| \geq \lambda M m c\|y\|
$$

i.e. $\pi / 2 \geq \lambda M m c$, a contradiction with the choice of M. Hence $\|y\|<R$ as claimed.

By Lemma A, T has a fixed point y with $r<\|y\|<R$. By Corollary $2.2, y>0$ on $[0,2 \pi]$.
(ii) Let k be a positive constant such that $f(z) \geq-k$ for all $z \geq 0$. By Lemma 2.6, there exist $z_{i}, \tilde{z}_{i} \in A C^{1}[0,2 \pi]$ satisfying

$$
z_{i}^{\prime \prime}+a(t) z_{i}=\left\{\begin{array}{ll}
g(t) & t \in I_{i}, \\
0, & t \notin I_{i}
\end{array} \quad z_{i}(0)=z_{i}(2 \pi), z_{i}^{\prime}(0)=z_{i}^{\prime}(2 \pi),\right.
$$

and

$$
\tilde{z}_{i}^{\prime \prime}+a(t) \tilde{z}_{i}=\left\{\begin{array}{ll}
0, & t \in I_{i}, \\
k g(t), & t \notin I_{i},
\end{array} \quad \tilde{z}_{i}(0)=\tilde{z}_{i}(2 \pi), \tilde{z}_{i}^{\prime}(0)=\tilde{z}_{i}^{\prime}(2 \pi),\right.
$$

for $i \in\{1,2,3,4\}$. Note that $z_{i}>0$ on $[0,2 \pi]$ for all i by Corollary 2.2. Choose $r>0$ so that

$$
\begin{equation*}
f_{m_{0} r, \infty} \min _{1 \leq i \leq 4, t \in[0,2 \pi]} z_{i}(t)>\max _{1 \leq i \leq 4}\left\|\tilde{z}_{i}\right\|, \tag{3.1}
\end{equation*}
$$

where m_{0} is given by Corollary 2.4. Let $\lambda>0$ be such that

$$
\begin{equation*}
\lambda \max \left\{f^{0, r}\|z\|, 2 k\|z\|(m+1) m^{-1}\right\}<r . \tag{3.2}
\end{equation*}
$$

We shall verify that
(a) Let $y \in X$ satisfy $y=\theta$ Ty for some $\theta \in(0,1]$. Then $\|y\| \neq r$.

Suppose to the contrary that $\|y\|=r$. Then

$$
-\lambda f^{0, r} g(t) \leq y^{\prime \prime}+a(t) y \leq \lambda f^{0, r} g(t) \quad \text { a.e. on }(0,2 \pi),
$$

from which it follows that

$$
|y(t)| \leq \lambda f^{0, r} z(t)
$$

for $t \in[0,2 \pi]$, where z is defined in (2.10). Hence

$$
r=\|y\| \leq \lambda f^{0, r}\|z\|,
$$

a contradiction with (3.2), which proves (a).
(b) There exists a constant $R_{\lambda}>r$ such that any solution $y \in X$ of $y=T y+\xi$ for some $\xi \geq 0$ satisfies $\|y\| \neq R_{\lambda}$.

Let $y \in X$ satisfy $y=T y+\xi$ for some $\xi \geq 0$. Since $\lim _{z \rightarrow \infty} \frac{f_{z, \infty}}{z}=\infty$, there exists a constant $R_{\lambda}>r$ be such that

$$
\begin{equation*}
\lambda\left(f_{m_{0} R_{\lambda}, \infty} \min _{1 \leq i \leq 4, t \in[0,2 \pi]} z_{i}(t)-\max _{1 \leq i \leq 4}\left\|\tilde{z}_{i}\right\|\right)>R_{\lambda} . \tag{3.3}
\end{equation*}
$$

Suppose $\|y\|=R_{\lambda}$. Since $\|y\| \geq 2 \lambda k\|z\|(m+1) m^{-1}$ and

$$
y^{\prime \prime}+a(t) y \geq \lambda g(t) f(|y|) \geq-\lambda k g(t) \quad \text { a.e. on }[0,2 \pi],
$$

it follows from Corollary 2.4 that $y \geq-\lambda k z$ on $[0,2 \pi]$ and $y(t) \geq m_{0}\|y\|$ for $t \in I_{i}$ for some $i \in\{1,2,3,4\}$. Hence

$$
\begin{aligned}
y^{\prime \prime}+a(t) y \geq \lambda g(t) f(|y|) & \geq \lambda g(t) f_{|y|, \infty} \\
& \geq \lambda\left(f _ { m _ { 0 } \| y \| , \infty } \left\{\begin{array}{ll}
g(t), & t \in I_{i}, \\
0, & t \notin I_{i},
\end{array}-\left\{\begin{array}{ll}
0, & t \in I_{i} \\
k g(t), & t \notin I_{i}
\end{array}\right) \quad \text { a.e. on }(0,2 \pi) .\right.\right.
\end{aligned}
$$

By Corollary 2.2,

$$
\begin{equation*}
y \geq \lambda\left(f_{m_{0}\|y\|, \infty} z_{i}-\tilde{z}_{i}\right) \quad \text { on }[0,2 \pi], \tag{3.4}
\end{equation*}
$$

which implies by (3.3) that

$$
R_{\lambda}=\|y\| \geq \lambda\left(f_{m_{0} R_{\lambda}, \infty} \min _{1 \leq i \leq 4, t \in[0,2 \pi]} z_{i}(t)-\max _{1 \leq i \leq 4}\left\|\tilde{z}_{i}\right\|\right)>R_{\lambda}
$$

a contradiction. Hence $\|y\| \neq R_{\lambda}$, which proves (b).
By Lemma A, T has a fixed point $y_{\lambda} \in X$ with $r<\left\|y_{\lambda}\right\|<R$. Since (3.4) holds, we obtain from (3.1) that

$$
y_{\lambda} \geq \lambda\left(f_{m_{0} r, \infty} \min _{1 \leq i \leq 4, t \in[0,2 \pi]} z_{i}(t)-\max _{1 \leq i \leq 4}\left\|\tilde{z}_{i}\right\|\right)>0 \quad \text { on }[0,2 \pi] .
$$

It remains to show that $\left\|y_{\lambda}\right\| \rightarrow \infty$ as $\lambda \rightarrow 0^{+}$. Since

$$
y_{\lambda}^{\prime \prime}+a(t) y_{\lambda}=\lambda g(t) f\left(y_{\lambda}\right) \leq \lambda g(t) f^{0,\left\|y_{\lambda}\right\|} \quad \text { a.e. on }(0,2 \pi),
$$

it follows that

$$
y_{\lambda} \leq \lambda f^{0,\left\|y_{\lambda}\right\|} z \quad \text { on }[0,2 \pi],
$$

which implies

$$
\frac{f^{0,\left\|y_{\lambda}\right\|}}{\left\|y_{\lambda}\right\|} \geq \frac{1}{\lambda\|z\|}
$$

Since $\left\|y_{\lambda}\right\|>r$, it follows that $\left\|y_{\lambda}\right\| \rightarrow \infty$ as $\lambda \rightarrow 0^{+}$, which completes the proof of Theorem 1.1.

Acknowledgement

The author thanks the referee for carefully reading the manuscript and providing helpful suggestions.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18(1976), No. 4, 620-709. MR0415432
[2] F. M. Atici, G. S. Guseinov, On the existence of positive solutions for nonlinear differential equations with periodic conditions, J. Comput. Appl. Math. 132(2001), 341-356. MR1840633
[3] L. R. Borelli, C. S. Coleman, Differential equations. A modeling perspective, John Wiley \& Sons, Inc., New York, 1998. MR1488416
[4] A. Cabada, J. Á. Cid, Existence and multiplicity of solutions for a periodic Hill's equation with parametric dependence and singularities, Abstr. Appl. Anal. 2011, Art. ID 545264, 19 pp. MR2793780
[5] A. Cabada, J. Á. Cid, M. Tvrdý, A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential. Nonlinear Anal. 72(2010), No. 7-8, 3436-3446. MR2587376
[6] J. R. Graef, L. Kong, H. Wang, A periodic boundary value problem with vanishing Green's functions, Appl. Math. Lett. 21(2008), 176-180. MR2426975
[7] D. Jiang, J. Chu, M. Zhang, Multiplicity of positive solutions to superlinear repulsive singular equations, J. Differential Equations 211(2005), 283-302. MR2125544
[8] D. Jiang, J. Chu, O'Regan, R. Agarwal, Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces, J. Math. Anal. Appl. 28(2003), 563-576. MR2008849
[9] H. X. Li, Y. W. Zhang, A second order periodic boundary value problem with a parameter and vanishing Green's functions, Publ. Math. Debrecen 85(2014), 273-283. MR3291830
[10] R. Ma, Nonlinear periodic boundary value problems with sign-changing Green's function, Nonlinear Anal. 74(2011), 1714-1720. MR2764373
[11] R. Ma, C. Gao, C. Ruipeng, Existence of positive solutions of nonlinear second-order periodic boundary value problems, Bound. Value. Probl. 2010, Art. ID 626054, 18 pp. MR2745087
[12] P. Omari, M. Trombetta, Remarks on the lower and upper solution method for second and third-order periodic boundary value problems, Appl. Math. Comp. 50(1992), 1-21. MR1164490
[13] D. O'Regan, H. Wang, Positive periodic solutions of systems of second order ordinary differential equations, Positivity 10(2006), 285-298. MR2237502
[14] P. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skii fixed point theorem, J. Differential Equations 190(2003), 643-662. MR1970045
[15] P. Torres, M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Math. Nachr. 251(2003), 101-107. MR1960807
[16] J. R. L. Webb, Boundary value problems with vanishing Green's function, Comm. Appl. Anal. 13(2009), 587-595. MR2583591
[17] M. Zhang, Optimal conditions for maximum and antimaximum principles of the periodic solution problem, Bound. Value Probl. 2010, Art. ID 410986, 26 pp. MR2659774
[18] Z. Zhang, J. Wang, On existence and multiplicity of positive solutions to periodic boundary value problems for singular second order differential equations, J. Math. Anal. Appl. 281(2003), 99-107. MR1980077

[^0]: ${ }^{\boxtimes}$ Email: Dang@Math.Msstate.Edu

