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Abstract

This paper is concerned with the following nonlinear third-order three-point boundary value

problem
{

u′′′(t) + f (t, u (t) , u′ (t)) = 0, t ∈ [0, 1] ,

u (0) = u′ (0) = 0, u′ (1) = αu′ (η) ,

where 0 < η < 1 and 0 ≤ α < 1. A new maximum principle is established and some existence

criteria are obtained for the above problem by using the upper and lower solution method.

Keywords: Third-order three-point boundary value problem; Upper and lower solution method;

Maximum principle; Existence

2000 AMS Subject Classification: 34B10, 34B15

1 Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics and

physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three-layer

beam, electromagnetic waves or gravity driven flows and so on [6].

Recently, third-order boundary value problems (BVPs for short) have received much attention.

For instance, [3, 4, 5, 8, 9, 13] discussed some third-order two-point BVPs, while [2, 7, 10, 11, 12]

studied some third-order three-point BVPs. In particular, Feng and Liu [5] employed the upper and

lower solution method to prove the existence of solution for the third-order two-point BVP
{

u′′′(t) + f (t, u (t) , u′ (t)) = 0, t ∈ [0, 1] ,

u (0) = u′ (0) = u′ (1) = 0.

In 2008, Guo, Sun and Zhao [7] established some existence results for at least one positive solution to

the third-order three-point BVP
{

u′′′(t) + a (t) f (u (t)) = 0, t ∈ (0, 1) ,

u (0) = u′ (0) = 0, u′ (1) = αu′ (η) .
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Their main tool was the well-known Guo-Krasnoselskii fixed point theorem.

Motivated greatly by [5, 7], in this paper, we will investigate the following nonlinear third-order

three-point BVP
{

u′′′(t) + f (t, u (t) , u′ (t)) = 0, t ∈ [0, 1] ,

u (0) = u′ (0) = 0, u′ (1) = αu′ (η) ,
(1.1)

where 0 < η < 1 and 0 ≤ α < 1. A new maximum principle is established and some existence criteria

are obtained for the BVP (1.1) by using the upper and lower solution method. In order to obtain our

main results, we need the following fixed point theorem [1].

Theorem 1.1 Let (E,K) be an ordered Banach space and [a, b] be a nonempty interval in E. If

T : [a, b] → E is an increasing compact mapping and a ≤ Ta, T b ≤ b, then T has a fixed point in [a, b].

2 Preliminaries

In this section, we will present some fundamental definitions and several important lemmas.

Definition 2.1 If x ∈ C3 [0, 1] satisfies

{

x′′′(t) + f (t, x (t) , x′ (t)) ≥ 0, t ∈ [0, 1] ,

x (0) = 0, x′ (0) ≤ 0, x′ (1) ≤ αx′ (η) ,

then x is called a lower solution of the BVP (1.1) .

Definition 2.2 If y ∈ C3 [0, 1] satisfies

{

y′′′(t) + f (t, y (t) , y′ (t)) ≤ 0, t ∈ [0, 1] ,

y (0) = 0, y′ (0) ≥ 0, y′ (1) ≥ αy′ (η) ,

then y is called an upper solution of the BVP (1.1).

Let G (t, s) be the Green′s function of the second-order three-point BVP

{

−u′′ (t) = 0, t ∈ [0, 1] ,

u (0) = 0, u (1) = αu (η) .

Then

G(t, s) =
1

1 − αη



















s (1 − αη) + st (α − 1) , s ≤ min {η, t} ,

t (1 − αη) + st (α − 1) , t ≤ s ≤ η,

s (1 − αη) + t (αη − s) , η ≤ s ≤ t,

t (1 − s) , max {η, t} ≤ s.

For G (t, s), we have the following two lemmas.

Lemma 2.1 G(t, s) ≥ 0 for (t, s) ∈ [0, 1] × [0, 1] .

Lemma 2.2 Let M =: max
t∈[0,1]

∫ 1
0 G (t, s) ds. Then M <

1

2
.
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Proof. Since a simple computation shows that

∫ 1

0
G (t, s) ds = −

1

2
t2 +

1 − αη2

2 (1 − αη)
t,

it is easy to obtain that

M =















1

8

(

1 − αη2

1 − αη

)2

, αη (2 − η) ≤ 1,

αη (1 − η)

2 (1 − αη)
, αη (2 − η) ≥ 1,

which implies that M <
1

2
. �

Lemma 2.3 Assume that λ1 and λ2 are two nonnegative constants with λ1 + λ2 ≤ 2. If m ∈ C2 [0, 1]

satisfies

m′′ (t) ≥ λ1

∫ t

0
m (s) ds + λ2m (t) for t ∈ [0, 1]

and

m (0) ≤ 0, m (1) ≤ αm (η) ,

then m (t) ≤ 0 for t ∈ [0, 1].

Proof. We consider two cases: λ1 = 0 and λ1 6= 0.

Case 1. λ1 = 0. If λ2 = 0, then m′′ (t) ≥ 0 for t ∈ [0, 1], which implies that the graph of m (t) is

concave up. Since m (0) ≤ 0, we only need to prove m (1) ≤ 0. Suppose on the contrary that m (1) > 0.

Then m (0) ≤ 0 < m (1) ≤ αm (η) < m (η) . So,

0 <
m (η) − m (0)

η
≤

m (1) − m (η)

1 − η
< 0,

which is a contradiction. Therefore, m (1) ≤ 0.

If λ2 6= 0, then m′′ (t) ≥ λ2m (t) for t ∈ [0, 1]. Suppose on the contrary that there exists t0 ∈ [0, 1]

such that m (t0) = max
t∈[0,1]

m (t) > 0. Obviously, t0 6= 0. If t0 = 1, then 0 < m (1) ≤ αm (η) <

m (η) ≤ m (1) , which is a contradiction. Consequently, t0 ∈ (0, 1), m′ (t0) = 0 and m′′ (t0) ≤ 0, which

contradicts m′′ (t0) ≥ λ2m (t0) > 0.

Case 2. λ1 6= 0. Suppose on the contrary that there exists t0 ∈ [0, 1] such that m0 = m (t0) =

max
t∈[0,1]

m (t) > 0. Similarly, we can obtain that t0 ∈ (0, 1), m′ (t0) = 0 and m′′ (t0) ≤ 0. Consequently,

0 ≥ m′′ (t0) ≥ λ1

∫ t0
0 m (s) ds+λ2m (t0) , which implies that

∫ t0
0 m (s) ds ≤ 0. So, there exists t1 ∈ [0, t0)

such that m1 = m (t1) = min
t∈[0,t0]

m (t) < 0. It follows from Taylor′s formula that there exists ξ ∈ (t1, t0)

such that

m1 = m (t1) = m (t0) + m′ (t0) (t1 − t0) +
m′′ (ξ)

2
(t1 − t0)

2 .

Noting that m1 < 0, we obtain

m′′ (ξ) =
2 (m1 − m0)

(t1 − t0)
2 <

2m1

(t1 − t0)
2 < 2m1.
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And so,

2m1 > m′′ (ξ) ≥ λ1

∫ ξ

0
m (s) ds + λ2m (ξ) ≥ λ1ξm1 + λ2m1,

which implies that λ1 + λ2 > 2. This contradicts the fact that λ1 + λ2 ≤ 2. �

3 Main results

In the remainder of this paper, we always assume that the following condition is satisfied:

(H) f : [0, 1] × R2 → R is continuous and there exist two nonnegative constants λ1 and λ2 with

λ1 + λ2 ≤ 2 such that

f (t, u1, v1) − f (t, u2, v2) ≥ −λ1 (u1 − u2) − λ2 (v1 − v2)

for t ∈ [0, 1] , u1 ≥ u2 and v1 ≥ v2.

Theorem 3.1 If the BVP (1.1) has a lower solution x and an upper solution y with x′ (t) ≤ y′ (t) for

t ∈ [0, 1] , then the BVP (1.1) has a solution u ∈ C3 [0, 1], which satisfies

x′ (t) ≤ u′ (t) ≤ y′ (t) for t ∈ [0, 1] .

Proof. Let v (t) = u′ (t) . Then the BVP (1.1) is equivalent to the following BVP

{

v′′ (t) + f
(

t,
∫ t

0 v (s) ds, v (t)
)

= 0, t ∈ [0, 1] ,

v (0) = 0, v (1) = αv (η) .
(3.1)

Let E = C [0, 1] be equipped with the norm ‖v‖
∞

= max
t∈[0,1]

|v (t)| and

K = {v ∈ E : v (t) ≥ 0 for t ∈ [0, 1]} .

Then K is a cone in E and (E,K) is an ordered Banach space. Now, if we define operators L : D ⊂

E → E and N : E → E as follows:

Lv = −v′′ (t) + λ1

∫ t

0
v (s) ds + λ2v (t)

and

Nv = f

(

t,

∫ t

0
v (s) ds, v (t)

)

+ λ1

∫ t

0
v (s) ds + λ2v (t) ,

where D = {v ∈ E : v′′ ∈ E, v (0) = 0 and v (1) = αv (η)} , then it is easy to see that the BVP (3.1)

is equivalent to the operator equation

Lv = Nv. (3.2)

Now, we shall show that the operator equation (3.2) is solvable. The proof will be given in several

steps.

Step 1. L : D ⊂ E → E is invertible.
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Suppose h ∈ E. We will find unique v ∈ D such that Lv = h. Since Lv = h is equivalent to the

integral equation

v (t) =

∫ 1

0
G (t, s)

[

h (s) −

(

λ1

∫ s

0
v (r) dr + λ2v (s)

)]

ds, t ∈ [0, 1],

we define a mapping A : E → E by

(Av) (t) =

∫ 1

0
G (t, s)

[

h (s) −

(

λ1

∫ s

0
v (r) dr + λ2v (s)

)]

ds, t ∈ [0, 1].

Noting that M <
1

2
and 0 ≤ λ1 +λ2 ≤ 2, it is easy to verify that A : E → E is a contraction mapping.

And so, there exists unique v ∈ D such that Av = v, which implies that Lv = h. This shows that L

is invertible.

Step 2. L−1 : E → E is continuous.

Assume that {hn}
∞

n=1 ⊂ E, h ∈ E and limn→∞ hn = h. Denote L−1hn = vn and L−1h = v. Then

vn (t) =

∫ 1

0
G (t, s)

[

hn (s) −

(

λ1

∫ s

0
vn (r) dr + λ2vn (s)

)]

ds, t ∈ [0, 1]

and

v (t) =

∫ 1

0
G (t, s)

[

h (s) −

(

λ1

∫ s

0
v (r) dr + λ2v (s)

)]

ds, t ∈ [0, 1].

So,

‖vn − v‖ = max
t∈[0,1]

∣

∣

∣

∣

∫ 1

0
G (t, s)

[

(hn (s) − h (s)) − λ1

∫ s

0
(vn (r) − v (r)) dr − λ2 (vn (s) − v (s))

]

ds

∣

∣

∣

∣

≤ max
t∈[0,1]

∫ 1

0
G (t, s) [‖hn − h‖ + (λ1 + λ2) ‖vn − v‖] ds

≤ M ‖hn − h‖ + 2M ‖vn − v‖ .

This shows that ‖vn − v‖ ≤
M

1 − 2M
‖hn − h‖ , which together with limn→∞ hn = h implies that

limn→∞ vn = v. This indicates that L−1 : E → E is continuous.

Step 3. L−1N : E → E is completely continuous.

Since f and L−1 are continuous, we only need to prove that L−1 : E → E is compact. Let X be a

bounded subset in E. Then there exists a constant C > 0 such that ‖h‖ ≤ C for any h ∈ X. For any

v ∈ L−1 (X), there exists an h ∈ X such that v = L−1h. So,

v (t) =

∫ 1

0
G (t, s)

[

h (s) −

(

λ1

∫ s

0
v (r) dr + λ2v (s)

)]

ds, t ∈ [0, 1].

On the one hand, for any v ∈ L−1 (X), we have

‖v‖ = max
t∈[0,1]

∣

∣

∣

∣

∫ 1

0
G (t, s)

[

h (s) −

(

λ1

∫ s

0
v (r) dr + λ2v (s)

)]

ds

∣

∣

∣

∣

≤ max
t∈[0,1]

∫ 1

0
G (t, s) [‖h‖ + (λ1 + λ2) ‖v‖] ds

≤ M ‖h‖ + 2M ‖v‖ ,

EJQTDE, 2010 No. 26, p. 5



which implies that ‖v‖ ≤
M

1 − 2M
‖h‖ ≤

MC

1 − 2M
. This shows that L−1 (X) is uniformly bounded.

On the other hand, in view of the uniform continuity of G (t, s) , we know that for any ǫ > 0, there

exists a δ > 0 such that for any t1, t2 ∈ [0, 1] and |t1 − t2| < δ, |G (t1, s) − G (t2, s)| <
1 − 2M

C
ǫ for

any s ∈ [0, 1]. Then for any v ∈ L−1 (X) , t1, t2 ∈ [0, 1] and |t1 − t2| < δ, we have

|v (t1) − v (t2)| =

∣

∣

∣

∣

∫ 1

0
(G (t1, s) − G (t2, s))

[

h (s) −

(

λ1

∫ s

0
v (r) dr + λ2v (s)

)]

ds

∣

∣

∣

∣

≤

∫ 1

0
|G (t1, s) − G (t2, s)| [‖h‖ + (λ1 + λ2) ‖v‖] ds

≤
C

1 − 2M

∫ 1

0
|G (t1, s) − G (t2, s)| ds

< ǫ,

which shows that L−1 (X) is equicontinuous.

By the Arzela-Ascoli theorem, we know that L−1 (X) is relatively compact, which implies that

L−1 : E → E is a compact mapping.

Step 4. L−1N : E → E is increasing.

Suppose h1, h2 ∈ E and h1 ≤ h2. Then the condition (H) implies that Nh1 ≤ Nh2. Denote

v1 = L−1Nh1 and v2 = L−1Nh2. Then Lv1 = Nh1 ≤ Nh2 = Lv2. It follows from Lemma 2.3 that

v1 ≤ v2. Therefore, L−1N : E → E is increasing.

Step 5. Let β0 = x′ and γ0 = y′. Then β0 ≤ L−1Nβ0 and L−1Nγ0 ≤ γ0.

Since x is a lower solution of the BVP (1.1), we have

−β′′

0 (t) + λ1

∫ t

0
β0 (s) ds + λ2β0 (t) ≤ (Nβ0) (t) , t ∈ [0, 1], β0 (0) ≤ 0, β0 (1) ≤ αβ0 (η) . (3.3)

Let β∗ = L−1Nβ0. Then Lβ∗ = Nβ0, that is,

−(β∗)′′ (t) + λ1

∫ t

0
β∗ (s) ds + λ2β

∗ (t) = (Nβ0) (t) , t ∈ [0, 1], β∗ (0) = 0, β∗ (1) = αβ∗ (η) . (3.4)

Denote q (t) = β0 (t) − β∗ (t) . In view of (3.3) and (3.4), we know that

−q′′ (t) + λ1

∫ t

0
q (s) ds + λ2q (t) ≤ 0, t ∈ [0, 1], q (0) ≤ 0, q (1) ≤ αq (η) .

By Lemma 2.3, we get q (t) ≤ 0 for t ∈ [0, 1], i.e., β0 ≤ β∗ = L−1Nβ0. Similarly, we can obtain that

L−1Nγ0 ≤ γ0.

It follows from Theorem 1.1 that L−1N : E → E has a fixed point v ∈ [β0, γ0], which solves the BVP

(3.1). Therefore, u (t) =
∫ t

0 v (s) ds, t ∈ [0, 1] is a solution of the BVP (1.1) and x′ (t) ≤ u′ (t) ≤ y′ (t)

for t ∈ [0, 1] . �

Corollary 3.2 (1) If min
t∈[0,1]

f (t, 0, 0) ≥ 0 and there exists c > 0 such that

max

{

f (t, u, v) : (t, u, v) ∈ [0, 1] × [0, c] ×

[

0,
3c

2

]}

≤ 3c,
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then the BVP (1.1) has a nonnegative solution u with ‖u‖ ≤ c. Moreover, if there exists tn ∈ (0, 1]

(n = 1, 2, · · · ) satisfying limn→∞ tn = 0 such that f (tn, 0, 0) > 0 (n = 1, 2, · · · ), then u (t) > 0 for

t ∈ (0, 1] .

(2) If max
t∈[0,1]

f (t, 0, 0) ≤ 0 and there exists c > 0 such that

min

{

f (t, u, v) : (t, u, v) ∈ [0, 1] × [−c, 0] ×

[

−
3c

2
, 0

]}

≥ −3c,

then the BVP (1.1) has a nonpositive solution u with ‖u‖ ≤ c. Moreover, if there exists tn ∈ (0, 1]

(n = 1, 2, · · · ) satisfying limn→∞ tn = 0 such that f (tn, 0, 0) < 0 (n = 1, 2, · · · ), then u (t) < 0 for

t ∈ (0, 1] .

(3) If there exists c > 0 such that

max

{

|f (t, u, v)| : (t, u, v) ∈ [0, 1] × [−c, c] ×

[

−
3c

2
,
3c

2

]}

≤ 3c,

then the BVP (1.1) has a solution u with ‖u‖ ≤ c. Moreover, if f(t, 0, 0) is not identically zero on

[0, 1], then u is nontrivial.

Proof. Since the proof of (2) and (3) is similar, we only prove (1). Let x (t) ≡ 0 and y (t) =

3c

(

t2

2
−

t3

6

)

for t ∈ [0, 1]. Then it is easy to verify that x and y are lower and upper solutions of

the BVP (1.1), respectively. By Theorem 3.1, we know that the BVP (1.1) has a solution u satisfying

x′ (t) ≤ u′ (t) ≤ y′ (t) for t ∈ [0, 1] , which together with x(0) = u(0) = y(0) = 0 implies that u is

nonnegative and ‖u‖ ≤ c.

If there exists tn ∈ (0, 1] (n = 1, 2, · · · ) satisfying limn→∞ tn = 0 such that f (tn, 0, 0) > 0 (n =

1, 2, · · · ), then it is not difficult to prove that for any ǫ ∈ (0, 1) , u(t) is not identically zero on [0, ǫ]. In

view of u(0) = 0 and u′ (t) ≥ 0 for t ∈ [0, 1] , we know that u (t) > 0 for t ∈ (0, 1] . �

4 An example

Consider the following BVP:

{

u′′′(t) + teu(t) + 8
135 (u′(t))3 = 0, t ∈ [0, 1] ,

u (0) = u′ (0) = 0, u′ (1) = 1
4u′

(

1
2

)

.
(4.1)

Since f(t, u, v) = teu+ 8
135v3, it is easy to verify that the condition (H) is fulfilled with λ1 = λ2 = 1.

If we let c = 1, then all the conditions of Corollary 3.2 (1) are satisfied. It follows from Corollary 3.2

(1) that the BVP (4.1) has a positive solution u and ‖u‖ ≤ 1.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,

SIAM Rev. 18 (1976) 620-709.

EJQTDE, 2010 No. 26, p. 7



[2] D. R. Anderson, Green’s function for a third-order generalized right focal problem, J. Math. Anal.

Appl. 288 (2003) 1-14.

[3] Z. J. Du, W. G. Ge, X. J. Lin, Existence of solutions for a class of third-order nonlinear boundary

value problems, J. Math. Anal. Appl. 294 (2004) 104-112.

[4] Y. Feng, Solution and positive solution of a semilinear third-order equation, J. Appl. Math.

Comput. 29 (2009) 153-161.

[5] Y. Feng, S. Liu, Solvability of a third-order two-point boundary value problem, Appl. Math. Lett.

18 (2005) 1034-1040.

[6] M. Gregus, Third Order Linear Differential Equations, in: Math. Appl., Reidel, Dordrecht, 1987.

[7] L. J. Guo, J. P. Sun, Y. H. Zhao, Existence of positive solution for nonlinear third-order three-

point boundary value problem, Nonlinear Anal. 68 (2008) 3151-3158.

[8] B. Hopkins, N. Kosmatov, Third-order boundary value problems with sign-changing solutions,

Nonlinear Anal. 67 (2007) 126-137.

[9] Z. Liu, L. Debnath, S. M. Kang, Existence of monotone positive solutions to a third-order two-

point generalized right focal boundary value problem, Comput. Math. Appl. 55 (2008) 356-367.

[10] R. Ma, Multiplicity results for a third order boundary value problem at resonance, Nonlinear

Anal. 32 (1998) 493-499.

[11] Y. Sun, Positive solutions of singular third-order three-point boundary value problem, J. Math.

Anal. Appl. 306 (2005) 589-603.

[12] Q. Yao, Positive solutions of singular third-order three-point boundary value problems, J. Math.

Anal. Appl. 354 (2009) 207-212.

[13] Q. Yao, Y. Feng, The existence of solution for a third-order two-point boundary value problem,

Appl. Math. Lett. 15 (2002) 227-232.

(Received December 17, 2009)

EJQTDE, 2010 No. 26, p. 8


