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Abstract. This paper deals with the existence and multiplicity of periodic solutions for
the one-dimensional p-Laplacian. The minimization argument and extended Clark’s
theorem are applied to prove our results. The corresponding impulsive problem is
considered as well.
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1 Introduction

Let s > 1 be a real number and

ϕs (τ) =

{
|τ|s−2τ, τ 6= 0,

0, τ = 0.

For p > 1, q > r > 1, and a = a(t), b = b(t) positive continuous T-periodic functions on [0, T],
we consider the one-dimensional p-Laplacian periodic problem{

(ϕp(u′(t)))′ − a(t)ϕq(u(t)) + b(t)ϕr(u(t)) = 0, t ∈ (0, T),

u(0)− u(T) = u′(0)− u′(T) = 0.
(PT)

For p = r = 2 and q = 4, the equation in (PT) is known as the stationary Fisher–
Kolmogorov equation and appears in biomathematical models (see, e.g., [1, 6]). Its periodic
solutions have been studied in [10, 11, 16] using variational approach and critical point the-
orems. In [4], problem (PT) with p = 2 and q > r > 1 is studied using the minimization
argument and Clark’s theorem (see [5, 13, 15] for this assertion). The purpose of our paper is
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to treat the quasilinear case p 6= 2 variationally and to prove existence and multiplicity results
for problem (PT) and associated impulsive problem.

We formulate our result for (PT) as follows.

Theorem 1.1. Let p > 1, q > r > 1, and a = a(t), b = b(t) be positive continuous T-periodic
functions on [0, T]. Then (PT) has at least one solution.

If, in addition, we assume p > r then (PT) has infinitely many pairs of solutions (um,−um),
um 6= 0, with maxt∈[0,T] |um(t)| → 0 as m→ ∞.

Now, we extend our result to the following impulsive problem.
We denote 0 = t0 < t1 < · · · < tl < tl+1 = T and set J =

⋃l
j=0 Jj, where Jj = (tj, tj+1),

j = 0, . . . , l. We study the problem
(ϕp(u′(t)))′ − a(t)ϕq(u(t)) + b(t)ϕr(u(t)) = 0 for t ∈ J ,

u(0)− u(T) = u′(0)− u′(T) = 0,

∆(ϕp(u′(tj))) = gj
(
u(tj)

)
for j = 1, . . . , l,

(QT)

where ∆
(

ϕp
(
u′
(
tj
)))

:= ϕp
(
u′
(
t+j
))
− ϕp

(
u′
(
t−j
))

, u′
(
t±j
)
= limt→t±j

u′(t), and gj : R → R are
given continuous functions.

Recently many authors applied variational methods to prove the existence results for simi-
lar impulsive problems (see [3,8,14,17]). Our impulsive conditions express the sudden changes
in the “velocity” at given times tj ∈ (0, T). These changes depend on the “state” u(tj) via given
continuous functions gj : R→ R.

We formulate the result for impulsive problem (QT) as follows.

Theorem 1.2. Let p > 1, q > r > 1, a = a(t), b = b(t) be positive continuous T-periodic functions
on [0, T] and gj : R → R (j = 1, . . . , l) be continuous functions satisfying for all τ ∈ R and
j = 1, . . . , l, ∫ τ

0
gj (σ) dσ ≥ c (1.1)

with a given constant c ∈ R. Then (QT) has at least one solution.
If, in addition, p > r and for all τ ∈ R and j = 1, . . . , l,∫ τ

0
gj (σ) dσ ≤ 0, (1.2)

and gj are odd functions, then (QT) has infinitely many pairs of solutions (um,−um), um 6= 0, with
maxt∈[0,T] |um(t)| → 0 as m→ ∞.

Remark 1.3. Theorem 1.1 and 1.2 can be extended to equations with more general nonlinear
terms as

(ϕp(u′(t)))′ − f (t, u(t)) + h(t, u(t)) = 0.

Let
F(t, u) =

∫ u

0
f (t, σ)dσ, H(t, u) =

∫ u

0
h (t, σ)dσ.

Suppose that functions f (t, σ) and h(t, σ) are continuous in (t, σ) and there exist positive
constants a1, a2, b1, b2, q > r > 1 such that for all u ∈ R,

a1|u|q ≤ F(t, u) ≤ a2|u|q, b1|u|r ≤ H(t, u) ≤ b2|u|r.

With the same assumptions on p, q, r, the existence parts of Theorem 1.1 and 1.2 are valid. If,
moreover, f (t, σ) and h(t, σ) are odd functions of σ, the multiplicity results are valid, too.
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Remark 1.4. In order to illustrate an application of Theorem 1.2, we present two easy examples
of impulsive functions.

Let l = 1 and g1(σ) =
1

1+σ2 . Then
∫ τ

0 g1 (σ)dσ = arctan τ ≥ −π
2 , i.e., (1.1) holds. However,

g1 is neither odd nor satisfies (1.2). Hence, only the existence part of Theorem 1.2 holds true.
On the other hand, for g1(σ) =

−2σ
(1+σ2)2 , we have −1 ≤

∫ τ
0 g1 (σ)dσ = −τ2

1+τ2 ≤ 0, i.e., (1.1)
and (1.2) hold. Since g1 is odd, also the multiplicity result of Theorem 1.2 holds.

2 Preliminaries

Let p > 1 and

Xp :=
{

u ∈W1,p(0, T) : u(0) = u(T)
}

be equipped with the Sobolev norm

‖u‖ =
(∫ T

0

(
|u′(t)|p + |u(t)|p

)
dt
)1/p

.

Then Xp is a uniformly convex (and hence reflexive) Banach space. Let X∗p be the dual of Xp

and 〈·, ·〉 be the duality pairing between X∗p and Xp.

In our estimates we use the following inequalities.

Lemma 2.1 (Wirtinger and Sobolev inequalities, see [7, 13]). There exist constants K1 > 0 and
K2 > 0 such that for

u ∈W :=
{

W1,p(0, T) :
∫ T

0
u(t)dt = 0

}
,

we have

‖u‖p
Lp :=

∫ T

0
|u(t)|p dt ≤ K1

∫ T

0
|u′(t)|p dt,

‖u‖L∞ := max
t∈[0,T]

|u(t)| ≤ K2‖u‖.

Remark 2.2. By Lemma 2.1, ‖u‖W =
( ∫ T

0 |u
′(t)|p dt

)1/p defines the norm which is equivalent
to ‖u‖ on W.

We say that u ∈ Xp is a weak solution of (PT) if the integral identity

∫ T

0

[
ϕp
(
u′(t)

)
v′(t) + a(t)ϕq (u(t)) v(t)− b(t)ϕr (u(t)) v(t)

]
dt = 0

holds for any function v ∈ Xp.
Let Φs (τ) = |τ|s

s be the antiderivative of ϕs(τ). We introduce the functional I : Xp → R
associated with (PT) as follows:

I (u) :=
∫ T

0

[
Φp
(
u′(t)

)
+ a(t)Φq (u(t))− b(t)Φr (u(t))

]
dt.

Its Gâteaux derivative at u ∈ Xp in the direction v ∈ Xp is given by

〈
I′ (u) , v

〉
=
∫ T

0

[
ϕp
(
u′(t)

)
v′(t) + a(t)ϕq (u(t)) v(t)− b(t)ϕr (u(t)) v(t)

]
dt.
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Hence, critical points of I are in one-to-one correspondence with weak solutions of (PT).

By a classical solution of (PT) we understand a function u ∈ C1[0, T] such that ϕp (u′(·)) ∈
C1(0, T), the equation in (PT) holds pointwise in (0, T) and u(0) = u(T), u′(0) = u′(T).

We say that u ∈ Xp is a weak solution of impulsive problem (QT) if the identity∫ T

0

[
ϕp
(
u′(t)

)
v′(t) + a(t)ϕq (u(t)) v(t)− b(t)ϕr (u(t)) v(t)

]
dt +

l

∑
j=1

gj
(
u(tj)

)
v(tj) = 0

holds for any v ∈ Xp. Let Gj(τ) =
∫ τ

0 gj (σ) dσ, j = 1, . . . , l. Then the functional J : Xp → R
associated with (QT), defined by

J(u) :=
∫ T

0

[
Φp
(
u′(t)

)
+ a(t)Φq (u(t))− b(t)Φr (u(t))

]
dt +

l

∑
j=1

Gj
(
u(tj)

)
,

is Gâteaux differentiable at any u ∈ Xp and its critical points are in one-to-one correspondence
with weak solutions of (QT).

By a classical solution of impulsive problem (QT) we understand a function u ∈ C[0, T] such
that u ∈ C1(Jj), ϕp (u′(·)) ∈ C1(Jj), j = 0, . . . , l, the equation in (QT) holds pointwise in J ,
∆
(

ϕp
(
u′
(
tj
)))

= gj
(
u
(
tj
))

, j = 1, . . . , l, and u(0) = u(T), u′(0) = u′(T).
Note that by a standard regularity argument, every weak solution of (PT) and (QT) is also

a classical solution and vice versa (see, e.g., [8, 16, 17]).

Our approach is variational. The existence part of our result relies on the standard mini-
mization argument (see, e.g., [2, 9, 13]) applied to I and J, respectively. We state it explicitly
below for reader’s convenience.

Theorem 2.3 (Minimization argument). Let E : X → R be weakly sequentially lower semicontinu-
ous functional on a reflexive Banach space X and let E have a bounded minimizing sequence. Then E
has a minimum on X, i.e., there exists u0 ∈ X such that E(u0) = infu∈X E(u). If E is differentiable
then u0 is a critical point of E.

Our multiplicity result in Theorem 1.1 relies on the generalization of Clark’s theorem. See
[15, pp. 53–54] for the original version of Clark’s theorem which has been applied by many
authors (see, e.g., [4, 11, 16]). In our paper we use the extension of Clark’s theorem proved
recently by Liu and Wang [12]. For reader’s convenience, we present this extended version.

Theorem 2.4 ([12, Theorem 1.1]). Let X be a Banach space, E ∈ C1(X, R). Assume that E sat-
isfies the (PS) condition, it is even and bounded from below, and E(0) = 0. If for any k ∈ N,
there exist a k-dimensional subspace Xk of X and ρk > 0 such that supXk∩Sρk

E < 0, where Sρ =

{u ∈ X, ‖u‖X = ρ}, then at least one of the following conclusions holds.

(i) There exists a sequence of critical points {uk} satisfying E(uk) < 0 for all k and ‖uk‖X → 0 as
k→ ∞.

(ii) There exists r > 0 such that for any 0 < α < r there exists a critical point u such that ‖u‖X = α

and E(u) = 0.

In our approach, we use this assertion combined with the following remark.

Remark 2.5. It is already noted in [12], that Theorem 2.4 implies the existence of infinitely
many pairs of critical points (um,−um), um 6= 0, such that E(um) ≤ 0, E(um) → 0, and
‖um‖X → 0 as m→ ∞.
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3 Proofs of main results

We write the functional I as I(u) = I1(u) + I2(u), where

I1(u) =
∫ T

0
Φp
(
u′(t)

)
dt

and

I2(u) =
∫ T

0

[
a(t)Φq (u(t))− b(t)Φr (u(t))

]
dt.

Clearly, the functional I1 is continuous, convex and hence weakly sequentially lower semicon-
tinuous on Xp. Due to the compact embedding Xp ↪→↪→ C[0, T], I2 is weakly sequentially
continuous on Xp. Hence, I is weakly sequentially lower semicontinuous on Xp.

Similar arguments yield that the functional J is also weakly sequentially lower semicon-
tinuous on Xp.

Since a and b are positive continuous functions on [0, T], there exist constants ai, bi, i = 1, 2,
such that

0 < a1 ≤ a(t) ≤ a2, 0 < b1 ≤ b(t) ≤ b2. (3.1)

We start with the proof of the existence of a solution of (PT). The plan is to apply Theo-
rem 2.3 with X = Xp and E = I. For this purpose we show that I is bounded from below on
Xp and has a bounded minimizing sequence.

Consider the function f (τ) = 1
q a1τq − 1

r b2τr, τ ≥ 0. Then

f (τ) ≥ r− q
qr

(
bq

2
ar

1

) 1
q−r

=: c1.

Then we can estimate I from below on Xp as follows:

I(u) ≥
∫ T

0
Φp
(
u′(t)

)
dt +

∫ T

0

(
1
q

a1|u(t)|q −
1
r

b2|u(t)|r
)

dt

≥ 1
p
‖u‖p

W + Tc1.

Hence, infu∈Xp I(u) > −∞.
Let (un) ⊂ Xp be a minimizing sequence, I(un) → infu∈Xp I(u). Then there exists c2 ∈ R

such that

c2 ≥ I(un) ≥
1
p
‖ũn‖p

W + Tc1,

where un = ūn + ũn, ūn ∈ R, ũn ∈W. Hence, (ũn) is a bounded sequence in W. Next we show
that (ūn) is a bounded sequence in R. We proceed via contradiction. Let |ūn| → ∞ as n→ ∞.
Since (ũn) is bounded in W, by Lemma 2.1 there exists c3 > 0 such that ‖ũn‖L∞ ≤ c3. Thus,
for t ∈ [0, T], we have

|un(t)| ≥ |ūn| − |ũn(t)| ≥ |ūn| − c3.

Therefore, |un(t)| → ∞ uniformly in [0, T]. In other words, for any R > 0 there exists N =

N(R) such that for any n > N, we have

|un(t)| ≥ R, t ∈ [0, T].
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The function f = f (τ) is increasing for τ ≥
(

bq
2

ar
1

) 1
q−r

=: d. Then, taking R ≥ d and n > N(R),
we have

c2 ≥ I(un) ≥
∫ T

0

(
1
q

a1|un(t)|q −
1
r

b2|un(t)|r
)

dt

≥
∫ T

0

(
1
q

a1Rq − 1
r

b2Rr
)

dt = T
(

1
q

a1Rq − 1
r

b2Rr
)

.
(3.2)

But
( 1

q a1Rq − 1
r b2Rr) → ∞ as R → ∞ and this contradicts (3.2). Hence (ūn) is a bounded

sequence in R, i.e., (uk) is bounded in Xp. Since I is weakly sequentially lower semicontinuous
on Xp, Theorem 2.3 implies that I has a critical point in Xp. It follows from our discussions
in Section 2 that this critical point is a solution of (PT). This concludes the proof of existence
part of Theorem 1.1.

Similarly we prove the existence part of Theorem 1.2. Indeed, it follows from (1.1) that

J(u) ≥ I(u) + cl ≥ 1
p
‖u‖p

W + Tc1 + cl,

i.e., J is bounded from bellow on Xp. Due to (1.1), the boundedness of minimizing sequence
is proved analogously as in the case of functional I. As mentioned above, J is weakly se-
quentially lower semicontinuous, and so the existence of a solution of (QT) follows again from
Theorem 2.3.

In order to prove the multiplicity result in Theorem 1.1, we need the following lemma.

Lemma 3.1. The functional I satisfies the Palais–Smale condition on Xp.

Proof of Lemma 3.1. Let (un) be a Palais–Smale sequence, i.e., (I(un)) is bounded in R and
I′(un) → 0 in X∗p. From the boundedness of (I(un)), exactly as above, we deduce that (un)

is bounded in Xp. Passing to a subsequence, if necessary, we may assume that there exists
u ∈ Xp such that un ⇀ u weakly in Xp and un → u strongly in C[0, T]. By I′(un) → 0 in X∗p,
we have

0← 〈I′(un)− I′(u), un − u〉

=
∫ T

0

[
ϕp
(
u′n(t)

)
− ϕp

(
u′(t)

) ] (
u′n(t)− u′(t)

)
dt

+
∫ T

0
a(t)

[
ϕq (un(t))− ϕq (u(t))

]
(un(t)− u(t))dt

−
∫ T

0
b(t)

[
ϕr (un(t))− ϕr (u(t))

]
(un(t)− u(t))dt.

(3.3)

The last two terms in (3.3) tend to 0 due to the uniform convergence un → u in C[0, T]. Then,
by (3.3) and Hölder’s inequality, we obtain

0 = lim
n→∞

∫ T

0

[
ϕp
(
u′n(t)

)
− ϕp

(
u′(t)

) ] (
u′n(t)− u′(t)

)
dt

≥ lim
n→∞

{∫ T

0
|u′n(t)|p dt−

∫ T

0
|u′(t)|p dt−

(∫ T

0
|u′n|p dt

) 1
p′
(∫ T

0
|u′|p dt

) 1
p

−
(∫ T

0
|u′n(t)|p dt

) 1
p
(∫ T

0
|u′(t)|p dt

) 1
p′
}
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= lim
n→∞

[(∫ T

0
|u′n|p dt

) 1
p

−
(∫ T

0
|u′|p dt

) 1
p
] [(∫ T

0
|u′n(t)|p dt

) 1
p′

−
(∫ T

0
|u′(t)|p dt

) 1
p′
]

= lim
n→∞

(‖un‖W − ‖u‖W)
(
‖un‖p−1

W − ‖u‖p−1
W

)
≥ 0,

where p′ = p
p−1 is the exponent conjugate to p > 1. This implies ‖un‖W → ‖u‖W . Since also

‖un‖Lp → ‖u‖Lp by un → u in C[0, T], we conclude ‖un‖ → ‖u‖. Hence, the weak convergence
un ⇀ u in Xp and the uniform convexity of Xp yield un → u in Xp.

Now we verify the “geometric” assumptions of Theorem 2.4. Recall that the functional
I is bounded from below on Xp, even and I(0) = 0. Let k ∈ N be arbitrary and Xk be k-
dimensional subspace of Xp spanned by the basis elements {φ1, . . . , φm} ⊂ W ⊂ Xp. The
separability of Xp allows for such construction. We use the fact that all norms ‖ · ‖W , ‖ · ‖Lq

and ‖ · ‖Lr are equivalent on Xk, i.e., there exist positive constants c4, . . . , c7 such that for all
u ∈ Xk,

c4 ‖u‖Lq ≤ ‖u‖W ≤ c5 ‖u‖Lq and c6 ‖u‖Lr ≤ ‖u‖W ≤ c7 ‖u‖Lr . (3.4)

Set

S k
ρ :=

{
u = α1φ1 + · · ·+ αkφk :

k

∑
j=1
|αj|p = ρp

}
⊂ Xk.

S k
ρ is clearly homeomorphic to the unit sphere S k−1 ⊂ Rk. Then for u = ∑k

j=1 αjφj, the

expression ‖u‖Xk =
(

∑k
j=1 |αj|p

)1/p defines also a norm on Xk equivalent to ‖ · ‖W , i.e., there
exist positive constants c8 and c9 such that for all u ∈ Xk,

c8 ‖u‖Xk ≤ ‖u‖W ≤ c9 ‖u‖Xk . (3.5)

We show that there is (sufficiently small) ρ > 0 such that

sup
u∈Sk

ρ

I(u) < 0. (3.6)

Indeed, due to (3.1) and (3.4), for any u ∈ S k
ρ , we have

I(u) =
∫ T

0

(
1
p
|u′(t)|p + 1

q
a(t)|u(t)|q − 1

r
b(t)|u(t)|r

)
dt

≤ 1
p
‖u‖p

W +
a2

q
‖u‖q

Lq −
b1

r
‖u‖r

Lr

≤ 1
p
‖u‖p

W +
a2

qcq
4
‖u‖q

W −
b1

rcr
7
‖u‖r

W

= ‖u‖r
W

[
1
p
‖u‖p−r

W +
a2

qcq
4
‖u‖q−r

W − b1

rcr
7

]
.

(3.7)

Recall our assumptions 1 < r < p and r < q. Then (3.6) follows from (3.5) and (3.7). Due
to Remark 2.2 and the fact Xk ⊂ W, there exists ρk > 0 such that supXk∩Sρk

I(u) < 0, where
Sρ = {u ∈ Xp, ‖u‖ = ρ}.

We have verified all assumptions of Theorem 2.4. Taking into account Remark 2.5, the
multiplicity result in Theorem 1.1 follows.

Similarly, we proceed to prove the multiplicity result in Theorem 1.2. Indeed, since every gj
(j = 1, . . . , l) is odd, J is even and the assumptions (1.1) and (1.2) guarantee that the assertion of
Lemma 3.1 holds also for the functional J. The assumption (1.2) also guarantees that analogue
of (3.7) holds also for J. Thus the multiplicity result for (QT) follows again from Theorem 2.4.
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