A PRIORI ESTIMATE FOR DISCONTINUOUS SOLUTIONS OF A SECOND ORDER LINEAR HYPERBOLIC PROBLEM

S. S. Akhiev
(Azerbaijan State Pedagogical University)

Abstract

In the paper we investigate a non-local contact-boundary value problem for a system of second order hyperbolic equations with discontinuous solutions. Under some conditions on input data a priori estimate is obtained for the solution of this problem.

In the paper we consider the following hyperbolic system:

$$
\begin{gather*}
(L z)(t, x) \equiv z_{t x}(t, x)+z(t, x) A_{0,0}(t, x)+ \\
+z_{t}(t, x) A_{1,0}(t, x)+z_{x}(t, x) A_{0,1}(t, x)=\varphi(t, x) \tag{1}\\
(t, x) \in G=G_{0} \cup G_{1}, G_{0}=(0, T) \times(0, \alpha), G_{1}=(0, T) \times(\alpha, l),
\end{gather*}
$$

where $z(t, x)=\left(z_{1}(t, x), \ldots, z_{n}(t, x)\right)$ is the desired vector-function; $A_{i, j}(t, x)$, $i, j=0,1$ are the given $n \times n$-matrices on $G ; \varphi(t, x)$ is the given n-dimensional vector-function on G ; α is a fixed point from $(0, l)$.

For the system (1) we give the following non-local contact boundary conditions

$$
\begin{gather*}
\left(L_{k} z\right)(t) \equiv z(t, 0) \beta_{0, k}(t)+z(t, \alpha-0) \beta_{1, k}(t)+z(t, \alpha+0) \beta_{2, k}(t)+ \\
+z(t, l) \beta_{3, k}(t)+z_{t}(t, 0) g_{0, k}(t)+z_{t}(t, \alpha-0) g_{1, k}(t)+z_{t}(t, \alpha+0) g_{2, k}(t)+ \\
+z_{t}(t, l) g_{3, k}(t)=\varphi_{k}(t), \quad t \in(0, T), \quad k=1,2 ; \tag{2}\\
\left(L_{3} z\right)(x) \equiv z_{x}(0, x)=\varphi_{3}(x), x \in(0, l) ; \tag{3}\\
L_{0} z \equiv z(0,0)=\varphi_{0} . \tag{4}
\end{gather*}
$$

Here: $\beta_{i, k}(t), g_{i, k}(t), i=0,1,2,3 ; k=1,2$ are the given $n \times n$ matrices on $(0, T) ; \varphi_{k}(t), k=1,2$ are the given n-dimensional vector-functions on $(0, T)$; $\varphi_{3}(x)$ is the given n-dimensional vector-function on $(0, l) ; \varphi_{0}$ is the given constant n-dimensional vector.

We assume that the following conditions are satisfied:

1) The matrices $A_{i, j}(t, x)$ are measurable on $G, A_{0,0} \in \mathcal{L}_{p, n \times n}(G)$; there exit the functions $A_{1,0}^{0} \in \mathcal{L}_{p}(0, l)$ and $A_{0,1}^{0} \in \mathcal{L}_{p}(0, T)$, such that $\left\|A_{1,0}(t, x)\right\| \leq$ $A_{1,0}^{0}(x),\left\|A_{0,1}(t, x)\right\| \leq A_{0,1}^{0}(t)$ almost everywhere on G, where $\mathcal{L}_{p, n \times n}(G)$, $1 \leq p \leq \infty$ is a Banach space of $n \times n$ matrices $g=\left(g_{i j}\right)$ with elements $g_{i j} \in \mathcal{L}_{p}(G)$, wherein the norm is determined by the equality $\|g\|_{\mathcal{L}_{p, n \times n}(G)}=$ $\left\|g^{0}\right\|_{\mathcal{L}_{p}(G)}$, moreover $g^{0}=\|g\| \equiv \sum_{i, j=1}^{n}\left|g_{i j}\right|$ is the norm of the matrix $g ;$
2) $\beta_{i, k} \in \mathcal{L}_{p, n \times n}(0, T)$ and $g_{i, k} \in \mathcal{L}_{\infty, n \times n}(0, T)$;
3) $\varphi \in \mathcal{L}_{p, n}(G), \varphi_{k} \in \mathcal{L}_{p, n}(0, T), \varphi_{3} \in \mathcal{L}_{p, n}(0, l)$, where $\mathcal{L}_{p, n}(G), 1 \leq p \leq$ ∞, is a space of n-dimensional vector-functions $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ with elements from $\mathcal{L}_{p}(G) ;$ norm of $\varphi \in \mathcal{L}_{p, n}(G)$ is defined as $\|\varphi\|_{\mathcal{L}_{p, n}(G)}=\left\|\varphi^{0}\right\|_{\mathcal{L}_{p}(G)}$ and $\varphi^{0}(t, x)=\|\varphi(t, x)\|=\sum_{i=1}^{n}\left|\varphi_{i}(t, x)\right|$ is norm of n-vectors $\varphi(t, x) \in R^{n}$ for fixed $(t, x) \in G . R^{n}$ is the space of all vectors $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$ with norm $\|\rho\|=$ $\sum_{i=1}^{n}\left|\rho_{i}\right|$.

Non-local boundary value problems for integro-differential equations with continuous coefficients were studied in the paper [2].

We'll consider the solution of problem (1)-(4) in the space $\widehat{W}_{p, n}(G), 1 \leq$ $p \leq \infty$, [4] (p. 52) of all n-dimensional vector-functions $z(t, x)$, which on each domain $G_{k}(k=0,1)$ belong to $W_{p, n}\left(G_{k}\right)$ and are continuous at the point $(0, \alpha)$. Here $W_{p, n}\left(G_{k}\right)$ is a space of all n-dimensional vector-functions $z \in$ $\mathcal{L}_{p, n}\left(G_{k}\right)$, possessing generalized in S.L.Sobolev's sense derivatives z_{t}, z_{x} and $z_{t x}$ from $\mathcal{L}_{p, n}\left(G_{k}\right), k=0,1$. We'll define the norm in the space $\widehat{W}_{p, n}(G)$ by the equality [4] (p. 54)

$$
\|z\|_{\widehat{W}_{p, n}(G)}=\sum_{k=0}^{1}\|z\|_{W_{p, n}\left(G_{k}\right)},
$$

where

$$
\|z\|_{W_{p, n}\left(G_{k}\right)}=\|z\|_{\mathcal{L}_{p, n}\left(G_{k}\right)}+\left\|z_{t}\right\|_{\mathcal{L}_{p, n}\left(G_{k}\right)}+\left\|z_{x}\right\|_{\mathcal{L}_{p, n}\left(G_{k}\right)}+\left\|z_{t x}\right\|_{\mathcal{L}_{p, n}\left(G_{k}\right)}
$$

Since the operator $N z=\left(z(0,0), z_{t}(t, 0), z_{t}(t, \alpha+0), z_{x}(0, x), z_{t x}(t, x)\right)$, brings about isomorphism from $\widehat{W}_{p, n}(G)$ to $\widehat{Q}_{p, n}=R^{n} \times \mathcal{L}_{p, n}(0, T) \times \mathcal{L}_{p, n}(0, T) \times$ $\mathcal{L}_{p, n}(0, l) \times \mathcal{L}_{p, n}(G),[1]$, we can reduce problem (1)-(4) to the following operator equation

$$
\widehat{L} z=\widehat{\varphi},
$$

where $\widehat{L}=\left(L_{0}, L_{1}, L_{2}, L_{3}, L\right), z \in \widehat{W}_{p, n}(G)$ is desired solution and $\widehat{\varphi}=\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi\right) \in \widehat{Q}_{p, n}$ is the given element. This equation is equiva-
lent to the system of integro-algebraic equations with respect to elements of five components

$$
\begin{gathered}
\widehat{b}=\left(b_{0}, b_{1}(t), b_{2}(t), b_{3}(x), b(t, x)\right) \equiv \\
\equiv\left(z(0,0), z_{t}(t, 0), z_{t}(t, a+0), z_{x}(0, x), z_{t x}(t, x)\right)
\end{gathered}
$$

of the space $\widehat{Q}_{p, n}$:

$$
\begin{align*}
& b(t, x)+\int_{0}^{t} \int_{0}^{x} b(\tau, \zeta) q_{1}(\zeta, x) A_{0,0}(t, x) d \tau d \zeta+ \\
& +\int_{0}^{x} b(t, \zeta) q_{1}(\zeta, x) A_{1,0}(t, x) d \zeta+\int_{0}^{t} b(\tau, x) A_{0,1}(t, x) d \tau+ \\
& +\left(\int_{0}^{t} b_{1}(\tau) \theta(\alpha-x) d \tau+\int_{0}^{t} b_{2}(\tau) \theta(x-\alpha) d \tau\right) A_{0,0}(t, x)+ \\
& +\left(b_{1}(t) \theta(\alpha-x)+b_{2}(t) \theta(x-\alpha)\right) A_{1,0}(t, x)+b_{3}(x) A_{0,1}(t, x)+ \\
& +\int_{0}^{x} b_{3}(\zeta) A_{0,0}(t, x) d \zeta+b_{0} A_{0,0}(t, x)=\varphi(t, x), \quad(t, x) \in G \tag{5}\\
& \quad b_{1}(t)\left(g_{0, k}(t)+g_{1, k}(t)\right)+b_{2}(t)\left(g_{2, k}(t)+g_{3, k}(t)\right)+ \\
& \quad+\int_{0}^{t} b_{1}(\tau)\left(\beta_{0, k}(t)+\beta_{1, k}(t)\right) d \tau+ \\
& +\int_{0}^{t} b_{2}(\tau)\left(\beta_{2, k}(t)+\beta_{3, k}(t)\right) d \tau=\varphi_{k}^{0}(t), \quad t \in(0, T), \quad k=1,2 \tag{6}
\end{align*}
$$

where

$$
\begin{gather*}
\varphi_{k}^{0}(t)=\varphi_{k}(t)-b_{0}\left(\beta_{0, k}(t)+\beta_{1, k}(t)+\beta_{2, k}(t)+\beta_{3, k}(t)\right)- \\
-\int_{0}^{\alpha} b_{3}(\zeta)\left(\beta_{1, k}(t)+\beta_{2, k}(t)\right) d \zeta-\int_{0}^{l} b_{3}(\zeta) \beta_{3, k}(t) d \zeta-\varphi_{k, b}(t) \\
\varphi_{k, b}(t)=\int_{0}^{t} \int_{0}^{\alpha} b(\tau, \zeta) \beta_{1, k}(t) d \tau d \zeta+\int_{0}^{t} \int_{\alpha}^{l} b(\tau, \zeta) \beta_{3, k}(t) d \tau d \zeta+ \\
+\int_{0}^{\alpha} b(t, \zeta) g_{1, k}(t) d \zeta+\int_{\alpha}^{l} b(t, \zeta) g_{3, k}(t) d \zeta, t \in(0, T) \tag{*}\\
b_{3}(x)=\varphi_{3}(x), x \in(0, l) \tag{7}\\
b_{0}=\varphi_{0} \tag{8}
\end{gather*}
$$

where $\theta(y)$ is one -dimensional Heaviside function on $R=R^{1}$ and $q_{1}(\zeta, x)=$ $\theta(\zeta-\alpha) \theta(x-\alpha)+\theta(\alpha-x)$.

If we succeed to estimate the components $b_{0}, b_{1}(t), b_{2}(t), b_{3}(x), b(t, x)$ of the vector \widehat{b}, on the basis of [1] we get a priori estimate for the solution $z \in$ $\widehat{W}_{p, n}(G)$ of problem (1)-(4)

$$
\begin{gather*}
z(t, x)=b_{0}+\theta(\alpha-x) \int_{0}^{T} b_{1}(\tau) \theta(t-\tau) d \tau+ \\
+\theta(x-\alpha) \int_{0}^{T} b_{2}(\tau) \theta(t-\tau) d \tau+\int_{0}^{l} b_{3}(\zeta) \theta(x-\zeta) d \zeta+ \\
+\int_{G} \int \theta(t-\tau) \theta(x-\zeta) q_{1}(\zeta, x) b(\tau, \zeta) d \tau d \zeta,(t, x) \in G \tag{9}
\end{gather*}
$$

The components $b_{1}(t), b_{2}(t), b(t, x)$ are determined from the system of equations (5),(6), since the components $b_{0}, b_{3}(x)$ are explicitly given by conditions (7), (8), therefore, it remains to estimate only $b_{1}(t), b_{2}(t), b(t, x)$.

It is obvious that by means of the matrix

$$
\Delta(t)=\left(\begin{array}{cc}
g_{0,1}(t)+g_{1,1}(t) & g_{0,2}(t)+g_{1,2}(t) \\
g_{2,1}(t)+g_{3,1}(t) & g_{2,2}(t)+g_{3,2}(t)
\end{array}\right)
$$

we can write the equality (6) in the compact form

$$
\begin{equation*}
\left(b_{1}(t), b_{2}(t)\right) \Delta(t)+\int_{0}^{t}\left(b_{1}(\tau), b_{2}(\tau)\right) B(t) d \tau=\left(\varphi_{1}^{0}(t), \varphi_{2}^{0}(t)\right), t \in(0, T) \tag{10}
\end{equation*}
$$

where

$$
B(t)=\left(\begin{array}{ll}
\beta_{0,1}(t)+\beta_{1,1}(t) & \beta_{0,2}(t)+\beta_{1,2}(t) \\
\beta_{2,1}(t)+\beta_{3,1}(t) & \beta_{2,2}(t)+\beta_{3,2}(t)
\end{array}\right)
$$

Assume that almost for all $t \in(0, T)$ the matrix $\Delta(t)$ is invertible and it holds

$$
\begin{equation*}
\|\Delta(t)\| \leq M_{1},\left\|\Delta^{-1}(t)\right\| \leq M_{1} \tag{11}
\end{equation*}
$$

in the sense of almost everywhere on $(0, T)$. Then, from (10) we have

$$
\begin{equation*}
\left(b_{1}(t), b_{2}(t)\right)+\int_{0}^{t}\left(b_{1}(\tau), b_{2}(\tau)\right) B_{1}(t) d \tau=\left(\varphi_{1}^{0}(t), \varphi_{2}^{0}(t)\right) \Delta^{-1}(t), t \in(0, T) \tag{12}
\end{equation*}
$$

where

$$
B_{1}(t)=B(t) \Delta^{-1}(t)
$$

Passing in (12) to the vector norm we have

$$
\begin{equation*}
\alpha(t) \leq \int_{0}^{t} \alpha(\tau) l(t) d \tau+S^{0}(t), t \in(0, T) \tag{13}
\end{equation*}
$$

where

$$
\begin{gathered}
\alpha(t)=\left\|b_{1}(t)\right\|+\left\|b_{2}(t)\right\| \\
l(t)=\left\|B_{1}(t)\right\| \leq M_{1}\|B(t)\| \\
S^{0}(t)=\left\|\left(\varphi_{1}^{0}(t), \varphi_{2}^{0}(t)\right) \Delta^{-1}(t)\right\| \leq M_{1}\left(\left\|\varphi_{1}^{0}(t)\right\|+\left\|\varphi_{2}^{0}(t)\right\|\right) ;
\end{gathered}
$$

here and below M_{i} are constants independent on $\hat{\varphi}=\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi\right)$.
Let the point $\tau \in(0, T)$ be fixed and $t \in(0, \tau)$. Then integrating (13) with respect to t on $(0, \tau)$ we get

$$
\begin{equation*}
R(\tau) \leq \int_{0}^{\tau} R(t) l(t) d t+S^{1}(\tau), \tau \in(0, T) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
S^{1}(\tau) & =\int_{0}^{\tau} S^{0}(t) d t \\
R(\tau) & =\int_{0}^{\tau} \alpha(t) d t
\end{aligned}
$$

We write the inequality (14) in the form

$$
\begin{equation*}
R(\tau) \leq R^{1}(\tau)+S^{1}(\tau)+\varepsilon \tag{15}
\end{equation*}
$$

where $\varepsilon>0$ is an arbitrary number and

$$
R^{1}(\tau)=\int_{0}^{\tau} R(t) l(t) d t
$$

Hence

$$
\frac{R(\tau)}{R^{1}(\tau)+S^{1}(\tau)+\varepsilon} \leq 1, \tau \in(0, T)
$$

Therefore

$$
\frac{R(\tau) l(\tau)}{R^{1}(\tau)+S^{1}(\tau)+\varepsilon} \leq l(\tau), \tau \in(0, T)
$$

or

$$
\begin{equation*}
\frac{\dot{R}^{1}(\tau)}{R^{1}(\tau)+S^{1}(\tau)+\varepsilon} \leq l(\tau), \tau \in(0, T) \tag{16}
\end{equation*}
$$

where the sign of point over some function of one argument means its first derivative.

The function $S^{1}(\tau)$ is a monotonically increasing function. Therefore, if t is fixed and $\tau \in(0, t)$, then $S^{1}(\tau) \leq S^{1}(t)$. Therefore from (16) we have

$$
\frac{\dot{R}^{1}(\tau)}{R^{1}(\tau)+S^{1}(t)+\varepsilon} \leq \frac{\dot{R}^{1}(\tau)}{R^{1}(\tau)+S^{1}(\tau)+\varepsilon} \leq l(\tau), \tau \in(0, t)
$$

integrating it with respect to τ on $(0, t)$ we get

$$
\ln \frac{R^{1}(t)+S^{1}(t)+\varepsilon}{R^{1}(0)+S^{1}(t)+\varepsilon} \leq \int_{0}^{t} l(\tau) d \tau
$$

or

$$
R^{1}(t)+S^{1}(t)+\varepsilon \leq\left(S^{1}(t)+\varepsilon\right) e^{\int_{0}^{t} l(\tau) d \tau} .
$$

Taking this into account in (15) we get

$$
\begin{equation*}
R(t) \leq S^{1}(t) e^{\int_{0}^{t} l(\tau) d \tau} \tag{17}
\end{equation*}
$$

Writing (13) in the form

$$
\alpha(t) \leq R(t) l(t)+S^{0}(t)
$$

and using (17) we get

$$
\begin{equation*}
\alpha(t) \leq l(t) e^{\int_{0}^{t} l(\tau) d \tau} \int_{0}^{t} S^{0}(\tau) d \tau+S^{0}(t) \tag{18}
\end{equation*}
$$

Thus, we have proved
Lemma 1. If, for some non-negative functions $\alpha, l, S^{0} \in \mathcal{L}_{p}(0, T)$, the inequality (13) holds, then the function $\alpha(t)$ also satisfies the condition (18).

Taking into account the expression of the function $l(t)$ in (18) we get

$$
\begin{equation*}
\alpha(t) \leq M_{2}\|B(t)\| \int_{0}^{t} S^{0}(\tau) d \tau+S^{0}(t), t \in(0, T) \tag{19}
\end{equation*}
$$

where

$$
M_{2}=M_{1} \exp \left(M_{1} \int_{0}^{T}\|B(\tau)\| d \tau\right)
$$

Notice that from the conditions imposed on the matrix functions $\beta_{i, k}(t)$ it follows that $\|B(\cdot)\| \in \mathcal{L}_{p}(0, T)$. Therefore $M_{2}<+\infty$.

Now by means of this lemma for the sum $\alpha(t)=\left\|b_{1}(t)\right\|+\left\|b_{2}(t)\right\|$ we have the estimate

$$
\alpha(t)=\left\|b_{1}(t)\right\|+\left\|b_{2}(t)\right\| \leq M_{2} \int_{0}^{t} S^{0}(\tau) d \tau\|B(t)\|+S^{0}(t), t \in(0, T)
$$

Therefore, using the Hölder inequality, we obtain

$$
\left\|b_{k}(t)\right\| \leq S^{0}(t)+M_{2} T^{\frac{1}{q}}\left\|S^{0}\right\|_{\mathcal{L}_{p}(0, T)}\|B(t)\|, t \in(0, T), k=1,2
$$

here and below $q=p /(p-1)$ denotes the number conjugate to p.

Here, passing to the norm, by Minkowsky inequality we get

$$
\begin{gathered}
\left\|b_{k}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq\left\|S^{0}\right\|_{\mathcal{L}_{p,(0, T)}}\left(1+M_{2} T^{\frac{1}{q}}\|B\|_{\mathcal{L}_{p, 2 n \times 2 n}(0, T)}\right)= \\
=M_{3}\left\|S^{0}\right\|_{\mathcal{L}_{p}(0, T)}, \quad k=1,2 \\
M_{3}=1+M_{2} T^{\frac{1}{q}}\|B\|_{\mathcal{L}_{p, 2 n \times 2 n}(0, T)}
\end{gathered}
$$

Obviously

$$
\left\|S^{0}\right\|_{\mathcal{L}_{p}(0, T)} \leq M_{1}\left(\left\|\varphi_{1}^{0}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|\varphi_{2}^{0}\right\|_{\mathcal{L}_{p, n}(0, T)}\right) .
$$

Therefore

$$
\begin{equation*}
\left\|b_{k}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq M_{4}\left(\left\|\varphi_{1}^{0}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|\varphi_{2}^{0}\right\|_{\mathcal{L}_{p, n}(0, T)}\right), k=1,2 \tag{20}
\end{equation*}
$$

where $M_{4}=M_{3} M_{1}$.
Now, let's estimate the norms $\left\|\varphi_{k}^{0}\right\|_{\mathcal{L}_{p, n}(0, T)}, k=1,2$. Obviously if the vector $z \in \widehat{W}_{p, n}(G)$ satisfies the conditions (1)-(4), then its independent elements $\hat{b}=\left(z(0,0), z_{t}(t, 0), z_{t}(t, \alpha+0), z_{x}(0, x), z_{t x}(t, x)\right)=\left(b_{0}, b_{1}(t), b_{2}(t), b_{3}(x), b(t, x)\right)$ satisfy the equalities (5)-(8) and therewith

$$
\begin{gather*}
\left\|b_{0}\right\| \leq\|\hat{\varphi}\|_{\hat{Q}_{p, n}} \\
\left\|b_{3}\right\|_{\mathcal{L}_{p, n}(0, l)} \leq\|\hat{\varphi}\|_{\hat{Q}_{p, n}} \tag{21}
\end{gather*}
$$

where

$$
\begin{aligned}
& \|\hat{\varphi}\|_{\hat{Q}_{p, n}}=\|\hat{L} z\|_{\hat{W}_{p, n}(G)}=\left\|\hat{L}\left(N^{-1}(\hat{b})\right)\right\|_{\hat{Q}_{p, n}}= \\
& \quad=\left\|\varphi_{0}\right\|+\left\|\varphi_{1}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|\varphi_{2}\right\|_{\mathcal{L}_{p, n}(0, T)}+ \\
& \quad+\left\|\varphi_{3}\right\|_{\mathcal{L}_{p, n}(0, l)}+\|\varphi\|_{\mathcal{L}_{p, n}(G)}, z=N^{-1} \hat{b} .
\end{aligned}
$$

Therefore, from the expressions $\left(6^{*}\right)$ of the vectors $\varphi_{k}^{0}(t)$ we have

$$
\begin{gathered}
\left\|\varphi_{k}^{0}(t)\right\| \leq\left\|\varphi_{k}(t)\right\|+\left\|b_{0}\right\|\left(\left\|\beta_{0, k}(t)\right\|+\left\|\beta_{1, k}(t)\right\|+\right. \\
\left.+\left\|\beta_{2, k}(t)\right\|+\left\|\beta_{3, k}(t)\right\|\right)+\left\|b_{3}\right\|_{\mathcal{L}_{p, n}(0, l)} \alpha^{\frac{1}{q}} \times \\
\times\left(\left\|\beta_{1, k}(t)\right\|+\left\|\beta_{2, k}(t)\right\|\right)+l^{\frac{1}{q}}\left\|b_{3}\right\|_{\mathcal{L}_{p, n}(0, l)}\left\|\beta_{3, k}(t)\right\|+\left\|\varphi_{k, b}(t)\right\|, k=1,2 .
\end{gathered}
$$

Hence by means of the Minkowsky inequality allowing for (20) we have

$$
\begin{gathered}
\left\|\varphi_{k}^{0}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq\left\|\varphi_{k}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|b_{0}\right\| \sum_{i=0}^{3}\left\|\beta_{i, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+ \\
+\left\|b_{3}\right\|_{\mathcal{L}_{p, n}(0, l)} \alpha^{\frac{1}{q}} \sum_{i=1}^{2}\left\|\beta_{i, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+ \\
+\left\|b_{3}\right\|_{\mathcal{L}_{p, n}(0, l)}{ }^{\frac{1}{q}}\left\|\beta_{3, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+ \\
+\left\|\varphi_{k, b}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq\|\hat{\varphi}\|_{\hat{Q}_{p, n}}\left(1+\sum_{i=0}^{3}\left\|\beta_{i, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+\right. \\
\left.+\alpha^{\frac{1}{q}} \sum_{i=1}^{2}\left\|\beta_{i, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+l^{\frac{1}{q}}\left\|\beta_{3, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}\right)+\left\|\varphi_{k, b}\right\|_{\mathcal{L}_{p, n}(0, T)}
\end{gathered}
$$

or

$$
\begin{equation*}
\left\|\varphi_{k}^{0}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq M_{5}\|\hat{\varphi}\|_{\hat{Q}_{p, n}}+\left\|\varphi_{k, b}\right\|_{\mathcal{L}_{p, n}(0, T)}, \tag{22}
\end{equation*}
$$

where

$$
\begin{gathered}
M_{5}=1+\sum_{i=0}^{3}\left\|\beta_{i, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+\alpha^{\frac{1}{q}} \sum_{i=1}^{2}\left\|\beta_{i, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+ \\
+l^{\frac{1}{q}}\left\|\beta_{3, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)} .
\end{gathered}
$$

Now let's estimate the norm of the vector $\varphi_{k, b}(t)$. Obviously

$$
\begin{aligned}
& \left\|\varphi_{k, b}(t)\right\| \leq(T \alpha)^{\frac{1}{q}}\left\|\beta_{1, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}\|b\|_{\mathcal{L}_{p, n}(G)}+ \\
& \quad+(T(l-\alpha))^{\frac{1}{q}}\left\|\beta_{3, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}\|b\|_{\mathcal{L}_{p, n}(G)}+ \\
& \quad+\alpha^{\frac{1}{q}}\|b(t, \cdot)\|_{\mathcal{L}_{p, n}(0, l)}\left\|g_{1, k}\right\|_{\mathcal{L}_{\infty, n \times n}(0, T)}+ \\
& +(l-\alpha)^{\frac{1}{q}}\|b(t, \cdot)\|_{\mathcal{L}_{p, n}(0, l)}\left\|g_{3, k}\right\|_{\mathcal{L}_{\infty, n \times n}(0, T)} .
\end{aligned}
$$

Therefore

$$
\begin{gather*}
\left\|\varphi_{k, b}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq c^{k}\|b\|_{\mathcal{L}_{p, n}(G)}, k=1,2, \tag{23}\\
c^{k}=(T \alpha)^{\frac{1}{q}}\left\|\beta_{1, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+(T(l-\alpha))^{\frac{1}{q}}\left\|\beta_{3, k}\right\|_{\mathcal{L}_{p, n \times n}(0, T)}+ \\
+\alpha^{\frac{1}{q}}\left\|g_{1, k}\right\|_{\mathcal{L}_{\infty, n \times n}(0, T)}+(l-\alpha)^{\frac{1}{q}}\left\|g_{3, k}\right\|_{\mathcal{L}_{\infty, n \times n}(0, T)} . \tag{24}
\end{gather*}
$$

Then using (23) we get from (22)

$$
\begin{equation*}
\left\|\varphi_{k}^{0}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq M_{5}\|\hat{\varphi}\|_{\hat{Q}_{p, n}}+c^{k}\|b\|_{\mathcal{L}_{p, n}(G)}, k=1,2 . \tag{25}
\end{equation*}
$$

Now, equation (5) is written in the form

$$
\begin{equation*}
(\Omega b)(t, x)=\varphi^{0}(t, x),(t, x) \in G \tag{26}
\end{equation*}
$$

where

$$
\begin{gather*}
(\Omega b)(t, x)=b(t, x)+\int_{0}^{t} \int_{0}^{x} b(\tau, \zeta) q_{1}(\zeta, x) A_{0,0}(t, x) d \tau d \zeta+ \\
+\int_{0}^{x} b(t, \zeta) q_{1}(\zeta, x) A_{1,0}(t, x) d \zeta+\int_{0}^{t} b(\tau, x) A_{0,1}(t, x) d \tau \tag{27}\\
\varphi^{0}(t, x)=\varphi^{0,0}(t, x)+\varphi^{0,1}(t, x) ; \\
\varphi^{0,0}(t, x)=\varphi(t, x)-b_{3}(x) A_{0,1}(t, x)- \\
-b_{0} A_{0,0}(t, x)-\int_{0}^{x} b_{3}(\zeta) A_{0,0}(t, x) d \zeta \\
\varphi^{0,1}(t, x)=-\left(\int_{0}^{t} b_{1}(\tau) \theta(\alpha-x) d \tau+\int_{0}^{t} b_{2}(\tau) \theta(x-\alpha) d \tau\right) A_{0,0}(t, x)- \\
-\left(b_{1}(t) \theta(\alpha-x)+b_{2}(t) \theta(x-\alpha)\right) A_{1,0}(t, x)
\end{gather*}
$$

In the expression of the vector $\varphi^{0,0}(t, x)$ there are the vectors $\varphi(t, x), b_{3}(x), b_{0}$ and the given matrices $A_{0,1}(t, x), A_{0,0}(t, x)$. Above we have estimated the norms of the vectors $\varphi(t, x), b_{3}(x), b_{0}$ by $\|\hat{\varphi}\|_{\hat{Q}_{p, n}}$. Therefore, from the expression of the vector $\varphi^{0,0}(t, x)$ by means of the Holder and Minkowsky inequalities we can easily get the estimate

$$
\begin{equation*}
\left\|\varphi^{0,0}\right\|_{\mathcal{L}_{p, n}(G)} \leq M_{6}\|\hat{\varphi}\|_{\hat{Q}_{p, n}} \tag{28}
\end{equation*}
$$

where $M_{6}>0$ is a suitable constant.
Further, from the expression of the vector $\varphi^{0,1}(t, x)$ it is seen that

$$
\begin{gathered}
\left\|\varphi^{0,1}(t, x)\right\| \leq\left(T^{\frac{1}{q}}\left\|b_{1}\right\|_{\mathcal{L}_{p, n}(0, T)} \theta(\alpha-x)+\right. \\
\left.+T^{\frac{1}{q}}\left\|b_{2}\right\|_{\mathcal{L}_{p, n}(0, T)} \theta(x-\alpha)\right)\left\|A_{0,0}(t, x)\right\|+ \\
+\left(\left\|b_{1}\right\|_{\mathcal{L}_{p, n}(0, T)} \theta(\alpha-x)+\left\|b_{2}\right\|_{\mathcal{L}_{p, n}(0, T)} \theta(x-\alpha)\right) A_{1,0}^{0}(x) .
\end{gathered}
$$

Hence we get

$$
\left\|\varphi^{0,1}\right\|_{\mathcal{L}_{p, n}(G)} \leq\left(T^{\frac{1}{q}}\left\|A_{0,0}\right\|_{\mathcal{L}_{p, n \times n}(G)}+\right.
$$

$$
\begin{gather*}
\left.+\left\|A_{1,0}^{0}\right\|_{\mathcal{L}_{p}(0, l)}\right)\left(\left\|b_{1}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|b_{2}\right\|_{\mathcal{L}_{p, n}(0, T)}\right)= \\
=M_{7}\left(\left\|b_{1}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|b_{2}\right\|_{\mathcal{L}_{p, n}(0, T)}\right), \tag{29}
\end{gather*}
$$

where

$$
M_{7}=T^{\frac{1}{9}}\left\|A_{0,0}\right\|_{\mathcal{L}_{p, n \times n}(G)}+\left\|A_{1,0}^{0}\right\|_{\mathcal{L}_{p}(0, l)} .
$$

The operator Ω, defined by the equality (27) acts in $\mathcal{L}_{p, n}(G)$, is bounded and has a bounded inverse in it [3]. Therefore from (26) we have

$$
\|b\|_{\mathcal{L}_{p, n}(G)} \leq\left\|\Omega^{-1}\right\|\left\|\varphi^{0}\right\|_{\mathcal{L}_{p, n}(G)} .
$$

Hence by (28) and (29) we get

$$
\begin{equation*}
\|b\|_{\mathcal{L}_{p, n}(G)} \leq\left\|\Omega^{-1}\right\|\left(M_{6}\|\hat{\varphi}\|_{\hat{Q}_{p, n}}+M_{7}\left(\left\|b_{1}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|b_{2}\right\|_{\mathcal{L}_{p, n}(0, T)}\right)\right) . \tag{30}
\end{equation*}
$$

Take into account, (25) in (20) and get

$$
\begin{equation*}
\left\|b_{1}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|b_{2}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq 2 M_{4}\left(2 M_{5}\|\hat{\varphi}\|_{\hat{Q}_{p, n}}+\left(c^{1}+c^{2}\right)\|b\|_{\mathcal{L}_{p, n}(G)}\right) . \tag{31}
\end{equation*}
$$

Hence substituting (31) into (30) we get

$$
\|b\|_{\mathcal{L}_{p, n}(G)} \leq\left\|\Omega^{-1}\right\|\left(M_{8}\|\hat{\varphi}\|_{\hat{Q}_{p, n}}+2 M_{4} M_{7}\left(c^{1}+c^{2}\right)\|b\|_{\mathcal{L}_{p, n}(G)}\right),
$$

where $M_{8}=M_{6}+4 M_{4} M_{5} M_{7}>0$.
If we assume

$$
\begin{equation*}
\gamma=2 M_{4} M_{7}\left\|\Omega^{-1}\right\|\left(c^{1}+c^{2}\right)<1, \tag{*}
\end{equation*}
$$

then we can obtain

$$
\begin{equation*}
\|b\|_{\mathcal{L}_{p, n}(G)} \leq M_{9}\|\hat{\varphi}\|_{\hat{Q}_{p, n}}, \tag{32}
\end{equation*}
$$

with constant

$$
M_{9}=(1-\gamma)^{-1}\left\|\Omega^{-1}\right\| M_{8}
$$

Taking into account (32) in (31) we have

$$
\begin{equation*}
\left\|b_{1}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|b_{2}\right\|_{\mathcal{L}_{p, n}(0, T)} \leq 2 M_{4}\left(2 M_{5}+M_{9}\left(c^{1}+c^{2}\right)\right)\|\hat{\varphi}\|_{\hat{Q}_{p, n}} . \tag{33}
\end{equation*}
$$

Now, summing up the inequalities (21), (32), (33) for the totality
$\hat{b}=\left(b_{0}, b_{1}(t), b_{2}(t), b_{3}(x), b(t, x)\right)$ we have the estimate

$$
\begin{aligned}
\|\hat{b}\|_{\hat{Q}_{p, n}} & =\left\|b_{0}\right\|+\left\|b_{1}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|b_{2}\right\|_{\mathcal{L}_{p, n}(0, T)}+\left\|b_{3}\right\|_{\mathcal{L}_{p, n}(0, l)}+ \\
& +\|b\|_{\mathcal{L}_{p, n}(G)} \leq M_{10}\|\hat{\varphi}\|_{\hat{Q}_{p, n}}=M_{10}\|\hat{L} z\|_{\hat{Q}_{p, n}}
\end{aligned}
$$

where

$$
M_{10}=2 M_{4}\left(2 M_{5}+M_{9}\left(c^{1}+c^{2}\right)\right)>0
$$

and

$$
\widehat{L} z=\widehat{\varphi}, \widehat{b}=N z
$$

Using the last inequality we get

$$
\|z\|_{\widehat{W}_{p, n}(G)} \leq M_{11}\|N z\|_{\widehat{Q}_{p, n}} \leq M_{11} M_{10}\|\widehat{L} z\|_{\widehat{Q}_{p, n}}
$$

with suitable constant $M_{11}>0$ independent on z. Hence the following theorem is true.

Theorem 1. Let the matrix $\Delta(t)$ be invertible for almost all $t \in(0, T)$ and conditions (11) and $\left(^{*}\right.$) be fulfilled, where M_{4} and M_{7} are the constants defined above by using the number M_{1}, the constants $c^{k}(k=1,2)$ are given by the formula (24), and the operator Ω is given by the relation (27). Then, for every solution z of problem (1)-(4), the a priori estimate $\|z\|_{\widehat{W}_{p, n}(G)} \leq M\|\widehat{L}\|_{\widehat{Q}_{p, n}}$ holds, where $M>0$ is a positive constant independent on z.

The operator \widehat{L} is a linear and bounded operator from $\widehat{W}_{p, n}(G)$ to $\widehat{Q}_{p, n}$. Therefore, there exists a bounded, conjugated operator $\widehat{L}^{*}:\left(\widehat{Q}_{p, n}\right)^{*} \rightarrow\left(\widehat{W}_{p, n}(G)\right)^{*}$. Using general forms of linear bounded functional determined on $\widehat{Q}_{p, n}$ and $\widehat{W}_{p, n}(G)$ we can prove that \widehat{L}^{*} is a bounded vector operator of the form $\widehat{L}^{*}=$ $\left(\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}, \omega\right)$ acting in the space $\widehat{Q}_{q, n}$, where $1 / p+1 / q=1$. Therefore, we can consider the equation $\widehat{L}^{*} \widehat{f}=\widehat{\psi}$ as a conjugated equation for problem(1)-(4), where \widehat{f} is a desired solution, $\widehat{\psi}$ is an element from $\left(\widehat{W}_{p, n}(G)\right)^{*}$. It follows from Theorem 1 that the following theorem is true.

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then problem (1)(4) may have at most one solution $z \in \widehat{W}_{p, n}(G)$, and the conjugated equation $\widehat{L}^{*} \widehat{f}=\widehat{\psi}$ for any right hand side $\widehat{\psi} \in\left(\widehat{W}_{p, n}(G)\right)^{*}$ has at least one solution $\widehat{f} \in \widehat{Q}_{q, n}$.

References

[1] Akhiev S. S., On some problems of optimization of systems of linear hyperbolic equation of second order with discontinuous solutions and non-local boundary conditions. Dep.in Az NII NTI 37 p., No 1860 Az from (22.07.92) No 11, (253). (Russian)
[2] Nakhushev A. M., Boundary value problems for loaded integro-differential equations of hyperbolic type and some their applications to the prognosis of soil moisture. Differentialniye Uravneniya, (1979),. Vol.15, No 1, p. 96-105.
[3] Orucoglu K., Akhiev S. S., The Riemann function for the third order onedimensional pseudoparabolic equation, Acta Appl. Math. 53(1998), No 3, p. 353-370.
[4] Sobolev S. L., Some applications of functional analysis to mathematical physics. Novosibirsk (1962), 256 p. (Russian).
(Received November 19, 2008)

