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Abstract. In this paper, we consider the following ordinary p-Laplacian system

d
dt
(
|u̇(t)|p−2u̇(t)

)
−∇K(t, u(t)) +∇W(t, u(t)) = f (t), (HS)

where t ∈ R and p > 1. Using the Mountain Pass Theorem, we establish the existence
of a nontrivial homoclinic solution for (HS) under new assumptions on the growth
of the potential which allow W(t, x) to be either super p-linear or asymptotically p-
linear at infinity. Also, contrary to previous works, W(t, x) will be neither periodic nor
bounded with respect to the variable t. Recent results in the literature are generalized
even if p = 2.
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1 Introduction

Consider the ordinary p-Laplacian system

d
dt
(
|u̇(t)|p−2u̇(t)

)
−∇K(t, u(t)) +∇W(t, u(t)) = f (t) (HS)

where t ∈ R, p > 1, K, W : R×RN → R are C1-maps and f : R −→ RN is a continuous
and bounded function. We will say that a solution u of (HS) is a nontrivial homoclinic (to 0)
if u 6≡ 0 and u(t) −→ 0 as t −→ ±∞.

When p = 2, (HS) reduces to the following second order Hamiltonian system

ü(t)−∇K(t, u(t)) +∇W(t, u(t)) = f (t). (1.1)

Homoclinic orbits were introduced by Poincaré more than a century ago, and since then,
they became a fundamental tool in the study of chaos. Their existence has been extensively
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investigated in the last two decades in many papers via critical point theory. In particular, the
following second-order systems were considered in many works (see [1, 3–8, 11, 13, 16, 17, 19,
23, 26])

ü(t)− L(t)u(t) +∇W(t, u(t)) = 0 (1.2)

where L(t) is a symmetric matrix valued function. Later, the authors of [7] introduced the
more general system (1.1) where the quadratic function (L(t)x, x) is replaced by K(t, x).

Most of the previous works treat the superquadratic case under the global Ambrosetti–
Rabinowitz condition, i.e., there exists µ > 2 such that

0 < µW(t, x) ≤ (∇W(t, x), x), for all (t, x) ∈ R×RN\{0}. (AR)

Moreover, they suppose that L(t) and W(t, x) are either periodic in t or independent of t.
In the case where W(t, x) and L(t) or K(t, x) are neither autonomous nor periodic,

∇W(t, x) is usually bounded with respect to the first variable. Indeed, a variant of the follow-
ing condition is used:

There is a function W ∈ C(RN , R) such that

|W(t, x)|+ |∇W(t, x)| ≤ |W(x)|, for all (t, x) ∈ R×RN . (1.3)

In a recent paper the authors of [9] studied the problem (HS) under new superquadratic
conditions which allow W to be neither periodic nor bounded in t. Particularly, they suppose

K(t, x) = a(t)|x|p, with a(t) −→ +∞ as |t| −→ +∞

and
W = W1 −W2 ∈ C1(RN , R),

where the functions W1, W2 satisfy some (AR)-type conditions to be either increasing or de-
creasing (see [9], Lemma 2.5).

Motivated by the above mentioned works, in the present paper we study the existence
of homoclinic solutions for (HS) under more general conditions which cover the case of un-
bounded potentials with respect to the variable t. Here, to overcome the difficulty due to the
unboundedness of the domain, a homoclinic solution will be obtained as a limit of a sequence
of solutions of some nil-boundary-value problem. The existence of such sequence of solutions
is guaranteed through a standard version of the Mountain Pass Theorem. Furthermore, the
forcing term f satisfies an easier condition compared to that given in [12, 20] mainly. Our
results complete and improve recent works in the literature even in the case p = 2.

Precisely, we suppose:

(H1) there exist γ ∈ (1, p] and a > 0 such that

a|x|γ ≤ K(t, x) ≤ (x,∇K(t, x)) ≤ pK(t, x), for all (t, x) ∈ R×RN ,

(H2) W(t, 0) = 0 and ∇W(t, x) = o(|x|p−1), as |x| −→ 0 uniformly in t ∈ R,

(H3) there exists T0 > 0 such that

lim inf
|x|−→∞

W(t, x)
|x|p >

πp

pTp
0
+ m1, uniformly in t ∈ [−T0, T0],

where m1 = sup{K(t, x)|t ∈ [−T0, T0], |x| = 1},
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(H4) there exist constants µ > p, 0 ≤ b < µ− p and β ∈ L1(R, R+) such that

µW(t, x)− (∇W(t, x), x) ≤ bK(t, x) + β(t), for all (t, x) ∈ R×RN .

Remark 1.1. Note that, by (H2), there exists 0 < ρ0 < 1 such that

|W(t, x)| ≤ a
p
|x|p, ∀ |x| ≤ ρ0, t ∈ R. (1.4)

Now, we state our main results.

Theorem 1.2. Assume that W and K satisfy (H1)–(H4) and

(H5) 0 <
∫

R
| f (t)|qdt <

(
min{1, a(p− 1)}

p

)q

(ρ0/2)p, where
1
q
+

1
p
= 1.

Then (HS) possesses a nontrivial homoclinic solution u ∈W1,p(R, RN).

Example 1.3. Consider the functions

W(t, x) =
|x|3[et2(|x|2−1) − 1]

t2 + 1
, K(t, x) = (2 + sin t)|x|2 + cos2 t |x|5/2.

A straightforward computation shows that W and K satisfy the assumptions of Theorem 1.2,
with γ = 2, p = 5/2, µ = 3 but W does not satisfy neither (AR) nor (1.3). Moreover, contrary
to [6,24], we have inft∈R,|x|=1 W(t, x) = supt∈R,|x|=1 W(t, x) = 0. Note also that W changes sign
near the origin. Hence, Theorem 1.2 extends and completes the results in [3,6,12,16,19,24,25].

Corollary 1.4. Assume that W and K satisfy (H1)–(H3), (H5) and

(H′4) there exist constants µ > p, 0 ≤ c < a(µ− p) such that

µW(t, x) ≤ (∇W(t, x), x) + c|x|γ, ∀ (t, x) ∈ R×RN .

Then (HS) possesses a nontrivial homoclinic solution u ∈W1,p(R, RN).

Remark 1.5. It is easy to see that (H′4) implies (H4). However, the condition (H′4) is weaker
than (H4) in [12]. So, Corollary 1.4 significantly improves Theorem 1.1 in [12].

Corollary 1.6. Assume that W and K satisfy (H1), (H2), (H4), (H5) and

(H′3) lim inf
|x|−→∞

W(t, x)
|x|p > m1, uniformly in t ∈ R.

Then (HS) possesses a nontrivial homoclinic solution u ∈W1,p(R, RN).

2 Preliminary results

Consider for each T > 0 the following problem
d
dt
(
|u̇(t)|p−2u̇(t)

)
−∇K(t, u(t)) +∇W(t, u(t)) = fT(t), for t ∈ [−T, T]

u(−T) = u(T) = 0,
(2.1)
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where fT is the function defined on R by

fT(t) :=

{
f (t) for t ∈ [−T, T],

0 for t ∈ R \ [−T, T].

Let

ET := W1,p([−T, T], RN) =
{

u : [−T, T] −→ RN is absolutely continuous function,

u(−T) = u(T) = 0 and u̇ ∈ Lp([−T, T], RN)
}

equipped with the norm

‖u‖ET =

[∫ T

−T

(
|u̇(t)|p + |u(t)|p

)
dt
] 1

p

.

Furthermore, for α ≥ 1, let Lα
T = Lα([−T, T], RN) and L∞

T = L∞([−T, T], RN) with their usual
norms. Let ηT : ET −→ [0,+∞) given by

ηT(u) =
[∫ T

−T

(
|u̇(t)|p + pK(t, u(t))

)
dt
]1/p

,

and IT : ET −→ R, be defined by

IT(u) =
1
p

η
p
T(u)−

∫ T

−T
W(t, u(t))dt +

∫ T

−T
( fT(t), u(t))dt. (2.2)

Then IT ∈ C1(ET, R) and it’s easy to show that for all u, v ∈ ET, we have

I′T(u)v =
∫ T

−T

[
(|u̇|p−2u̇(t), v̇(t)) + (∇K(t, u(t)), v(t))− (∇W(t, u(t)), v(t))

]
dt

+
∫ T

−T
( fT(t), v(t))dt.

By (H1), we obtain, for all u ∈ ET

I′T(u)u ≤ η
p
T(u)−

∫ T

−T
(∇W(t, u(t)), u(t))dt +

∫ T

−T
( fT(t), u(t))dt. (2.3)

It is well known that critical points of IT are classical solutions of the problem (2.1), (see
[2, 14]). We will obtain a critical point of IT by using a standard version of the Mountain Pass
Theorem. It provides the minimax characterization for the critical value which is important
for what follows. For completeness, we give this theorem.

Theorem 2.1 ([18]). Let E be a real Banach space and I : E −→ R be a C1-smooth functional satisfies
the Palais–Smale condition. If I satisfies the following conditions:

(I1) I(0) = 0,

(I2) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α,

(I3) there exists e ∈ E\B̄ρ(0) such that I(e) ≤ 0, where Bρ(0) is an open ball in E of radius ρ

centered at 0,
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then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s))

where
Γ = {g ∈ C([0, 1], E); g(0) = 0, g(1) = e}.

Next we need an extension to the p-case of the following proposition first proved by
Rabinowitz in [16].

Lemma 2.2 ([12, 22]). Let u : R −→ RN be a continuous map such that u̇ ∈ Lp
loc(R, RN). Then, for

all t ∈ R, we have

|u(t)| ≤ 2
p−1

p

[∫ t+ 1
2

t− 1
2

(
|u(s)|p + |u̇(s)|p

)
ds

] 1
p

. (2.4)

Corollary 2.3. For all u ∈ ET the following inequality holds:

‖u‖L∞
T
≤ 2

p−1
p

(
1 +

[
1

2T

])1/p

‖u‖ET . (2.5)

Remark 2.4. Note that for T ≥ 1
2 we have 2

p−1
p
(
1 + [ 1

2T ]
)1/p ≤ 2. So, from (2.5), we get

‖u‖L∞
T
≤ 2‖u‖ET , for all u ∈ ET. (2.6)

Subsequently, we may assume this condition fulfilled.

Lemma 2.5. Assume that (H1) holds, then for all t ∈ R, we have

K(t, x) ≤ K
(

t,
x
|x|

)
|x|p, if |x| ≥ 1. (2.7)

The proof of Lemma 2.5 is a routine so we omit it.

3 Proof of Theorem 1.2

Lemma 3.1. Under the assumptions of Theorem 1.2, the problem (2.1) possesses a nontrivial solution
uT ∈ ET.

Proof. It suffices to prove that the functional IT satisfies all the assumptions of the Mountain
Pass Theorem.

Step 1. The functional IT satisfies the (PS)-condition, i.e., for every constant c and sequence
{un} ⊂ E such that IT(un) −→ c and I′T(un) −→ 0 as n −→ ∞, {un} has a convergent
subsequence. Indeed, let {un} ⊂ ET is a (PS)-sequence of IT. By (2.2) and (2.3) there exists
MT > 0 such that

MT(1 + ‖un‖ET ) ≥ µIT(un)− I′T(un)un

≥
(

µ

p
− 1
)

η
p
T(un) +

∫ T

−T

[
(∇W(t, un(t)), un(t))− µW(t, un(t))

]
dt

+ (µ− 1)
∫ T

−T
( fT(t), un(t))dt.

(3.1)
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Using (H4) and Hölder’s inequality, from (3.1), we get

(
µ

p
− 1
)

η
p
T(un) ≤ MT(1 + ‖un‖ET ) + b

∫ T

−T
K(t, un(t))dt +

∫ T

−T
β(t)dt

+ (µ− 1)‖ f ‖Lq(R,RN)‖un‖ET

≤ MT(1 + ‖un‖ET ) +
b
p

η
p
T(un) +

∫ T

−T
β(t)dt + (µ− 1)‖ f ‖Lq(R,RN)‖un‖ET ,

which yields

(
µ− b

p
− 1
)

η
p
T(un) ≤ MT(1 + ‖un‖ET ) +

∫ ∞

−∞
β(t)dt + (µ− 1)‖ f ‖Lq(R,RN)‖un‖ET . (3.2)

Without loss of generality, we can assume that ‖un‖ET 6= 0. Then from (H1) and (2.6) we get

η
p
T(un) =

∫ T

−T

[
|u̇n(t)|p + pK(t, un(t))

]
dt

≥
∫ T

−T
|u̇(t)|pdt + pa

∫ T

−T
|un(t)|γdt

≥
∫ T

−T
|u̇(t)|pdt + pa(2‖un‖ET )

γ−p
∫ T

−T
|un(t)|pdt

≥ min
{

1, pa(2‖un‖ET )
γ−p
}
‖un‖p

ET

≥ min
{
‖un‖p

ET
, pa2γ−p‖un‖γ

ET

}
.

(3.3)

Combining (3.2) and (3.3) we obtain

(
µ− b− p

p

)
min{‖un‖p

ET
, pa2γ−pa‖un‖γ

ET
}

≤ MT(1 + ‖un‖ET ) +
∫ ∞

−∞
β(t)dt + (µ− 1)‖ f ‖Lq(R,RN)‖un‖ET .

From (H4), we know that µ− b− p > 0, then the sequence {un} is bounded in ET. In a similar
way to Lemma 2 in [19], we can prove that {un} has a convergent subsequence in ET. Hence
IT satisfies the (PS)-condition.

Step 2. The functional IT satisfies the condition (I2) of the Mountain Pass Theorem.

Let ρ =
ρ0

2
and q ∈ ET, such that ‖u‖ET = ρ, then 0 < ‖u‖L∞

T
≤ ρ0. By (1.4) we have

∫ T

−T
W(t, u(t))dt ≤ a

p

∫ T

−T
|u(t)|pdt. (3.4)

On the other hand, since γ ≤ p, by (H1), we have

∫ T

−T
K(t, u(t))dt ≥ a

∫ T

−T
|u(t)|γdt ≥ a

∫ T

−T
|u(t)|pdt. (3.5)
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Then, by (2.2), (3.4), (3.5) and Hölder’s inequality it follows that

IT(u) ≥
1
p

η
p
T(u)−

a
p

∫ T

−T
|u(t)|pdt− ‖ f ‖Lq(R,RN)‖u‖ET

≥ 1
p

∫ T

−T

[
|u̇(t)|p + pK(t, u(t))

]
dt− a

p

∫ T

−T
|u(t)|pdt− ‖ f ‖Lq(R,RN)‖u‖ET

≥ 1
p

∫ T

−T
|u̇(t)|pdt +

a(p− 1)
p

∫ T

−T
|u(t)|pdt− ‖ f ‖Lq(R,RN)‖u‖ET

≥ min
{

1
p

,
a(p− 1)

p

}
‖u‖p

ET
− ‖ f ‖Lq(R,RN)‖u‖ET

≥ min{1, a(p− 1)}
p

ρp − ‖ f ‖Lq(R,RN)ρ =: α.

(3.6)

From (H5), it follows that α > 0 and (3.6) shows that ‖u‖ET = ρ implies IT(u) ≥ α.

Step 3. The functional I satisfies the condition (I3) of the Mountain Pass Theorem.
Let m2 = sup

{
K(t, x)|t ∈ [−T0, T0], |x| ≤ 1

}
. From (2.7), it is easy to see that

K(t, x) ≤ m1|x|p + m2, for all t ∈ [−T0, T0], x ∈ RN . (3.7)

Furthermore, by (H3), there exists ε0 > 0 and r > 0 such that

W(t, x)
|x|p ≥ πp + ε0

pTp
0

+ m1, for all t ∈ [−T0, T0], |x| > r.

Let δ = max
{
(πp+ε0

pTp
0

+ m1)|x|p −W(t, x) |t ∈ [−T0, T0], |x| ≤ r
}

, hence we have

W(t, x) ≥
(

πp + ε0

pTp
0

+ m1

)
|x|p − δ, for all t ∈ [−T0, T0], x ∈ RN . (3.8)

For T ≥ T0, define

e(t) =

{
ξ| sin(ωt)|e1 if t ∈ [−T0, T0]

0 if t ∈ [−T, T] \ [−T0, T0].
(3.9)

where ω = π
T0

and e1 = (1, 0, . . . , 0) ∈ RN . Then by (2.2) and (3.7)–(3.9), we obtain

IT(e) =
∫ T

−T

[
1
p
|ė(t)|p + K(t, e(t))−W(t, e(t))

]
dt +

∫ T

−T
( fT(t), e(t))dt

=
∫ T0

−T0

[
1
p
|ė(t)|p + K(t, e(t))−W(t, e(t))

]
dt +

∫ T0

−T0

( fT0(t), e(t))dt

≤ |ξ|
pωp

p

∫ T0

−T0

| cos(ωt)|pdt + m1|ξ|p
∫ T0

−T0

| sin(ωt)|pdt

−
(

πp + ε0

pTp
0

+ m1

)
|ξ|p

∫ T0

−T0

| sin(ωt)|pdt

+ |ξ|‖ f ‖Lq

[∫ T0

−T0

| sin(ωt)|pdt
]1/p

+ 2T0(δ + m2)

≤ − ε0

pTp
0
|ξ|p

∫ T0

−T0

| sin(ωt)|pdt + |ξ|‖ f ‖Lq

[∫ T0

−T0

| sin(ωt)|pdt
]1/p

+ 2T0(δ + m2) −→ −∞, as ξ −→ ∞.
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Thus, we can choose ξ large enough such that ‖e‖ET > ρ and IT(e) < 0.
For our setting, clearly IT(0) = 0, then, by application of the Mountain Pass Theorem,

there exists a critical point uT ∈ ET of IT such that IT(uT) ≥ α for all T ≥ T0.

Lemma 3.2. uT is bounded uniformly for T ≥ T0.

Proof. Define the set of paths

ΓT = {g ∈ C([0, 1], ET) | g(0) = 0, g(1) = e}.

By Lemma 3.1, we know that there is a solution uT of (2.1) at which

inf
g∈ΓT

max
s∈[0,1]

IT(g(s)) ≡ NT

is achieved. Let now T̃ > T, then ΓT ⊂ ΓT̃, since any function in ET can be regarded as
belonging to ET̃ if one extends it by zero in [−T̃, T̃] \ [−T, T]. Therefore, for all solution uT of
(2.1), we get

IT(uT) = NT ≤ NT0 uniformly in T ≥ T0. (3.10)

Using the fact that I′T(uT) = 0 and (3.10), the rest of the proof is identical to Step 1 in
Lemma 3.1. Hence there exists a constant M0 > 0, independent of T such that

‖uT‖ET ≤ M0, for all T ≥ T0.

This ends the proof of Lemma 3.2.

Now, take an increasing sequence Tn −→ ∞ with T1 > T0 and consider the problem (2.1)
on the interval [−Tn, Tn]. By the conclusion of Lemma 3.1 and Lemma 3.2, there exists a
nontrivial solution un := uTn of (2.1) satisfying

‖un‖ETn
≤ M0, for all n ∈N. (3.11)

Lemma 3.3. Let (un)n∈N be the sequence given above. Then there exists a subsequence (unj)j∈N

convergent to a certain function u0 in C1
loc(R, RN).

Proof. First of all from (2.6) and (3.11), we have

‖un‖L∞
Tn
≤ 2M0 ≡ M1 (3.12)

and (∫ Tn

−Tn

|u̇n(t)|p
)1/p

≤ ‖un‖ETn
≤ M0 (3.13)

for all n ∈N. By Hölder’s inequality and (3.11), for t1, t2 ∈ [−T1, T1] with t1 < t2,

|un(t2)− un(t1)| =
∣∣∣∣∫ t2

t1

u̇n(t)dt
∣∣∣∣ ≤ (t2 − t1)

1/q
(∫ T1

−T1

|u̇n(t)|p
)1/p

≤ M0(t2 − t1)
1/q. (3.14)

From (3.12) and (3.14) the sequence {un}n∈N is equicontinuous and uniformly bounded on
[−T1, T1]. By the Arzelà–Ascoli Theorem, there exists a uniformly convergent subsequence
{u1

nj
}j∈N of {un}n∈N on [−T1, T1] and we can choose n1 > 1.

Consider {u1
nj
}j∈N on [−T2, T2]. By the Arzelà–Ascoli Theorem, there exists again a uni-

formly convergent subsequence {u2
nj
}j∈N of {u1

nj
}j∈N on [−T2, T2] with n1 in u2

n1
satisfies
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n1 > 2. Repeat this procedure for all i ≥ 1 and take the diagonal subsequence of {ui
nj
}j∈N,

i ≥ 1, which consists of u1
n1

, u2
n2

, u3
n3

, . . . It follows that this diagonal subsequence converges
uniformly on any bounded interval to a certain function u0.

Next, we denote un instead of uj
nj . Let I be a bounded interval, there exists n0 such that

I ⊂ [−Tn0 , Tn0 ]. Using (2.1), for all t ∈ I, we have

| d
dt
(|u̇n(t)|p−2u̇n(t)| ≤ |∇K(t, un(t))|+ |∇W(t, un(t))|+ | fn(t)|

≤ |∇K(t, un(t))|+ |∇W(t, un(t))|+ | f (t)|,

for n ≥ n0 where here and subsequently fn = fTn . Since f is bounded , by (3.12) there exists
M2 > 0 (dependent on I) such that

sup
t∈I

∣∣∣∣ d
dt
(|u̇n(t)|p−2u̇n(t))

∣∣∣∣ ≤ M2, ∀n ≥ n0. (3.15)

From the Mean Value Theorem it follows that for every n ∈ N and t ∈ R there exists τn ∈
[t− 1, t] such that

u̇n(τn) =
∫ t

t−1
u̇n(s)ds = un(t)− un(t− 1).

Combining the above with (3.12) and (3.15) we obtain∣∣|u̇n(t)|p−2u̇n(t)
∣∣ = ∣∣∣∣∫ t

τn

d
dt
(|u̇n(s)|p−2u̇n(s)ds + |u̇n(τn)|p−2u̇n(τn)

∣∣∣∣
≤
∫ t

t−1

∣∣∣∣ d
dt
(|u̇n(s)|p−2u̇n(s)

∣∣∣∣ ds + |u̇n(τn)|p−1 ≤ M2 + (2M1)
p−1 ≡ Mp−1

3 ,

and hence
sup
t∈I
|u̇n(t)| ≤ M3, ∀ n ≥ n0. (3.16)

Now we prove that the sequence {u̇n}n∈N is equicontinuous on I. If not, there exist ε > 0,
two sequences {t1

i }i∈N ⊂ I, {t2
i }i∈N ⊂ I and a sequence {ni}i∈N of integers such that

0 < t2
i − t1

i <
1
i

, |uni(t
2
i )− uni(t

1
i )| ≥ ε, and ni ≥ n0, i ∈N. (3.17)

Since the sequences {uni(t
1
i )} and {uni(t

1
i )} are bounded, passing, if necessary, to subse-

quences, one can assume that

uni(t
1
i ) −→ α1, and uni(t

2
i ) −→ α2, as i −→ ∞. (3.18)

Combining (3.17) and (3.18), we get

|α2 − α1| ≥ ε. (3.19)

On the other hand, from (3.15) and (3.17), we have∣∣∣|uni(t
2
i )|p−2uni(t

2
i )− |uni(t

1
i )|p−2uni(t

1
i )
∣∣∣ = ∣∣∣∣∣

∫ t2
i

t1
i

d
dt
(|u̇n(s)|p−2u̇n(s)ds

∣∣∣∣∣
≤
∫ t2

i

t1
i

∣∣∣∣ d
dt
(|u̇n(s)|p−2u̇n(s)

∣∣∣∣ ds

≤ M2(t2
i − t1

i ) ≤
M2

i
, i ∈N.

(3.20)
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Passing to the limit in (3.20) and using (3.18), we obtain∣∣|α2|p−2α2 − |α1|p−2α1
∣∣ = 0

and consequently α1 = α2, which contradicts (3.19). Thus, {u̇n}n∈N is equicontinuous. By
(3.16), {u̇n}n∈N is also uniformly bounded on I, the Arzelà–Ascoli Theorem proves the exis-
tence of a subsequence convergent to a certain function v. Since the interval I is arbitrary we
conclude that according to a subsequence

unj −→ u, as j −→ ∞ in C1
loc(R, RN).

Lemma 3.3 is proved.

Lemma 3.4. Let u0 : R −→ RN be the function given by Lemma 3.3. Then u0 is the desired homoclinic
solution of (HS).

Proof. The first step is to show that u0 is a solution of (HS). Let (unj)j∈N be the sequence given
by Lemma 3.3, then

d
dt
(|u̇nj(t)|p−2u̇nj(t))−∇K(t, unj(t)) +∇W(t, unj(t)) = fnj(t)

for every j ∈ N, and t ∈ [−Tnj , Tnj ]. Take a, b ∈ R with a < b. There exists j0 ∈ N such that
for all j > j0 one has [a, b] ⊂ [−Tnj , Tnj ] and

d
dt
(|u̇nj(t)|p−2u̇nj(t)) = ∇K(t, unj(t))−∇W(t, unj(t)) + f (t), ∀ t ∈ [a, b]. (3.21)

Integrating (3.21) from a to t ∈ [a, b], we obtain

|u̇nj(t)|p−2u̇nj(t)− |u̇nj(a)|p−2u̇nj(a)

=
∫ t

a

[
∇K(s, unj(s))−∇W(s, unj(s)) + f (s)

]
ds, ∀ t ∈ [a, b]. (3.22)

Since unj −→ u0 uniformly on [a, b], and u̇nj −→ u̇0 uniformly on [a, b] as j −→ ∞, then from
(3.22), we get

|u̇0(t)|p−2u̇0(t)− |u̇0(a)|p−2u̇0(a)

=
∫ t

a

[
∇K(s, u0(s))−∇W(s, u0(s)) + f (s)

]
ds, ∀ t ∈ [a, b]. (3.23)

Since a and b are arbitrary, we receive from (3.23) that u0 satisfies (HS).
Now we prove that u0(t) −→ 0, as |t| −→ ∞. First of all note that, from (3.11), for l ∈ N

there exists j0 ∈N such that for all j > j0, we have∫ Tnl

−Tnl

(|unj(t)|p + |u̇nj(t)|p)dt ≤ ‖unj‖
p
ETnj
≤ Mp

0 .

Letting j −→ ∞, we get ∫ Tnl

−Tnl

(|u0(t)|p + |u̇0(t)|p)dt ≤ Mp
0 ,
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and now, letting l −→ ∞, we obtain∫ +∞

−∞
(|u0(t)|p + |u̇0(t)|p)dt ≤ Mp

0 ,

and so ∫
|t|≥r

(|u0(t)|p + |u̇0(t)|p)dt −→ 0, as r −→ ∞. (3.24)

From (2.4) and (3.24), we receive our claim.

Finally, it is obvious that u0 is nontrivial since, from (H5), we have f 6≡ 0 and the proof of
Theorem 1.2 is complete.

Remark 3.5. Under the assumptions of Theorem 1.2 and
(H6) there is R > 0 such that

∇K(t, x) −→ 0 as |x| −→ 0 uniformly in t ∈ (−∞,−R] ∪ [R,+∞),

the homoclinic solution u0 obtained above satisfies u̇0(t) −→ 0, as |t| −→ ∞. The proof is
analogous to [21].
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