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Abstract. In this paper we prove the existence of solutions to the following
third order differential inclusion:



x(3)(t) ∈ F (t, x(t), ẋ(t), ẍ(t)) + G(x(t), ẋ(t), ẍ(t)), a.e. on [0, T ]
x(0) = x0, ẋ(0) = u0, ẍ(0) = v0, and ẍ(t) ∈ S,∀t ∈ [0, T ],

where F : [0, T ]×H×H×H → H is a continuous set-valued mapping, G : H×

H × H → H is an upper semi-continuous set-valued mapping with G(x, y, z) ⊂
∂Cg(z) where g : H → R is a uniformly regular function over S and locally
Lipschitz and S is a ball compact subset of a separable Hilbert space H.

1. Introduction

The origins of boundary and initial value problems for differential inclusions
are in the theory of differential equations and serve as models for a variety of
applications including control theory. In [6] Hopkins studied an existence result for
the third order differential inclusion

(ThODI)

{

x(3)(t) ∈ G(x(t), ẋ(t), ẍ(t)),
x(0) = x0, ẋ(0) = u0, ẍ(0) = v0,

where G is set-valued mapping with an upper semi-continuous compact valued
included in the subdifferential of a convex lower semi-continuous function g : R

d →
R, that is, G(x, y, z) ⊂ ∂Cg(z). In this paper we prove the existence of viable
solutions for the general form of the third order differential inclusion

(GThODI)

{

x(3)(t) ∈ F (t, x(t), ẋ(t), ẍ(t)) +G(x(t), ẋ(t), ẍ(t)), a.e. on [0, T ]
x(0) = x0, ẋ(0) = u0, ẍ(0) = v0, and ẍ(t) ∈ S, ∀t ∈ [0, T ],

where F : [0, T ]×H×H×H → H is a continuous set-valued mapping, G : H×H×
H → H is an upper semi-continuous set-valued mapping with G(x, y, z) ⊂ ∂Cg(z)
where g : H → R is a uniformly regular function over S and locally Lipschitz, and
S is a ball compact subset of a separable Hilbert space H. This general problem
covers (ThODI) in three different ways. First, it extends (ThODI) from finite
dimensional setting to separable Hilbert spaces. Secondly, it extends g to the case
of uniformly regular function (not necessary convex) and also it covers (ThODI)
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by taking F = 0. Problem (GThODI) includes as a special case the following
differential variational inequality: Given T > 0 and three points x0, u0, v0 ∈ H.

(DVI)







Find b ∈ (0, T ), x : [0, b] → H such that ẍ(t) ∈ S, on [0, b] and ∀w ∈ S

〈x(3)(t), w − ẍ(t)〉 ≤ a(x(t) + ẋ(t) − ẍ(t), w − ẍ(t)), a.e. on [0, b]
x(0) = x0, ẋ(0) = u0, ẍ(0) = v0.

where S = {x ∈ H : Λ(x) ≤ 0} (Λ : H → R is a C1 convex function), a(·, ·) is a
real bilinear, symmetric, bounded, and elliptic form on H × H. We use our main
theorem to prove that (DVI) has at least one solution.

This paper is organized as follows. In Section 2, we recall some definitions and
results that will be needed in the paper. In Section 3, we prove our main existence
theorem, by constructing a sequence of approximate solutions and showing its con-
vergence to the solution of the given problem. Section 4 contains the application
to differential variational inequalities.

2. Preliminaries

Throughout the paper H will denote a separable Hilbert space. We need to
recall, from [1], some notation and definitions that will be used in all the paper.

Definition 2.1. ([1]) Let f : H → R ∪ {+∞} be a l.s.c. function and O ⊂ domf

be a nonempty open subset. We will say that f is uniformly regular over O with
respect to β ≥ 0 (we will also say β-uniformly regular) if for all x̄ ∈ O and for all
ξ ∈ ∂P f(x̄) one has

〈

ξ, x− x̄
〉

≤ f(x) − f(x̄) + β‖x− x̄‖2 ∀x ∈ O.

Here ∂P f(x̄) denotes the proximal subdifferential of f at x (for its definition the
reader is refereed for instance to [3]). We say that f is uniformly regular over a
closed set S if there exists an open set O containing S such that f is uniformly
regular over O.

The class of functions that are uniformly regular over sets is so large, it con-
tains convex sets, p-convex sets and epigraph of lower-C2 functions. The following
proposition gives some properties for uniformly regular locally Lipschitz functions
over sets needed in the sequel. For the proof of these results we refer the reader to
[1, 4].

Proposition 2.2. Let f : H → R be a locally Lipschitz function and ∅ 6= S ⊂ domf .
If f is uniformly regular over S, then the following hold:

(i) The proximal subdifferential of f is closed over S as a set-valued mapping,
that is, for every xn → x with xn ∈ S and every ζn → ζ (weakly) with
ζn ∈ ∂P f(xn) one has ζ ∈ ∂P f(x);

(ii) The proximal subdifferential of f coincides with ∂Cf(x) the Clark subd-
ifferential of f (see for instance [3] for the definition of ∂Cf(x)), i.e.,
∂Cf(x) = ∂P f(x) for all x ∈ S;

(iii) The proximal subdifferential of f is upper hemicontinuous over S, i.e, the
support function x→ σ(v, ∂P f(x)) is u.s.c. over S for every v ∈ H (where
σ(v, S) = sups∈S〈v, s〉);
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(iv) For any absolutely continuous map x : [0, T ] → S one has

d

dt
(f ◦ x)(t) = 〈∂Cf(x(t)); ẋ(t)〉.

3. Existence results for third order differential inclusions

We start with the following technical lemmas. Their proofs follow the same lines
as in the proof of Theorem 2.3 in [2].

Lemma 3.1. Assume that

(1) S is nonempty subset in H, υ0 ∈ S and K0 = S ∩ (υ0 + ρB) is a compact
set for some ρ > 0.

(2) P : [0, T ]×H×H×H → H is an u.s.c. set valued mapping with nonempty
compact values.

(3) For any (t, x, y, z) ∈ [0, T ]×S×S×S the following tangent condition holds

lim inf
h→0+

1

h
e(υ + hP (t, x, y, z);S) = 0,

where e(A,S) := supa∈AdS(a).

Let α = min{T, ρ
M+1 , 1} where M = sup{‖P (t, x, y, z)‖ : (t, x, y, z) ∈ [0, T ] ×K0 ×

K0 × K0}. Then, there exists a > 0 such that we can construct sequences {wmi },
{tmi }, {λ

m
i }, {xmi }, {umi } and {υmi } satisfying for some rank νm ≥ 0 the following

assertions:

(1) 0 = tm0 , tmνm
≤ a < T with a < α and tmi = Σi−1

k=0λ
m
k for all i ∈ {1, 2, ..., νm},

(2) υmi = υ0 + Σi−1
k=0λ

m
k w

m
k and (tmi , υ

m
i ) ∈ [0, T ]×K0 for all i ∈ {1, 2, ..., νm},

(3) wmi ∈ P (tmi , x
m
i , u

m
i , υ

m
i ) + 1

m
B with wmi =

ψm

i
−υm

i

λm
i

and ψmi ∈ S ∩B(υmi +

λmi b
m
i ,M + 1) for all i ∈ {1, 2, ..., νm}, where

λmi = max{ζ ∈ (0,
α

2
] : ζ ≤ T − tmi and dS(υmi + ζbi) <

1

m
ζ},

(4) umi = u0 + υmi t
m
i − wmi

tm
i

2

2 ,

(5) xmi = x0 + u0t
m
i + υmi

tm
i

2

2 − wmi
tm
i

3

3 .

Lemma 3.2. Let P (t, x, y, z) = F (t, x, y, z) +G(x, y, z). Under the same assump-
tions in Lemma 3.1, we can construct sequence of the step functions υm, um, xm,
fm, cm and θm with the following properties:

(1) υm(t) = υmi + (t− tmi )wmi on [tmi , t
m
i+1) for all i ∈ {1, 2, ..., νm},

(2) um(t) = u0 +
∫ t

0
υm(s)ds, xm(t) = x0 +

∫ t

0
um(s)ds on [0, a],

(3) fm(t) = fmi ∈ F (θm(t), xm(θm(t)), um(θm(t)), υm(θm(t))) on [tmi , t
m
i+1),

with θm(t) = tmi if t ∈ [tmi , t
m
i+1) for all i ∈ {1, 2, ..., νm}, θm(a) = a,

(4) ym(t) = ym(θm(t)) ∈ G(xm(θm(t)), um(θm(t)), υm(θm(t))) on [tmi , t
m
i+1),

where ymi = wmi − fmi − cmi ,

(5) cm(t) = cmi ∈ 1
m
B if t ∈ [tmi , t

m
i+1) for all i ∈ {1, 2, ..., νm}, and

lim
h→∞

sup
t∈[0,a]

‖cm(t)‖ = 0.
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Also,

‖υm(tmi+1) − υm(tmi )‖ ≤ (M + 1)(tmi+1 − tmi ),

‖υ̇m(t)‖ = ‖wmi ‖ ≤M + 1, a. e. on [0, a],

and

‖υm(t)‖ < ρ+ a(M + 1) < 2ρ,

with M as in Lemma 3.1. Furthermore, ψmi ∈ K1 = S ∩B(0, R) with R = ‖υ0‖ +
2ρ+ 2M + 1.

Now we are in position to state and prove the main result in this section.

Theorem 3.3. Let S be a nonempty subset of H and let g : H → R be a locally
Lipschitz function which is uniformly regular over S with constant β ≥ 0. Assume
that

(1) S is ball compact.
(2) F : [0, T ] × H × H × H → H is uniformly continuous set-valued mapping

with compact values.
(3) G : H × H × H → H is an u.s.c. set valued mapping with compact values

and G(x, y, z) ⊂ ∂P g(z), for all x, y, z ∈ S.

(4) For any (t, x, y, z) ∈ [0, T ]×S×S×S the following tangent condition holds

lim inf
h→0

1

h
e(x+ h(F (t, x, y, z) +G(x, y, z));S) = 0,

where e(A,S) := supa∈A dS(a).

Then, for any v0 ∈ S, u0, x0 ∈ H, there exists a ∈ (0, T ) such that






υ̇(t) ∈ F (t, x(t), u(t), υ(t)) +G(x(t), u(t), υ(t)) a.e. on [0, a],

υ(t) ∈ S on [0, a], x(t) = x0 +
∫ t

0 u(s)ds, u(t) = u0 +
∫ t

0 υ(s)ds,
x(0) = x0, u(0) = u0, v(0) = v0,

has an absolutely continuous solution on [0, a]. In other words, there exists a ∈
(0, T ) such that (GThODI) has an absolutely continuous solution on [0, a].

Proof. Let L > 0 and ρ > 0 be two positive scalars such that g is Lipschitz over
υ0 + ρB with ratio L. Since S is ball compact, K0 = S ∩ (υ0 + ρB) is compact in
H. Let M and a be two positive scalars such that

‖F (t, x, y, z) +G(x, y, z) +H(t, x, y, z)‖ ≤M,

for all (t, x, y, z) ∈ [0, T ] × K0 × K0 × K0 and a = min{T, ρ
M+1 , 1}. By applying

Lemma 3.2, there exist sequences of step functions υm, um, xm, fm, ym, cm and
θm with the following properties:

(1) υm(t) = υmi + (t− tmi )wmi on [tmi , t
m
i+1) for all i ∈ {1, 2, ..., νm},

(2) um(t) = u0 +
∫ t

0 υm(s)ds, xm(t) = x0 +
∫ t

0 um(s)ds on [0, a],
(3) fm(t) = fm(θm(t)) ∈ F (θm(t), xm(θm(t)), um(θm(t)), υm(θm(t))) on [tmi , t

m
i+1),

with θm(t) = tmi if t ∈ [tmi , t
m
i+1) for all i ∈ {1, 2, ..., νm}, θm(a) = a,

(4) ym(t) = ym(θm(t)) ∈ G(xm(θm(t)), um(θm(t)), υm(θm(t))) on [tmi , t
m
i+1),

where ymi = wmi − fmi − hmi − cmi
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(5) cm(t) = cmi ∈ 1
m
B if t ∈ [tmi , t

m
i+1) for all i ∈ {1, 2, ..., νm}, and

lim
m→∞

sup
t∈[0,a]

‖cm(t)‖ = 0.

Also,
‖υm(tmi+1) − υm(tmi )‖ ≤ (M + 1)(tmi+1 − tmi ),

‖υ̇m(t)‖ = ‖wmi ‖ ≤M + 1,

and
‖υm(t)‖ < ρ+ a(M + 1) < 2ρ.

We want to prove that υm converges to a solution of the given differential inclusion.
First, we mention that the sequence fm can be constructed with the relative com-
pactness property in the space of bounded functions (see [7]). Therefore, without
loss of generality we can suppose that there is a bounded function f such that

lim
m→∞

sup
t∈[0,a]

‖fm(t) − f(t)‖ = 0.

We note that

υm(t) = υmi + (t− tmi )wmi = υmi +
t− tmi
λmi

(ψmi − υmi ), for all t ∈ [tmi , t
m
i+1).

Clearly υm is continuous on all the interval [0, a]. Indeed, it is continuous on
[tmi , t

m
i+1) and υm(tmi ) = lim

t
>

→
tm
i

υm(t) = vmi and

lim
t

<

→
tm
i

υm(t) = lim
t

<

→
tm
i

[

υmi−1 + (t− tmi−1)w
m
i−1

]

= υmi−1 + λmi−1w
m
i−1 = vmi ,

and hence υm is continuous on the nodes tmi . Therefore, the sequence of mappings
υm is equi-Lipschitz with ratio M + 1 on all [0, a]. On the other hand, we have

0 ≤ t− tmi ≤ tmi+1 − tmi = λmi and so 0 ≤
t−tm

i

λm
i

≤ 1, and hence we get

t− tmi
λmi

(ψmi − υmi ) ∈ co
[

{0} ∪ {K1 −K0}
]

.

Thus
υm(t) ∈ K := K0 + co

[

{0} ∪ {K1 −K0}
]

.

Therefore, since the set K is compact (because K0 and K1 are compact) and
‖υ̇m(t)‖ ≤ M + 1, for all t ∈ [0, a], then, the assumptions of Arzela-Ascoli the-
orem are satisfied. Hence a subsequence of υm may be extracted (still denoted υm)
that converges to a Lipschitz function υ : [0, a] → H such that

lim
m→∞

max
t∈[0,a]

‖υm(t) − υ(t)‖ = 0,

and
υ̇m → υ̇ in the weak topology of L2([0, a]; H).

Since ‖υm(t)‖ < 2ρ we have

‖u̇m(t)‖ = ‖υm(t)‖ < 2ρ,

and

‖ẋm(t)‖ = ‖um(t)‖ = ‖u0 +

∫ t

0

υm(s)ds‖ ≤ ‖u0‖ + 2ρT,
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On the other hand

um(t) = u0 +

∫ t

0

υm(s)ds ∈ K0 + aK := K2,

and

xm(t) = x0 +

∫ t

0

um(s)ds ∈ K0 + aK2 := K3.

Clearly, K2 and K3 are compact sets in H, then by Arzela-Ascoli theorem, there are
subsequences of um and xm (still denoted um and xm respectively) that converge
to absolutely continuous mappings u : [0, a] → H and x : [0, a] → H respectively,
such that

lim
m→∞

sup
t∈[0,a]

‖um(t) − u(t)‖ = 0,

lim
m→∞

sup
t∈[0,a]

‖xm(t) − x(t)‖ = 0,

and
u̇m → u̇, ẋm → ẋ in the weak topology of L2([0, a]; H).

Also, we have that (υm ◦ θm), (um ◦ θm) and (xm ◦ θm) converge uniformly on [0, a]
to υ, u, and x respectively. Since υm(θm(t)) = υmi ∈ K0, by closedness of K0 we
get, υ(t) ∈ K0 ⊂ S. Indeed,

d(υ(t);K0) ≤ d(υm(θm(t));K0) + ‖υ(t) − υm(θm(t))‖ → 0, as m→ ∞.

By construction, we have

fm(t) = fm(θm(t)) ∈ F (θm(t), xm(θm(t)), um(θm(t)), υm(θm(t))),

and so by the continuity of F and the closedness of its values we obtain

f(t) ∈ F (t, x(t), u(t), υ(t)).

Now, put y(t) = υ̇(t) − f(t), we must prove that

y(t) ∈ G(x(t), u(t), υ(t)) a.e. on [0, a].

By construction, we have for a.e. t ∈ [0, a]

ym(t) ∈ G(xm(θm(t)), um(θm(t)), υm(θm(t))) ⊂ ∂Cg(υm(θm(t)) = ∂P g(υm(θm(t)),

where the above equality follows from the uniform regularity of g over S and the
part (ii) in Proposition 2.2. The weak convergence of υ̇m and Mazur’s lemma entail
for almost all t ∈ [0, a]

υ̇(t) ∈
⋂

m

co{υ̇k(t) : k ≥ m}.

So, for any ξ ∈ H we have
〈

ξ, υ̇(t)
〉

≤ inf
m

sup
k≥m

〈

ξ, υ̇k(t)
〉

≤ lim sup
m

[

σ(ξ, ∂P g(υm(θm(t)))) +
〈

ξ, fm(t) + cm(t)
〉]

≤ σ(ξ, ∂P g(υ(t))) +
〈

ξ, f(t)
〉

= σ
(

ξ, ∂P g(υ(t)) + f(t)
)

,

where the last inequality follows from upper hemicontinuity of the proximal sub-
differential of uniformly regular functions (part (iii) in Proposition 2.2) and the
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uniform convergence on [0, a] of fm and cm to f and 0 respectively, and the fact
that υm(θm(t)) → υ(t) on K0. Thus, by the convexity and the closedness of proxi-
mal subdifferential of uniformly regular functions, we have

y(t) = υ̇(t) − f(t) ∈ ∂P g(υ(t)).

As υ is absolutely continuous and g is uniformly regular locally Lipschitz function
over S we get by part (iv) in Proposition 2.2

d

dt
(g ◦ υ)(t) =

〈

∂P g(υ(t)), υ̇(t)
〉

=
〈

υ̇(t) − f(t), υ̇(t)
〉

= ‖υ̇(t)‖2 −
〈

f(t), υ̇(t)
〉

.

Consequently

(3.1) g(υ(a)) − g(υ0) =

∫ a

0

‖υ̇(t)‖2dt−

∫ a

0

〈

f(t), υ̇(t)
〉

dt.

On the other hand, since ymi ∈ G(xmi , u
m
i , υ

m
i ) ⊂ ∂P g(υmi ) then

g(υmi+1) − g(υmi ) ≥
〈

ymi , υ
m
i+1 − υmi

〉

− β‖υmi+1 − υmi ‖2

=
〈

υ̇m(t) − fm(t) − cm(t),

∫ tm
i+1

tm
i

υ̇m(s)ds
〉

− β‖υmi+1 − υmi ‖2

≥

∫ tm
i+1

tm
i

‖υ̇m(s)‖2ds−

∫ tm
i+1

tm
i

〈

fm(s), υ̇m(s)
〉

ds

−

∫ tm
i+1

tm
i

〈

cm(s), υ̇m(s)
〉

ds− β(M + 1)2(tmi+1 − tmi )2

≥

∫ tm
i+1

tm
i

‖υ̇m(s)‖2ds−

∫ tm
i+1

tm
i

〈

fm(s), υ̇m(s)
〉

ds

−

∫ tm
i+1

tm
i

〈

cm(s), υ̇m(s)
〉

ds−
β(M + 1)2

m
(tmi+1 − tmi ).

By adding, we obtain

g(υm(a)) − g(υ0) ≥

∫ a

0

‖υ̇m(s)‖2ds−

∫ a

0

〈

fm(s), υ̇m(s)
〉

ds

−

∫ a

0

〈

cm(s), υ̇m(s)
〉

ds−
βa(M + 1)2

m
.

Passing to the limit superior as m→ ∞

g(υ(a)) − g(υ0) ≥ lim sup
m

∫ a

0

‖υ̇m(s)‖2ds− lim
m

∫ a

0

〈

fm(s), υ̇m(s)
〉

ds

≥ lim sup
m

∫ a

0

‖υ̇m(s)‖2ds−

∫ a

0

〈

f(s), υ̇(s)
〉

ds.
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This inequality compared with (3.1) yields
∫ a

0

‖υ̇(t)‖2dt ≥ lim sup
m

∫ a

0

‖υ̇m(s)‖2ds,

and so

‖υ̇‖2
L2 ≥ lim sup

m
‖υ̇m‖

2
L2 .

On the other hand, the weak lower semi-continuity of the norm ensures

‖υ̇‖L2 ≤ lim inf
m

‖υ̇m‖L2 .

Therefore, we get

‖υ̇‖L2 = lim
m

‖υ̇m‖L2,

which ensures that υ̇m converges uniformly to υ̇ in L2([0, a]; H). By construction
we have for almost all t in [0, a]

(

(xm(θm(t)), um(θm(t)), υm(θm(t))), υ̇m(t) − fm(t) − cm(t)
)

∈ graph G,

and since G has closed graph, we conclude that
(

(x(t), u(t), υ(t)), υ̇(t) − f(t)
)

∈ graph G,

that is,

υ̇(t) − f(t) ∈ G(x(t), u(t), υ(t)) a.e. on [0, a].

Thus, for almost all t in [0, a]

υ̇(t) ∈ G(x(t), u(t), υ(t)) + f(t) ⊂ G(x(t), u(t), υ(t)) + F (t, x(t), u(t), υ(t)).

The proof then is complete. �

We end this section with some important corollaries. The first one is an extension
of the main result in [6] from finite dimensional spaces to separable Hilbert spaces
and from the case of convex functions to uniform regular functions. Our proof is
completely different to the one given in [6].

Corollary 3.4. Let S be a nonempty closed subset of H and let g : H → R be a
locally Lipschitz function which is uniformly regular over S with constant β ≥ 0.
Assume that

(1) S is ball compact.
(2) G : H×H×H → H is a u.s.c. set valued mapping with compact values and

G(x, y, z) ⊂ g(z), for all x, y, z ∈ S.

(3) For any (t, x, y, z) ∈ [0, T ]×S×S×S the following tangent condition holds

lim
h→0+

inf
1

h
e(x+ h(G(x, y, z));S) = 0.

Then, for every x0, u0 ∈ H, and every v0 ∈ S, there exists a ∈ (0, T ) and an
absolutely continuous solution of the following third order differential inclusion

{

x(3)(t) ∈ G(x(t), ẋ(t), ẍ(t)), a.e. on [0, a],
x(0) = x0, ẋ(0) = u0, ẍ(0) = v0, and ẍ(t) ∈ S
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Proof. It is a direct application of Theorem 3.3 with F ≡ {0}. �

Now, we are going to prove the existence of solution for third order nonconvex
sweeping processes with a perturbation in separable Hilbert spaces, that is,

(ThOSPP)

{

x(3)(t) ∈ NC
S (ẍ(t)) + F (t, x(t), ẋ(t), ẍ(t)),

x(0) = x0, ẋ(0) = u0, ẍ(0) = v0.

Corollary 3.5. Let H be a separable Hilbert. Assume that

(1) S is a nonempty uniformly prox-regular closed subset in H;
(2) F : [0, T ]×H×H×H → H is an uniformly continuous set-valued mapping

with compact values;
(3) For any (t, x, y, z) ∈ [0, T ]×S×S×S the following tangent condition holds

lim inf
h→0+

1

h
e(x+ h(∂CdS(z) + F (t, x, y, z);S) = 0.

Then, for any x0, u0 ∈ H and every v0 ∈ S, there exists a ∈ (0, T ) such that
(ThOSPP) has at least one absolutely continuous solution on [0, a].

Proof. In [1], the author proved in Theorem 4.1 that the function dS is uniformly
regular over S. Thus, we can apply Theorem 3.3 with g := dS and the set-valued
mapping G := ∂CdS which satisfies the hypothesis of Theorem 3.3 then we get a
solution x of the third order differential inclusion

{

x(3)(t) ∈ ∂CdS(ẍ(t)) + F (t, x(t), ẋ(t), ẍ(t)),
x(0) = x0, ẋ(0) = u0, ẍ(0) = v0, and ẍ(t) ∈ S, ∀t ∈ [0, a].

Now, since ẍ(t) ∈ S we have ∂CdS(ẍ(t)) ⊂ NC
S (ẍ(t)) and so x is a solution of

(ThOSPP ). �

4. Application to differential variational inequalities

In this section we are interested with the following differential variational in-
equality: Given T > 0 and three points x0, u0, v0 ∈ H.

(DVI)







Find b ∈ (0, T ), x : [0, b] → H such that ẍ(t) ∈ S, on [0, b] and ∀w ∈ S

〈x(3)(t), w − ẍ(t)〉 ≤ a(x(t) + ẋ(t) − ẍ(t), w − ẍ(t)), a.e. on [0, b],
x(0) = x0, ẋ(0) = u0, ẍ(0) = v0.

where S = {x ∈ H : Λ(x) ≤ 0} (Λ : H → R is a C1 convex function), a(·, ·) is a real
bilinear, symmetric, bounded, and elliptic form on H × H. Let A be a linear and
bounded operator on H associated with a(·, ·), that is, a(u, v) = 〈Au, v〉 , ∀u, v ∈ H.
We prove the existence of solutions of (DVI). To do that, we recall first (see for
example [5]) that

(4.1) T (C;x) = {v ∈ H : lim
h→0+

h−1dC(x+ hv) = 0}, ∀x ∈ C,

for any closed convex set C. In our case we can check (see for instance [5]) that

(4.2) T (S;x) = {v ∈ H : 〈▽Λ(x), v〉 = 0}, ∀x ∈ S.
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Proposition 4.1. Assume that H is a separable Hilbert space and that Λ, and A

satisfy

(4.3) 〈▽Λ(x), ∂dS(z) +A(y − z)〉 = 0, ∀x, y, z ∈ H.

Then, for any x0, u0, v0 ∈ H with Λ(v0) = 0, there exists b ∈ (0, T ) such that (DVI)
has at least one absolutely continuous solution on [0, b].

Proof. Since S is a closed convex set, the variational inequality of type (DVI) can
be rewritten in the form of (ThOSPP) as follows







x(3)(t) −A(x(t) + ẋ(t) − ẍ(t)) ∈ NC
S (ẍ(t)),

x(0) = x0, ẋ(0) = u0, ẍ(0) = v0, and ẍ(t) ∈ S on [0, b].

Take F (t, x, y, z) = {A(x + y − z)}. Clearly F is uniformly continuous (since A is
bounded linear operator) with compact values. By (4.3), we have

〈▽Λ(x), ∂dS(z) +A(x + y − z)〉 = 0, ∀x, y, z ∈ H.

and so (4.2) yields
∂dS(z) +A(x+ y − z) ⊂ T (x;S)

and hence we obtain by (4.1)

lim inf
h→0+

1

h
e(x+ h(∂dS(z) +A(x + y − z));S) = 0.

Consequently, all the assumptions of Corollary 3.5 are satisfied and so the proof is
complete. �
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