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Abstract. In this paper, by a monotone iterative method and the Arzelà–Ascoli theorem,
we obtain the existence of entire positive radial solutions to the following quasilinear
elliptic equations

div(φ1(|∇u|)∇u) + a1(|x|)φ1(|∇u|)|∇u| = b1(|x|) f (u), x ∈ RN ,

and systems{
div(φ1(|∇u|)∇u) + a1(|x|)φ1(|∇u|)|∇u| = b1(|x|) f1(u, v), x ∈ RN ,

div(φ2(|∇v|)∇v) + a2(|x|)φ2(|∇v|)|∇v| = b2(|x|) f2(u, v), x ∈ RN ,

under simple conditions on f , fi, ai and bi (i = 1, 2).
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1 Introduction

The purpose of this paper is to investigate the existence of entire positive radial solutions to
the following quasilinear elliptic equation

div(φ1(|∇u|)∇u) + a1(|x|)φ1(|∇u|)|∇u| = b1(|x|) f (u), x ∈ RN , (1.1)

and system{
div(φ1(|∇u|)∇u) + a1(|x|)φ1(|∇u|)|∇u| = b1(|x|) f1(u, v), x ∈ RN ,

div(φ2(|∇v|)∇v) + a2(|x|)φ2(|∇v|)|∇v| = b2(|x|) f2(u, v), x ∈ RN ,
(1.2)

where ai, bi, f , fi (i = 1, 2) satisfy

(S1) ai, bi : RN → [0, ∞) are continuous;
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(S2) f : [0, ∞) → [0, ∞) is continuous and increasing, fi : [0, ∞)× [0, ∞) → [0, ∞) are contin-
uous and increasing (i.e., fi(s2, t2) ≥ fi(s1, t1), ∀s2 ≥ s1 ≥ 0 and t2 ≥ t1 ≥ 0),

and φi ∈ C1((0, ∞), (0, ∞)) satisfy:

(S3) (tφi(t))′ > 0, ∀t > 0;

(S4) there exist pi, qi > 1 such that

pi ≤
tΨ′i(t)
Ψi(t)

≤ qi, ∀t > 0,

where Ψi(t) =
∫ t

0 sφi(s)ds, t > 0;

(S5) there exist ki, li > 0 such that

ki ≤
tΨ′′i (t)
Ψ′i(t)

≤ li, ∀t > 0.

∆φ1 u = div(φ1(|∇u|)∇u) is called the φ1-Laplacian operator, which includes special cases
appearing in mathematical models in nonlinear elasticity, plasticity, generalized Newtonian
fluids, and in quantum physics, see e.g., Benci, Fortunato and Pisani [5], Cencelj, Repovš and
Virk [6], Fuchs and Li [9], Fuchs and Osmolovski [10], Fukagai and Narukawa [11] and [12]
and the references therein.

Some basic examples of φ1-Laplacian operators are

(1) when φ1(t) ≡ 2, Ψ1(t) = t2, t > 0, ∆φ1 u = ∆u is the Laplacian operator. In this case,
p1 = q1 = 2 in (S4), and k1 = l1 = 1 in (S5);

(2) when φ1(t) = ptp−2, Ψ1(t) = tp, t > 0, p > 1, ∆φ1 u = ∆pu is the p-Laplacian operator. In
this case, p1 = q1 = p in (S4), and k1 = l1 = p− 1 in (S5);

(3) when φ1(t) = ptp−2 + qtq−2, Ψ1(t) = tp + tq, t > 0, 1 < p < q, ∆φ1 u = ∆pu + ∆qu is
called as the (p + q)-Laplacian operator, p1 = p, q1 = q in (S4), and k1 = p− 1, l1 = q− 1
in (S5);

(4) when φ1(t) = 2p(1 + t2)p−1, Ψ1(t) = (1 + t2)p − 1, t > 0, p > 1/2, p1 = min{2, 2p},
q1 = max{2, 2p} in (S4), and k1 = min{1, 2p− 1}, l1 = max{1, 2p− 1} in (S5);

(5) when φ1(t) =
p(
√

1+t2−1)p−1
√

1+t2 , Ψ1(t) = (
√

1 + t2− 1)p, t > 0, p > 1, p1 = p, q1 = 2p in (S4),
and k1 = p− 1, l1 = 2p− 1 in (S5);

(6) when φ1(t) = ptp−2(ln(1 + t))q + qtp−1(ln(1+t))q−1

1+t , Ψ1(t) = tp(ln(1 + t))q, t > 0, p > 1,
q > 0, p1 = p, q1 = p + q in (S4), and k1 = p− 1, l1 = p + q− 1 in (S5).

We say that u ∈ C1(RN) is a solution to equation (1.1) if for each ψ ∈ C∞
0 (RN), it holds∫

RN
φ1(|∇u|)∇u∇ψdx−

∫
RN

a1(x)(φ1(|∇u|)∇u)ψdx = −
∫

RN
b1(x) f (u)ψdx.

Moreover, when lim|x|→∞ u(x) = +∞, we say that u is a large solution to equation (1.1).
For convenience, for i = 1, 2, we denote by

h−1
i the inverses of hi(t) = tφi(t), t > 0; (1.3)



Existence of entire radial solutions 3

Ii,ρ,g(∞) := lim
r→∞

Ii,ρ,g(r), Ii,ρ,g(r) :=
∫ r

0
h−1

i (Λρ,g(t))dt, r ≥ 0, (1.4)

where ρ, g ∈ C([0, ∞), [0, ∞)) and

Λρ,g(t) :=
1

Φg(t)

∫ t

0
Φg(s)ρ(s)ds, t > 0; (1.5)

Φg(t) := tN−1 exp
( ∫ t

0
g(τ)dτ

)
, t > 0; (1.6)

θi(t) := min{tpi , tqi}, Θi(t) := max{tpi , tqi}, t ≥ 0; (1.7)

θ−1
i (t) := min{t1/pi , t1/qi}, Θ−1

i (t) := max{t1/pi , t1/qi}, t ≥ 0; (1.8)

and, for an arbitrary α > 0 and t ≥ α,

Υ1,α(∞) := lim
t→∞

Υ1,α(t), Υ1,α(t) :=
∫ t

α

dτ

Θ−1
1 ( f (τ))

; (1.9)

Υ2,α(∞) := lim
t→∞

Υ2,α(t), Υ2,α(t) :=
∫ t

α

dτ

Θ−1
1 ( f1(τ, τ)) + Θ−1

2 ( f2(τ, τ))
. (1.10)

We see that for t > α

Υ′1,α(t) =
1

Θ−1
1 ( f (t))

> 0,

Υ′2,α(t) =
1

Θ−1
1 ( f1(t, t)) + Θ−1

2 ( f2(t, t))
> 0,

and Υ1,α, Υ2,α have the inverse functions Υ−1
1,α and Υ−1

2,α on [0, Υ1,α(∞)) and [0, Υ2,α(∞)), respec-
tively.

First, let us review the following model

∆u = b1(|x|) f (u), x ∈ RN . (1.11)

For b1(x) ≡ 1 on RN : when f satisfies (S2), Keller [14] and Osserman [19] first supplied a
necessary and sufficient condition∫ ∞

1

dt√
2F(t)

= ∞, F(t) =
∫ t

0
f (s)ds, (1.12)

for the existence of entire positive radial large solutions to equation (1.11).
For N ≥ 3, f (u) = uγ, γ ∈ (0, 1], and b1 satisfies (S1) with b1(x) = b1(|x|), Lair and Wood

[16] first showed that equation (1.11) has infinitely many entire positive radial large solutions
if and only if ∫ ∞

0
rb1(r)dr = ∞. (1.13)

The above results have been extended by many authors and in many contexts, see, for instance,
[1–3, 8, 21–23] and the references therein.

Next let us review the system{
∆u = b1(|x|)vγ1 , x ∈ RN ,

∆v = b2(|x|)uγ2 , x ∈ RN .
(1.14)
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When N ≥ 3 and 0 < γ1 ≤ γ2, Lair and Wood [17] have considered the existence and
nonexistence of entire positive radial solutions to system (1.14).

For the further results, see, for instance, [4, 7, 13, 15, 18, 24] and the references therein.
Now let us return to equation (1.1). Recently, C. A. Santos, J. Zhou, J. A. Santos [20]

considered the existence of entire positive radial and nonradial large solutions to equation

div(φ1(|∇u|)∇u) = b1(x) f (u), x ∈ RN .

A basic result in [20] is the following.

Lemma 1.1 ([20, Corollary 1.2]). Let (S3)–(S5) hold, f satisfy (S2), and b1 satisfy (S1) with
b1(x) = b1(|x|), x ∈ RN . If

I1,b1,0(∞) = ∞,

then equation (1.1) admits a sequence of symmetric radial large solutions um(|x|) ∈ C1(RN) with
um(0)→ ∞ as m→ ∞ if and only if f satisfies∫ ∞

1

dt
Ψ−1

1 (F(t))
= ∞,

where Ψ−1
1 is the inverse of Ψ1 which is given as in (S4), and F is given as in (1.12).

Recently, when ai ≡ 0 in RN , f1(u, v) = f (v), f2(u, v) = g(u), and g satisfies (S2), Zhang
[25] showed existence of entire positive radial solutions to (1.1) and system (1.2).

In this paper, we extend the results of [25] and show existence of entire positive radial
solutions to (1.1) and (1.2) for more general ai and fi.

Our main results for equation (1.1) are as follows.

Theorem 1.2. Let the hypotheses (S1)–(S5) hold. If

(S6) Υ1,α(∞) = ∞,

then equation (1.1) has one entire positive radial solution u∈C1(RN). Moreover, when I1,a1,b1(∞)<∞,
u is bounded, and limr→∞ u(r) = ∞ provided I1,a1,b1(∞) = ∞, where I1,a1,b1 is given as in (1.4).

Theorem 1.3. Under the hypotheses (S1)–(S5) and

(S7) I1,a1,b1(∞) < Υ1,α(∞) < ∞,

equation (1.1) has one entire positive radial bounded solution u ∈ C1(RN) satisfying

α + θ−1
1 ( f (α))I1,a1,b1(r) ≤ u(r) ≤ Υ−1

1,α (I1,a1,b1(r)) , ∀r ≥ 0,

where θ−1
1 is given as in (1.8).

Remark 1.4. When
∫ 1

0
dτ

Θ−1
1 ( f (τ))

= ∞, one can see that there is α > 0 sufficiently small such

that (S7) holds provided I1,a1,b1(∞) < ∞ and Υ1,α(∞) < ∞.

Remark 1.5. For f (s) = sγ1 , s ≥ 0, γ1 > 0, since Θ−1
1 (t) = t1/p1 , t ≥ 1, one can see that when

γ1 > p1, Υ1,α(∞) < ∞, and Υ1,α(∞) = ∞ provided γ1 ≤ p1, where p1 is given as in (S4).

Remark 1.6. For f (s) = (1+ s)γ1(ln(1+ s))µ1 , s ≥ 0, µ1, γ1 > 0, one can see that when γ1 > p1

or γ1 = p1 and µ1 > p1, Υ1,α(∞) < ∞, and Υ1,α(∞) = ∞ provided γ1 < p1 or γ1 = p1 and
µ1 ≤ p1.
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Remark 1.7. For f (s) = exp(c1s), s ≥ 0, c1 > 0, one can see that Υ1,α(∞) < ∞.

Our main results for system (1.2) are as follows.

Theorem 1.8. Let the hypotheses (S1)–(S5) hold. If

(S8) Υ2,α(∞) = ∞,

then system (1.2) has one entire positive radial solution (u, v) in C1(RN) × C1(RN). Moreover,
when I1,a1,b1(∞) + I2,a2,b2(∞) < ∞, u and v are bounded; when I1,a1,b1(∞) = I2,a2,b2(∞) = ∞,
limr→∞ u(r) = limr→∞ v(r) = ∞.

Theorem 1.9. Under the hypotheses (S1)–(S5) and

(S9) I1,a1,b1(∞) + I2,a2,b2(∞) < Υ2,α(∞) < ∞,

system (1.2) has one entire positive radial bounded solution (u, v) in C1(RN)× C1(RN) satisfying

α/2 + θ−1
1 ( f1(α/2, α/2))I1,a1,b1(r) ≤ u(r) ≤ Υ−1

2,α
(

I1,a1,b1(r) + I2,a2,b2(r)
)
, ∀r ≥ 0;

α/2 + θ−1
2 ( f2(α/2, α/2))I2,a2,b2(r) ≤ v(r) ≤ Υ−1

2,α
(

I1,a1,b1(r) + I2,a2,b2(r)
)
, ∀r ≥ 0.

Remark 1.10. For f1(s, s) = sγ1 , f2(s, s) = sγ2 , s ≥ 0, γ1, γ2 > 0, when γ1 > p1 or γ2 > p2,
Υ2,α(∞) < ∞, and Υ2,α(∞) = ∞ provided γ1 ≤ p1 and γ2 ≤ p2, where p1 and p2 are given as
in (S4).

Remark 1.11. For f1(s, s) = (1 + s)γ1(ln(1 + s))µ1 , f2(s, s) = (1 + s)γ2(ln(1 + s))µ2 , s ≥ 0,
γi, µi > 0 (i = 1, 2), when γ1 > p1 or γ2 > p2; or γ1 = p1 and µ1 > p1; or γ2 = p2 and µ2 > p2,
Υ2,α(∞) < ∞, and Υ2,α(∞) = ∞ provided γ1 < p1 and γ2 < p2; or γ1 = p1, µ1 ≤ p1 and
γ2 = p2, µ2 ≤ p2.

Remark 1.12. For f1(s, s) = exp(c1s) or f2(s, s) = exp(c2s), s ≥ 0, c1, c2 > 0, one can see that
Υ2,α(∞) < ∞.

Remark 1.13. We note that the paper [26] by X. Zhang et al. studied the nonexistence and
existence of positive radial large solutions to system (1.2). But, since their basic assumption
is that φi ∈ C1((0, ∞), [0, ∞)) (i = 1, 2) are nondecreasing and for any c ∈ (0, 1), there exist
constants σi ∈ (0, 1) such that

φi(cs) ≤ cσi φi(s), ∀s > 0, (1.15)

it is cσi < 1, hence (1.15) can not be set up when φi ≡ 1 on (0, ∞) (in this case, ∆φ1 u = ∆u is
the Laplacian operator).

2 Proof of Theorems 1.2 and 1.3

In this section we prove Theorems 1.2 and 1.3.

Lemma 2.1 ([20, Lemma 2.2]). Let (S3)–(S5) hold, θi, Θi and θ−1
i , Θ−1

i (i = 1, 2) be given as in
(1.7) and (1.8). We have

(i) θi, Θi, θ−1
i and Θ−1

i are strictly increasing on (0, ∞);

(ii) θ−1
i (β)h−1

i (t) ≤ h−1
i (βt) ≤ Θ−1

i (β)h−1
i (t), ∀β, t > 0.
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Let us consider the following initial value problem(
Φa1(r)φ1(u′(r))u′(r)

)′
= b1(r)Φa1(r) f (u), r > 0, u(0) = α, u′(0) = 0, (2.1)

where Φa1(r) is given as in (1.6).
By a simple calculation,

u′(r) = h−1
1

(
1

Φa1(r)

∫ r

0
b1(s)Φa1(s) f (u(s))ds

)
, r > 0, u(0) = α, (2.2)

and thus

u(r) = α +
∫ r

0
h−1

1

(
1

Φa1(t)

∫ t

0
b1(s)Φa1(s) f (u(s))ds

)
dt, r ≥ 0. (2.3)

Note that solutions in C[0, ∞) to problem (2.3) are solutions in C1[0, ∞) to problem (2.1).
Let {um}m≥1 be the sequence of positive continuous functions defined on [0, ∞) by

u0(r) = α,

um(r) = α +
∫ r

0
h−1

1

(
1

Φa1(t)

∫ t

0
b1(s)Φa1(s) f (um−1(s))ds

)
dt, r ≥ 0.

(2.4)

Obviously,

u′m(r) = h−1
1

(
1

Φa1(r)

∫ r

0
b1(s)Φa1(s) f (um−1(s))ds

)
, r > 0, (2.5)

and, for all r ≥ 0 and m ∈ N, um(r) ≥ α, and u0 ≤ u1. Then (S1)–(S3) and Lemma 2.1 yield
u1(r) ≤ u2(r), ∀r ≥ 0. Continuing this line of reasoning, we obtain that the sequence {um}
is non-decreasing on [0, ∞). Moreover, we obtain by (S1)–(S3) and Lemma 2.1 that for each
r > 0

u′m(r) = h−1
1

(
1

Φa1(r)

∫ r

0
b1(s)Φa1(s) f (um−1(s))ds

)
≤ h−1

1

(
f (um(r))

1
Φa1(r)

∫ r

0
b1(s)Φa1(s)ds

)
≤ Θ−1

1 ( f (um(r)))h−1
1

(
1

Φa1(r)

∫ r

0
b1(s)Φa1(s)ds

)
,

and ∫ um(r)

a

dτ

Θ−1
1 ( f (τ))

≤ I1,a1,b1(r).

Consequently, for an arbitrary R > 0,

Υ1α(um(r)) ≤ I1,a1,b1(r) ≤ I1,a1,b1(R), ∀r ∈ [0, R]. (2.6)

(i) When (S6) holds, we see that

Υ−1
1,α(∞) = ∞ and um(r) ≤ Υ−1

1,α (I1,a1,b1(r)) ≤ Υ−1
1,α (I1,a1,b1(R)) , ∀r ∈ [0, R], (2.7)

i.e., the sequence {um} is bounded on [0, R] for an arbitrary R > 0.
It follows by (2.5) that {u′m} is bounded on [0, R]. By the Arzelà–Ascoli theorem, {um} has

a subsequence converging uniformly to u on [0, R]. Since {um} is non-decreasing on [0, ∞),
we see that {um} itself converges uniformly to u on [0, R]. By the arbitrariness of R, we see
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that u is an entire positive radial solution to equation (1.1). Moreover, when I1,a1,b1(∞) < ∞,
we see by (2.7) that

u(r) ≤ Υ−1
1,α (I1,a1,b1(∞)) , ∀r ≥ 0.

Moreover, when I1,a1,b1(∞) = ∞, we see by (S2) and Lemma 2.1 that

u(r) ≥ α + θ−1
1 ( f (α))I1,a1,b1(r), ∀r ≥ 0.

Thus limr→∞ u(r) = ∞.
(ii) When (S7) holds, we see by (2.6) that

Υ1,α(um(r)) ≤ I1,a1,b1(∞) < Υ1,α(∞) < ∞. (2.8)

Since Υ−1
1,α is strictly increasing on [0, Υ1,α(∞)), we have

um(r) ≤ Υ−1
1,α (I1,a1,b1(∞)) < ∞, ∀r ≥ 0. (2.9)

The rest part of the proof follows from (i). The proof is finished.

3 Proof of Theorems 1.8 and 1.9

In this section we prove Theorems 1.8 and 1.9.
Let us consider the following initial value problem

(
Φa1(r)φ1(u′(r))u′(r)

)′
= b1(r)Φa1(r) f1(u, v), r > 0,(

Φa2(r)φ2(v′(r))v′(r)
)′
= b2(r)Φa2(r) f2(u, v), r > 0,

u(0) = v(0) = α/2, u′(0) = v′(0) = 0,

which is equivalent to
u(r) = α/2 +

∫ r

0
h−1

1

(
1

Φa1(t)

∫ t

0
b1(s)Φa1(s) f1(u(s), v(s))ds

)
dt, r ≥ 0,

v(r) = α/2 +
∫ r

0
h−1

2

(
1

Φa2(t)

∫ t

0
b2(s)Φa2(s) f2(u(s), v(s))ds

)
dt, r ≥ 0.

Let {um}m≥1 and {vm}m≥0 be the sequences of positive continuous functions defined on
[0, ∞) by

u0(r) = v0(r) = α/2,

um(r) = α/2 +
∫ r

0
h−1

1

(
1

Φa1(t)

∫ t

0
b1(s)Φa1(s) f1(um−1(s), vm−1(s))ds

)
dt, r ≥ 0,

vm(r) = α/2 +
∫ r

0
h−1

2

(
1

Φa2(t)

∫ t

0
b2(s)Φa2(s) f2(um−1(s), vm−1(s))ds

)
dt, r ≥ 0.

Obviously, for all r ≥ 0 and m ∈ N, um(r) ≥ α/2, vm(r) ≥ α/2 and u0 ≤ u1, v0 ≤ v1.
(S1)–(S3) and Lemma 2.1 yield u1(r) ≤ u2(r) and v1(r) ≤ v2(r) on [0, ∞). Continuing this
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line of reasoning, we obtain that the sequences {um} and {vm} are increasing on [0, ∞).
Moreover, we obtain by (S1)–(S3) and Lemma 2.1 that for each r > 0

u′m(r) = h−1
1

(
1

Φa1(r)

∫ r

0
b1(s)Φa1(s) f1(um−1(s), vm−1(s))ds

)
≤ h−1

1

(
f1(um−1(r), vm−1(r))

1
Φa1(t)

∫ t

0
b1(s)Φa1(s)ds

)
≤ Θ−1

1 ( f1(um(r), vm(r)))h−1
1

(
1

Φa1(r)

∫ r

0
b1(s)Φa1(s)ds

)
≤ Θ−1

1 ( f1(um(r) + vm(r), um(r) + vm(r)))
(
h−1

1 (Λb1,a1(r)) + h−1
2 (Λb2,a2(r))

)
,

where Λb1,a1(r) and Λb2,a2(r) are given as in (1.5).
In a similar way, we can show that

v′m(r) = h−1
2

(
1

Φa2(t)

∫ t

0
b2(s)Φa2(s) f2(um−1(s), vm−1(s))ds

)
dt

≤ Θ−1
2 ( f2(um(r), vm(r)))h−1

2

(
1

Φa2(t)

∫ t

0
b2(s)Φa2(s)ds

)
≤ Θ−1

2 ( f2(um(r) + vm(r), um(r) + vm(r)))
(
h−1

1 (Λb1,a1(r)) + h−1
2 (Λb2,a2(r))

)
.

Consequently,

u′m(r) + v′m(r) ≤
(

Θ−1
1 ( f1(vm(r) + um(r), vm(r) + um(r)))

+ Θ−1
2 ( f2(vm(r) + um(r), vm(r) + um(r)))

)
×
(
h−1

1 (Λb1,a1(r)) + h−1
2 (Λb2,a2(r))

)
, r > 0,

and ∫ um(r)+vm(r)

a

dτ

Θ−1
1 ( f1(τ, τ)) + Θ−1

2 ( f2(τ, τ))
≤ I1,b1,a1(r) + I2,b2,a2(r), r > 0,

Υ2,α(um(r) + vm(r)) ≤ I1,b1,a1(r) + I2,b2,a2(r), ∀r ≥ 0.

The remaining proofs are similar to that for Theorems 1.2 and 1.3. Here we omit their proof.
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[7] F. Cîrstea, V. Rădulescu, Entire solutions blowing up at infinity for semilinear elliptic
systems, J. Math. Pures Appl. (9) 81(2002), 827–846. MR1940369; url

[8] L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault, Entire large solutions for semilinear
elliptic equations, J. Differential Equations 253(2012), 2224–2251. MR2946970; url

[9] M. Fuchs, G. Li, Variational inequalities for energy functionals with nonstandard growth
conditions, Abstr. Appl. Anal. 3(1998), 41–64. MR1700276; url

[10] M. Fuchs, V. Osmolovski, Variational integrals on Orlicz–Sobolev spaces, Z. Anal. An-
wendungen 17(1998), 393–415. MR1632563; url

[11] N. Fukagai, K. Narukawa, Nonlinear eigenvalue problem for a model equation of an
elastic surface, Hiroshima Math. J. 25(1995), 19–41. MR1322600

[12] N. Fukagai, K. Narukawa, On the existence of multiple positive solutions of quasilinear
elliptic eigenvalue problems, Ann. Mat. Pura Appl. 186(2007), 539–564. MR2317653; url
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