
Electronic Journal of Qualitative Theory of Differential Equations
2016, No. 19, 1–21; doi: 10.14232/ejqtde.2016.1.19 http://www.math.u-szeged.hu/ejqtde/

A priori estimates of global solutions of
superlinear parabolic systems

Július PačutaB
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Abstract. We consider the parabolic system ut − ∆u = urvp, vt − ∆v = uqvs in
Ω × (0, ∞), complemented by the homogeneous Dirichlet boundary conditions and
the initial conditions (u, v)(·, 0) = (u0, v0) in Ω, where Ω is a smooth bounded domain
in RN and u0, v0 ∈ L∞(Ω) are nonnegative functions. We find conditions on p, q, r, s
guaranteeing a priori estimates of nonnegative classical global solutions. More pre-
cisely every such solution is bounded by a constant depending on suitable norm of the
initial data. Our proofs are based on bootstrap in weighted Lebesgue spaces, universal
estimates of auxiliary functions and estimates of the Dirichlet heat kernel.
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1 Introduction

Superlinear parabolic problems represent important mathematical models for various phe-
nomena occurring in physics, chemistry or biology. Therefore such problems have been in-
tensively studied by many authors. Beside solving the question of existence, uniqueness,
regularity etc. significant effort has been made to obtain a priori estimates of solutions. A
priori estimates are important in the study of global solutions (i.e. solutions which exist for
all positive times) or blow-up solutions (i.e. solutions whose L∞-norm becomes unbounded
in finite time); superlinear parabolic problems may possess both of these types of solutions.
Uniform a priori estimates also play a crucial role in the study of so-called threshold solutions,
i.e. solutions lying on the borderline between global existence and blow-up.

Stationary solutions of parabolic problems are particular global solutions and their a priori
estimates are of independent interest since they can be used to prove the existence and/or
multiplicity of steady states, for example. The proofs of such estimates are usually much easier
than the proofs of estimates of time-dependent solutions. On the other hand, the methods of
the proofs of a priori estimates of stationary solutions can often be modified to yield a priori
estimates of global time-dependent solutions.

BEmail: julius.pacuta@fmph.uniba.sk

http://www.math.u-szeged.hu/ejqtde/


2 J. Pačuta

In this paper we study global classical positive solutions of the model problem

ut − ∆u = urvp, (x, t) ∈ Ω× (0, ∞),

vt − ∆v = uqvs, (x, t) ∈ Ω× (0, ∞),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, ∞),

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω,


(1.1)

where p, q, r, s ≥ 0 and

Ω ⊂ RN is smooth and bounded, u0, v0 ∈ L∞(Ω) are nonnegative. (1.2)

In this case, sufficient conditions on the exponents p, q, r, s guaranteeing a priori estimates and
existence of positive stationary solutions have been obtained in [3, 13, 16–19]. In particular,
the conditions in [10] are valid for a large class of so-called very weak solutions, and they are
optimal in this class. We find sufficient conditions on the exponents guaranteeing uniform a
priori estimates of global classical solutions. Our method is in some sense similar to that used
in [10] (both methods are based on bootstrap in weighted Lebesgue spaces and estimates of
auxiliary functions of the form uav1−a; the idea of using such auxiliary functions for elliptic
systems seems to go back to a paper [12]) but our proofs are much more involved. In partic-
ular, we have to use precise estimates of the Dirichlet heat semigroup and several additional
ad-hoc arguments. These difficulties cause that our sufficient conditions are quite technical
and probably not optimal. On the other hand, our results are new and our approach is also
new in the parabolic setting: Although the bootstrap in weighted Lebesgue spaces has been
used many times in the case of superlinear elliptic problems (see the references in [10], for
example), it has not yet been used to prove a priori estimates of global solutions of super-
linear parabolic problems. In fact, the known methods for obtaining such estimates always
require some special structure of the problem and cannot be used for system (1.1) in general.
In addition, our method is quite robust: It can also be used if the problem is perturbed or if
we replace the Dirichlet boundary conditions by the Neumann ones, for example.

Next we present our main results concerning problem (1.1). Beside (1.2), we will further
assume that

p, q, r, s ≥ 0; if q = 0 then either r > 1 or s ≤ 1, (1.3)

and we denote by ‖ · ‖1,δ the norm in the weighted Lebesgue space L1(Ω; dist(x, ∂Ω) dx).

Theorem 1.1. Assume (1.2), (1.3) and pq > (r− 1)(s− 1). Assume also that either

r > 1, p > 0, p + r <
N + 3
N + 1

, s +
2

N + 1
r− 1

p + r− 1
<

N + 3
N + 1

or

r ≤ 1, 0 < p <
2

N + 1
, s <

N + 3
N + 1

.

Let (u, v) be a global solution of problem (1.1). Then there exists C = C(p, q, r, s, Ω, ‖u0‖∞, ‖v0‖∞)

such that

‖u(t)‖∞ + ‖v(t)‖∞ ≤ C, t ≥ 0.
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Theorem 1.2. Assume (1.2), (1.3) and either max{r, s} > 1 or pq > (r− 1)(s− 1). Assume also

p ≥ 1, p + r <
N + 3
N + 1

, s ≤ 1, (p + r)
(

p− 2
N + 1

)
+ r < 1

and
0 < q <

1− r
p− 2

N+1

(
1− N − 1

N + 1
s
)

.

Let (u, v) be a global solution of problem (1.1). Then, given τ > 0, there exists C = C(p, q, r, s, Ω, τ,
‖u(τ)‖1,δ, ‖v(τ)‖1,δ) such that

‖u(t)‖∞ + ‖v(t)‖∞ ≤ C, t ≥ τ. (1.4)

The constant C may explode if τ → 0+, and is bounded for ‖u(τ)‖1,δ, ‖v(τ)‖1,δ bounded.

One of the main applications of uniform a priori estimates of global positive solutions
of (1.1) is the proof of global existence and boundedness of threshold solutions lying on the
borderline between global existence and blow-up. Let us mention that our conditions on
p, q, r, s from Theorems 1.1 and 1.2 guarantee that both global and blow-up solutions (hence
also threshold solutions) of (1.1) exist; see [1,14]. See also [2,15,20] for other results on blow-up
of positive solutions of (1.1).

As already mentioned, our approach is quite robust. It can also be used, for example, for
the following problem with Neumann boundary conditions

ut − ∆u = urvp − λu, (x, t) ∈ Ω× (0, ∞),

vt − ∆v = uqvs − λv, (x, t) ∈ Ω× (0, ∞),

uν(x, t) = vν(x, t) = 0, (x, t) ∈ ∂Ω× (0, ∞),

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω,


(1.5)

where Ω, p, q, r, s and u0, v0 are as above, λ > 0 and ν is the outer unit normal on the boundary
∂Ω. The terms −λu,−λv with λ > 0 are needed in (1.5), since otherwise (1.5) cannot admit
both global and blow-up positive solutions. Let us also note that in this case one has to work
in standard (and not weighted) Lebesgue spaces and that the restrictions on the exponents
p, q, r, s are less severe than in the case of Dirichlet boundary conditions: roughly speaking,
one can replace N with N − 1 in those restrictions (in particular, the condition p + r < N+3

N+1
becomes p + r < N+2

N in this case). As other particular application of our method, we present
the following theorem.

Theorem 1.3. Consider problem

ut − ∆u = uv− b1u, (x, t) ∈ Ω× (0, ∞),

vt − ∆v = b2u, (x, t) ∈ Ω× (0, ∞),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, ∞),

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω,


(1.6)

where Ω is a bounded domain with smooth boundary, N ≤ 2, b1 ≥ 0, b2 > 0 and u0, v0 ∈ L∞(Ω).
Then there exists C = C(Ω, b1, b2) such that

lim sup
t→∞

(‖u(t)‖∞ + ‖v(t)‖∞) ≤ C

for every global nonnegative solution (u, v) of problem (1.6).
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More detailed proofs of Theorems 1.1–1.3 can be found in [9].
If r = s = 0 and p, q > 1, then a very easy argument in [6] yields a universal estimate

of ‖u(τ)‖1,δ, ‖v(τ)‖1,δ for all τ ≥ 0, hence Theorem 1.2 guarantees estimate (1.4) with C =

C(p, q, Ω, τ). The same estimate was obtained in [6] under the assumption p, q ∈
(
1, N+3

N+1

)
which is different from that in Theorem 1.2 (we do not require q < N+3

N+1 , for example). Of
course, if r = s = 0, then one could also use different methods for obtaining a priori estimates,
e.g. the parabolic Liouville theorems in [5] together with scaling and doubling arguments to
prove qualitative universal estimates. The main advantage of our results and proofs is the fact
that we do not need the assumption r = s = 0.

2 Preliminaries

We introduce some notation we will use frequently. Denote δ(x) = dist(x, ∂Ω) for x ∈ Ω,
and for 1 ≤ p ≤ ∞ define the weighted Lebesgue spaces Lp

δ = Lp
δ (Ω) := Lp(Ω; δ(x) dx). If

1 ≤ p < ∞, then the norm in Lp
δ is defined by ‖u‖p,δ =

(∫
Ω |u(x)|pδ(x) dx

)1/p. Recall that
L∞

δ = L∞(Ω; δ(x) dx) with ‖u‖∞,δ = ‖u‖∞. We will use the notation ‖ · ‖p for the norm in
Lp(Ω) for p ∈ [1, ∞), as well.

Let λ1 be the first eigenvalue of the problem

−∆φ = λφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω,

}

and ϕ1 to be the corresponding positive eigenfunction satisfying ‖ϕ1‖2 = 1. There holds

C(Ω)δ(x) ≤ ϕ1(x) ≤ C′(Ω)δ(x) for all x ∈ Ω. (2.1)

Therefore the norm ‖u‖p,ϕ1 =
(∫

Ω |u(x)|p ϕ1(x) dx
)1/p is equivalent to the norm ‖u‖p,δ in

Lp
δ (Ω) for 1 ≤ p < ∞.

Let (u, v) be a solution of system (1.1). Then (u, v) solves the system of integral equations

u(t) = et∆u0 +
∫ t

0
e(t−s′)∆urvp(s′) ds′, v(t) = et∆v0 +

∫ t

0
e(t−s′)∆uqvs(s′) ds′ (2.2)

where t ≥ 0 and
(
et∆)

t≥0 is the Dirichlet heat semigroup in Ω. In the following lemma
we recall some basic properties of the semigroup

(
et∆)

t≥0, which we will use often. The
corresponding proofs can be found e.g. in [6].

Lemma 2.1. Let Ω be arbitrary bounded domain.

(i) If φ ∈ L1
δ(Ω), φ ≥ 0, then et∆φ ≥ 0.

(ii) ‖et∆φ‖1,ϕ1 = e−λ1t‖φ‖1,ϕ1 for t ≥ 0, φ ∈ L1
δ(Ω).

(iii) If p ∈ (1, ∞], then ‖et∆φ‖p,δ ≤ C(Ω)e−λ1t‖φ‖p,δ for t ≥ 0, φ ∈ Lp
δ (Ω).

(iv) Let Ω be of the class C2. For 1 ≤ p < q ≤ ∞, there exists constant C = C(Ω) such that, for all
φ ∈ Lp

δ (Ω), it holds

‖et∆φ‖q,δ ≤ C(Ω)t−
N+1

2

(
1
p−

1
q

)
‖φ‖p,δ, t > 0.
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Assertions (iii) and (iv) from Lemma 2.1 for 1 ≤ p < q ≤ ∞, t > 0 and ε ∈ (0, 1) imply

‖et∆φ‖q,δ ≤ C(Ω)e−λ1εt((1− ε)t)−
N+1

2

(
1
p−

1
q

)
‖φ‖p,δ, φ ∈ Lp

δ (Ω).

If we multiply the equations in (2.2) by ϕ1 and integrate on Ω, then assertions (i) and (ii)
from Lemma 2.1 imply

‖u(t)‖1,ϕ1 ≥ e−λ1t‖u0‖1,ϕ1 , ‖v(t)‖1,ϕ1 ≥ e−λ1t‖v0‖1,ϕ1 . (2.3)

We will also use the following estimate of the semigroup
(
et∆)

t≥0; see e.g. [11].

Lemma 2.2. Let Ω be smooth bounded domain. For every f ∈ L1
δ(Ω), f ≥ 0, there holds

(et∆ f )(x) ≥ C(t)δ(x)‖ f ‖1,δ, x ∈ Ω,

where the constant C may be arbitrarily small if t→ 0+, and is positive for t bounded.

Let (u, v) be a solution of system (1.5). Then (u, v) solves the system of integral equa-
tions similar to (2.2) with etL instead of et∆, where etL := e−λtet∆N , t ≥ 0 is the semigroup
corresponding to operator L := ∆− λ with homogeneous Neumann boundary condition and(
et∆N

)
t≥0 is the Neumann heat semigroup in Ω. For the Neumann semigroup, estimates sim-

ilar to those from Lemma 2.1 are true; see [4, 8]. One can also obtain inequalities similar to
(2.3) with ϕ1 replaced by 1 and λ1 replaced by λ.

In the following we will use the notation from [10]. We set

A :=

{
[ar, as] ∩ (0, 1) if pq ≥ (r− 1)(s− 1) or min{r, s} ≤ 1,

[as, ar] ∩ (0, 1) if pq < (r− 1)(s− 1) and r, s > 1,

where

ar :=

{
r−1

p+r−1 if r > 1,

0 if r ≤ 1,
as :=

{ q
q+s−1 if s > 1,

1 if s ≤ 1.

Note that the set A is nonempty provided there holds

if p = 0, then either s > 1 or r ≤ 1,

if q = 0, then either r > 1 or s ≤ 1.

}
(2.4)

The following lemma is an adaptation of [10, Lemma 7] to systems (1.1) and (1.5):

Lemma 2.3. Assume p, q, r, s ≥ 0, pq 6= (1− r)(1− s) and (2.4). For given a ∈ A, there exists
κ ≥ 0 and C = C(p, q, r, s, a) such that any global nonnegative solution of (1.1) satisfies

(uav1−a)t − ∆(uav1−a) ≥ Fa(u, v) ≥ C(uav1−a)κ, t ∈ (0, ∞), (2.5)

where

Fa(u, v) := aua−1v1−a(ut − ∆u) + (1− a)uav−a(vt − ∆v)

= aur+a−1vp+1−a + (1− a)uq+avs−a, t ∈ (0, ∞).

Similarly, for any global nonnegative solution of (1.5), there holds

(uav1−a)t − ∆(uav1−a) + λ(uav1−a) ≥ C(uav1−a)κ, t ∈ (0, ∞). (2.6)

If
max{r, s} > 1 or pq > (r− 1)(s− 1), (2.7)

then κ > 1.
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Let (u, v) be a global nonnegative solution of system (1.1). Denote w = w(t) :=∫
Ω uav1−a(t)ϕ1 dx. The following estimates are based on ideas from [7]. Let a ∈ A and

condition (2.7) be true (then κ > 1). Then due to Lemma 2.3 and due to Jensen’s inequality, it
holds

wt + λ1w ≥ C
∫

Ω
uaκv(1−a)κ(t)ϕ1 dx ≥ Cwκ, t ∈ (0, ∞), (2.8)

where C = C(Ω, p, q, r, s, a) is independent of w. Since w is global and satisfies the inequality
(2.8) for all t > 0, it holds

w(t) =
∫

Ω
uav1−a(t)ϕ1 dx ≤

(
λ1

C

) 1
κ−1

for all t ≥ 0 and a ∈ A. (2.9)

Lemma 2.3 also implies

wt(s′) + λ1w(s′) ≥ C
∫

Ω
ur+a−1vp+1−a(s′)ϕ1 dx, s′ ∈ (0, ∞). (2.10)

Multiplying inequality (2.10) by eλ1s′ , integrating on interval [0, t] with respect to s′ and using
0 ≤ w ≤ C, we deduce that∫ t

0
e−λ1(t−s′)

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′ ≤ C. (2.11)

Since there holds e−λ1(t−s′) ≥ e−λ1t for s′ ∈ [0, t], the ineqality (2.11) implies∫ t

0

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′ ≤ Ceλ1t ≤ C′, (2.12)

where C′ = C′(Ω, p, q, r, s, a, t).
Let (u, v) be a global nonnegative solution of system (1.5). Since (u, v) satisfies homo-

geneous Neumann boundary conditions, so does uav1−a and hence Green’s formula implies∫
Ω ∆(uav1−a(t)) dx = 0 for t ≥ 0 and a ∈ A. We obtain estimates similar to (2.9), (2.11), (2.12)

with ϕ1, λ1 replaced by 1, λ, respectively, in (2.9), (2.11), (2.12) if (2.7) is true.

3 Proofs of Theorems 1.1–1.3

In the following proofs, every constant may depend on Ω, p, q, r, s, however we do not denote
this dependence. The constants may vary from step to step.

For 0 < p < 2
N+1 , r ≤ 1 denote

K̂ :
[

1,
p + 1

p

)
−→ R∪ {∞},

K̂(M) =


M(p+1)(N+1)

(p+1)(N+1)−2M , M ∈
[
1, (p+1)(N+1)

2

)
,

∞, M ∈
[
(p+1)(N+1)

2 , p+1
p

)
,

k̂ :
[

1,
p + 1

p

)
−→ R,

k̂(M) =
M(p + r)

M− (M− 1)(p + 1)
.

(3.1)
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For r > 1, p + r < N+3
N+1 denote

K′ :
[

1,
p + r

p + r− 1

)
−→ R∪ {∞},

K′(M) =


M(p+r)(N+1)

(p+r)(N+1)−2M , M ∈
[
1, (p+r)(N+1)

2

)
,

∞, M ∈
[
(p+r)(N+1)

2 , p+r
p+r−1

)
,

k′ :
[

1,
p + r

p + r− 1

)
−→ R,

k′(M) =
M(p + r)

M− (M− 1)(p + r)
.

(3.2)

Observe that

K̂(M) > max{M, k̂(M)} for all M ∈
[

1,
p + 1

p

)
, (3.3)

since p < 2
N+1 and

K′(M) > k′(M) > M for all M ∈
[

1,
p + r

p + r− 1

)
, (3.4)

since p + r < N+3
N+1 .

Lemma 3.1. Let p + r < N+3
N+1 , p > 0 and conditions (2.4), (2.7) be true. Let (u, v) be a global

nonnegative solution of problem (1.1).

(i) Assume r > 1. Then for γ ∈ [p + r, ∞] and T ≥ 0, there exists C = C(p, q, r, s, Ω, T) such that

sup
s′∈[0,T]

‖u(s′)‖γ,δ ≤ C‖u0‖γ,δ.

(ii) Assume r > 1, pq > (r− 1)(s− 1) or r ≤ 1, p < 2
N+1 . Then for γ ∈

[
max{1, p + r}, N+3

N+1

)
,

there exists C = C(p, q, r, s, Ω) such that

sup
s′∈[0,T]

‖u(s′)‖γ,δ ≤ C(1 + ‖u0‖γ,δ), T ≥ 0.

(iii) Assume r ≤ 1, p < 2
N+1 . Then for γ ∈ [max{1, p + r}, ∞] and T ≥ 0, there exists C =

C(p, q, r, s, Ω, T) such that

sup
s′∈[0,T]

‖u(s′)‖γ,δ ≤ C(1 + ‖u0‖γ,δ).

Remark 3.2. In the assertion (i) of Lemma 3.1, the constant C is bounded for T bounded.

Proof. Let γ ∈
[
max{1, p + r}, N+3

N+1

)
, a ∈ A and ε ∈

(
0, 1− p

p+1−a

)
. Denote κ := (p+r)(1−a)

p+1−a .
For T ≥ 0, t ∈ [0, T] we estimate

‖u(t)‖γ,δ ≤ C
[
‖u0‖γ,δ +

∫ t

0
e−λ1

(
p

p+1−a+ε
)
(t−s′)

(t− s′)−
N+1

2 (1− 1
γ )‖urvp(s′)‖1,δ ds′

]
≤ C

[
‖u0‖γ,δ +

∫ t

0

∫
Ω

[
e−λ1

(
p

p+1−a

)
(t−s′)ur−κvp(s′)

] [
f uκ(s′)ϕ1 dx ds′

]]
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where f = f (s′) := e−λ1ε(t−s′)(t− s′)−
N+1

2 (1− 1
γ ). Now, using Hölder’s inequality we obtain

‖u(t)‖γ,δ ≤ C

[
‖u0‖γ,δ +

(∫ t

0
g ds′

) p
p+1−a

(∫ t

0
f

p+1−a
1−a ‖up+r(s′)‖1,δ ds′

) 1−a
p+1−a

]
,

where g = g(s′) := e−λ1(t−s′)‖ur+a−1vp+1−a(s′)‖1,δ. We use (2.11) to estimate

‖u(t)‖γ,δ ≤ C

[
‖u0‖γ,δ + I

1−a
p+1−a

(
sup

s′∈[0,T]
‖u(s′)‖γ,δ

)κ]
, (3.5)

where I = I(t) :=
∫ t

0 e−λ1ε
p+1−a

1−a (t−s′)(t− s′)−
N+1

2 (1− 1
γ )

p+1−a
1−a ds′.

We prove that the function I is finite in [0, ∞), i.e. due to our assumptions on p, q, r, s, there
holds

N + 1
2

(
1− 1

γ

)
p + 1− a

1− a
< 1 (3.6)

for some a ∈ A.
In fact, in the following proof we will choose

a =
r− 1

p + r− 1
in case (i), (3.7)

a >
r− 1

p + r− 1
sufficiently close to

r− 1
p + r− 1

in case (ii) for r > 1, (3.8)

a > 0 sufficiently small in case (iii) or (ii) for r ≤ 1. (3.9)

The choice (3.8) is possible, since due to the assumptions pq > (r − 1)(s − 1) and p > 0,
we have a ∈ A. If a is defined by (3.7) or (3.8) then p+1−a

1−a is close to p + r and condition
p + r < N+3

N+1 implies the inequality (3.6). If a is defined by (3.9), then p+1−a
1−a is close to p + 1

and condition p < 2
N+1 implies the inequality (3.6). Note that the function I is bounded by a

constant independent of T.
First we prove (ii). In the estimate (3.5) we choose a defined by (3.8), if r > 1, or by (3.9), if

r ≤ 1. In both cases we have κ < 1, hence the assertion (ii) follows from Young’s inequality.
Assertion (iii) for γ ∈

[
max{1, p + r}, N+3

N+1

)
follows from assertion (ii).

To prove (i) for γ ∈
[
p + r, N+3

N+1

)
we choose a defined by (3.7) in estimate (3.5). Then κ = 1

and the assertion (i) for γ ∈
[
p + r, N+3

N+1

)
and T small enough follows from the estimate (3.5).

The assertion (i) for γ ∈
[
p + r, N+3

N+1

)
actually holds for every T ≥ 0.

Now we prove the assertion (i) for γ ∈
[N+3

N+1 , ∞
]
. Fix K ∈

[N+3
N+1 , ∞

)
. Then there exists

M ∈
[
1, (p+r)(N+1)

2

]
such that K′(M) > K > k = k′(M) (where functions K′, k′ are defined by

(3.2)). For t ∈ [0, T] and a defined by (3.7) we estimate

‖u(t)‖K,δ ≤ C
[
‖u0‖K,δ +

∫ t

0
(t− s′)−

N+1
2 ( 1

M−
1
K )‖urvp(s′)‖M,δ ds′

]
. (3.10)

Observe that M < p+1−a
p , since M ≤ (p+r)(N+1)

2 < p+r
p+r−1 (the last inequality is true due to the

assumption p + r < N+3
N+1 ). Hence Hölder’s inequality yields

‖urvp(s′)‖M,δ =

(∫
Ω

[
upM r+a−1

p+1−a vpM(s′)
] [

uMκ(s′)
]

ϕ1 dx
) 1

M

≤
(∫

Ω
ur+a−1vp+1−a(s′)ϕ1 dx

) p
p+1−a

(∫
Ω

uk(s′)ϕ1 dx
) p+1−a−pM

M(p+1−a)

,

(3.11)
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since k = M (p+r)(1−a)
p+1−a−pM due to our choice of a. We use (3.11) and Hölder’s inequality to obtain

‖u(t)‖K,δ ≤ C

[
‖u0‖K,δ +

(
sup

s′∈[0,T]
‖u(s′)‖k,δ

)κ (∫ t

0

∫
Ω

ur+a−1vp+1−a(s′)ϕ1 dx ds′
) p

p+1−a

J

]
,

where

J = J(t) :=
(∫ t

0
(t− s′)−

N+1
2 ( 1

M−
1
K )

p+1−a
1−a ds′

) 1−a
p+1−a

.

Notice that κ is equal to 1. Observe that I0 is finite on [0, ∞), since N+1
2

( 1
M −

1
K

) p+1−a
1−a < 1.

This follows from the definition (3.2) of function K′ and our choice of K. Since k < K, we can
use (2.12) to obtain

‖u(t)‖K,δ ≤ C

[
‖u0‖K,δ + C(T) sup

s′∈[0,T]
‖u(s′)‖K,δ

]
.

This estimate implies the assertion (i) with γ ∈
[N+3

N+1 , ∞
)

for T small, hence this assertion is
actually true for every T ≥ 0.

If M ∈
(
(p+r)(N+1)

2 , p+r
p+r−1

)
, then we can choose K = ∞ and k ∈ (k′(M), ∞).

The proof of the assertion (iii) for γ ∈
[N+3

N+1 , ∞
]

is similar to the proof of the assertion (i)
for γ ∈

[N+3
N+1 , ∞

]
. One would use (3.1), (3.3) instead of (3.2), (3.4).

Lemma 3.3. Let p + r < N+3
N+1 , p > 0 and conditions (2.4), (2.7) be true. Let (u, v) be a global

nonnegative solution of problem (1.1).

(i) Assume r > 1. Then for γ ∈
(

1, 1
2−(p+r)

]
and T ≥ 0, there exists C = C(p, q, r, s, Ω, T) such

that ∫ T

0
‖u(s′)‖γ,δ ds′ ≤ C‖u(T)‖1,δ.

(ii) Assume r ≤ 1, p + r > 1. Then for γ ∈
(

1, 1
2−(p+r)

]
and T ≥ 0, there exists C =

C(p, q, r, s, Ω, T) such that ∫ T

0
‖u(s′)‖γ,δ ds′ ≤ C(1 + ‖u(T)‖1,δ).

If p + r ≤ 1, then this estimate is true for γ ∈
[
1, N+1

N−1

)
.

Proof. We define exponent γ = 1
2−(p+r) . The conditions 1 < p + r < N+3

N+1 imply p + r < γ <
N+1
N−1 . For T ≥ 0 and t ∈ (0, T] we estimate

‖u(t)‖γ,δ ≤ C
[

t−
N+1

2 (1− 1
γ )‖u0‖1,δ +

∫ t

0
(t− s′)−

N+1
2 (1− 1

γ )‖urvp(s′)‖1,δ ds′
]

.

Integrating this estimate on interval [0, T] with respect to t and using Fubini’s theorem we
obtain ∫ T

0
‖u(t)‖γ,δ dt ≤ CT1− N+1

2 (1− 1
γ )
[
‖u0‖1,δ +

∫ T

0
‖urvp(s′)‖1,δ ds′

]
. (3.12)

Note that N+1
2

(
1− 1

γ

)
< 1, since γ < N+1

N−1 .
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As in the proof of Lemma 3.1 we use (3.11) with M = 1, k = p + r to obtain

∫ T

0
‖u(t)‖γ,δ dt ≤ C

[
‖u0‖1,δ + C(T)

(∫ T

0
‖u(s′)‖p+r

p+r,δ ds′
) 1−a

p+1−a
]

. (3.13)

Notice that γ(p+r−1)
γ−1 = 1. We use the interpolation inequality

‖u(s′)‖p+r
p+r,δ ≤ ‖u(s

′)‖
γ−(p+r)

γ−1
1,δ ‖u(s′)‖

γ(p+r−1)
γ−1

γ,δ , s′ ∈ [0, T]

and Young’s inequality to deduce

∫ T

0
‖u(t)‖γ,δ dt ≤ C(T)

‖u0‖1,δ +

(
sup

s′∈[0,T]
‖u(s′)‖1,δ

)β
 ,

where β = γ−(p+r)
γ−1

1−a
p . Using this estimate we are ready to prove the assertions of the Lemma.

First we prove the assertion (i). If r > 1, then we choose a = r−1
p+r−1 in the definition of β, hence

β = 1. Finally, we use (2.3) to obtain the assertion (i).
To prove the assertion (ii) for p + r > 1, we choose arbitrary a ∈ A in the definition of β,

hence β < 1. One can use Young’s inequality to obtain the assertion.
If p + r ≤ 1, then for γ ∈

[
1, N+1

N−1

)
we obtain estimate similar to (3.13) a then we use

Young’s inequality. The proof of Lemma 3.3 is complete.

In Lemma 3.4 we will use the following notation. For r > 1 denote

K′0 :
[

1,
p + r

p + r− 1

)
−→ R∪ {∞},

K′0(M) =


M(N+1)

(N+1)−2M , M ∈
[
1, N+1

2

)
,

∞, M ∈
[

N+1
2 , p+r

p+r−1

)
.

(3.14)

Lemma 3.4. Let p + r < N+3
N+1 , p > 0 and conditions (2.4), (2.7) be true. Let (u, v) be a global

nonnegative solution of problem (1.1).

(i) Assume r > 1. Then for T ≥ 0, there exists C = C(p, q, r, s, Ω, T) such that

∫ T

0
‖u(s′)‖K,δ ds′ ≤ C‖u0‖k,δ

for K′0(M) > K > k = k′(M), M ∈
[
1, N+1

2

]
. If M ∈

(N+1
2 , p+r

p+r−1

)
, then we can take K = ∞.

(ii) Assume r ≤ 1, 2
N+1 > p. Then for T ≥ 0, there exists C = C(p, q, r, s, Ω, T) such that

∫ T

0
‖u(s′)‖K,δ ds′ ≤ C(1 + ‖u0‖max{M,k},δ)

for K0(M) > K > k > k̂(M), k ≥ 1, M ∈
[
1, N+1

2

]
. If M ∈

(N+1
2 , p+1

p

)
, then we can take

K = ∞.
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Proof. We choose a as follows

a =
r− 1

p + r− 1
for part (i), (3.15)

a > 0 sufficiently close to 0 for part (ii). (3.16)

We only prove (i), since the proof of (ii) is similar. Observe that N+1
2 < p+r

p+r−1 and K′0(M) >

K′(M) for every M ∈
[
1, p+r

p+r−1

)
due to conditions 1 < p + r < N+3

N+1 (see the definition (3.2) of
functions K′, k′ and the definition (3.14) of K′0). Hence (3.4) implies

K′0(M) > k′(M) > M for all M ∈
[

1,
p + r

p + r− 1

)
. (3.17)

Let K′0(M) > K > k = k′(M), M ∈
[
1, N+1

2

]
, T ≥ 0 and t ∈ (0, T]. Then, there holds

N+1
2

( 1
M −

1
K

)
< 1. As in the proof of Lemma 3.3 we obtain∫ T

0
‖u(t)‖K,δ dt ≤ CT1− N+1

2 ( 1
M−

1
K )
[
‖u0‖M,δ +

∫ T

0
‖urvp(s′)‖M,δ ds′

]
.

Using Lemma 3.1 (i), (3.11) and similar arguments as in the proof of Lemma 3.1 (with a is
defined by (3.15)) we have∫ T

0
‖u(t)‖K,δ dt ≤ C(T) (‖u0‖M,δ + ‖u0‖k,δ) ≤ C(T)‖u0‖k,δ, (3.18)

since k > M.
If M ∈

(N+1
2 , p+r

p+r−1

)
, then in previous estimates, we can choose K = ∞ and k′(M) < k <

∞. Hence we proved (i).

Lemma 3.5. Let p + r < N+3
N+1 , p > 0 and conditions (2.4), (2.7) be true. Let (u, v) be a global

nonnegative solution of problem (1.1).

(i) Assume r > 1. Then for every τ > 0, there exists C = C(p, q, r, s, Ω, τ) such that

‖u(t)‖∞ ≤ C‖u(t)‖1,δ

for every t ≥ τ.

(ii) Assume r ≤ 1, p < 2
N+1 . Then for every τ > 0, there exists C = C(p, q, r, s, Ω, τ) such that

‖u(t)‖∞ ≤ C(1 + ‖u(t)‖1,δ)

for every t ≥ τ.

Remark 3.6. The constant C from both assertions of Lemma 3.5 may explode if τ → 0+.

Proof. We prove only (i). Let γ = 1
2−(p+r) . Conditions 1 < p+ r < N+3

N+1 imply p+ r < γ < N+1
N−1 .

Fix 1 > τ0 > 0 and let t > 0 be arbitrary. Note that there exists τ′ ∈ [τ0 + t, 2τ0 + t] such that
‖u(τ′)‖γ,δ = τ−1

0

∫ 2τ0+t
τ0+t ‖u(s

′)‖γ,δ ds′. Obviously, this τ′ may depend on t and u. Note that
2τ0 + t ∈ [τ′, τ′ + τ0]. We use Lemma 3.3 (i) and Lemma 3.1 (i) to obtain

sup
s′∈[τ′,τ′+τ0]

‖u(s′)‖γ,δ ≤ C‖u(τ′)‖γ,δ ≤ C
∫ 2τ0+t

τ0+t
‖u(s′)‖γ,δ ds′ ≤ C‖u(2τ0 + t)‖1,δ
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where C = C(τ0) is independent of τ′. Finally, above estimates imply

‖u(2τ0 + t)‖γ,δ ≤ C(τ0)‖u(2τ0 + t)‖1,δ.

Now fix l ∈ N, l > 1 and K, k such that K′0(M) > K > k = k′(M), M ∈
(
1, N+1

2

]
(see the

definition (3.2), (3.14) of function k′, K′0, respectively). This choice is possible due to inequality
(3.17). As in the previous part of the proof we obtain

‖u((l + 1)τ0 + t)‖K,δ ≤ C(τ0)‖u(lτ0 + t)‖k,δ. (3.19)

If we choose p+r
p+r−1 > M0 > N+1

2 , then in (3.19), we can take K = ∞ and some ∞ > k >

k′(M0). Now we apply bootstrap argument on (3.19) to finish the proof.

Corollary 3.7. Assume p + r < N+3
N+1 , 2

N+1 > p > 0 and let conditions (2.4), (2.7) be true. If r > 1,
then assume also pq > (1− r)(1− s). Let (u, v) be a global nonnegative solution of problem (1.1).
Then there exists C = C(p, q, r, s, Ω) such that

sup
s′∈[0,∞)

‖u(s′)‖∞ ≤ C(1 + ‖u0‖∞). (3.20)

Proof. This follows from Lemma 3.5 (i), Lemma 3.1 (i) (if r > 1) or Lemma 3.5 (ii), Lemma 3.1
(iii) (if r ≤ 1) and Lemma 3.1 (ii).

Lemma 3.8. Assume p + r < N+3
N+1 , 2

N+1 > p > 0, s < N+3
N+1 , (2.4) and (2.7). If r > 1, then assume

also pq > (1− r)(1− s). Let (u, v) be a global nonnegative solution of problem (1.1). Then for T ≥ 0,
there exists C = C(p, q, r, s, Ω, ‖u0‖∞, ‖v0‖∞, sup

s′∈[0,T]
‖v(s′)‖1,δ) such that

sup
s′∈[0,T]

‖v(s′)‖∞ ≤ C, T ≥ 0.

Proof. Due to Corollary 3.7 we can write u(x, t) ≤ C(‖u0‖∞) for (x, t) ∈ Ω× [0, ∞) (note that
the constant C in (3.20) is independent of T). Then v satisfies

vt − ∆v ≤ C(‖u0‖∞)
qvs, (x, t) ∈ Ω× [0, ∞),

where s < N+3
N+1 .

Assume s > 1. We choose arbitrary γ such that 1
2−s < γ < N+1

N−1 . Note that 1
2−s < N+1

N−1 ,
since s < N+3

N+1 . For fixed T > 0 and t ∈ [0, T] we estimate

‖v(t)‖γ,δ ≤ C(‖u0‖∞)

[
‖v0‖γ,δ +

∫ t

0
e−

λ1
2 (t−s′)(t− s′)−

N+1
2 (1− 1

γ )
∫

Ω
vs(s′)ϕ1 dx ds′

]
≤ C(‖u0‖∞, ‖v0‖∞)

[
1 + sup

s′∈[0,T]
‖v(s′)‖s

s,δ

]
.

(3.21)

As in the proof of Lemma 3.3 we use the interpolation inequality and Young’s inequality to
obtain

‖v(s′)‖s
s,δ ≤ ‖v(s′)‖

γ−s
γ−1
1,δ ‖v(s

′)‖
γ(s−1)

γ−1
γ,δ ≤ Cε‖v(s′)‖

γ−s
(γ−1)(1−θ)

1,δ + ε‖v(s′)‖
γ(s−1)
(γ−1)θ
γ,δ ,

where θ ∈ (0, 1). Due to our choice of γ there holds γ(s−1)
γ−1 < 1, hence there exists θ ∈ (0, 1)

such that γ(s−1)
(γ−1)θ = 1. Choosing ε sufficiently small yields

sup
s′∈[0,T]

‖v(s′)‖γ,δ ≤ C(‖u0‖∞, ‖v0‖∞, sup
s′∈[0,T]

‖v(s′)‖1,δ), γ ∈
(

1,
N + 1
N − 1

)
. (3.22)
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For 0 ≤ s ≤ 1 the assertion (3.22) follows from estimates analogous to (3.21). To finish the
proof ( i.e. to prove (3.22) for γ = ∞) we now use obvious bootstrap argument.

Proof of Theorem 1.1. We only deal with case s ≥ 1, since case s < 1 can be done easily by
using Corollary 3.7 and Young’s inequality. For η ∈ [0, 1− a) denote γ(η) := s−a

1−η−a , ε(η) :=
(q+a)(s−1+η)

s−a . The assumption s ≥ 1 guarantees that ε(η) > 0 for all η ∈ (0, 1− a).
In the following proof we will choose

a =
r− 1

p + r− 1
in case r > 1, (3.23)

a > 0 sufficiently small in case r ≤ 1. (3.24)

If a is defined by (3.23)„ then the condition pq > (r − 1)(s − 1) implies ε(0) < q and the
condition s + 2

N+1
r−1

p+r−1 < N+3
N+1 implies γ(0) < N+3

N+1 . Hence

1 < γ(η) <
N + 3
N + 1

, ε(η) < q (3.25)

for η > 0 sufficiently small. If a is chosen by (3.24), then there holds (3.25) for small η > 0.
The choice (3.24) of a may vary from step to step.

Now we choose η such that in the both cases (3.23) and (3.24) there holds (3.25) and for
the rest of the proof denote γ′ := γ(η), ε′ := ε(η). For t ∈ [0, T] and ε ∈

(
0, 1

γ′

)
we estimate

‖v(t)‖γ′,δ ≤ C
[
‖v0‖γ′,δ +

∫ t

0
f
∫

Ω
uε′vsuq−ε′(s′)ϕ1 dx ds′

]
,

where f = f (s′) := e−λ1

(
1− 1

γ′+ε
)
(t−s′)

(t− s′)−
N+1

2

(
1− 1

γ′

)
. The term uq−ε′ can be estimated by a

constant depending on ‖u0‖∞ due to Corollary 3.7. Since s ≥ 1 and η ∈ (0, 1− a), we have
0 < s−1+η

s−a < 1. Thus the following Hölder’s inequality is true

∫
Ω
[uε′vs−1+η(s′)][v1−η(s′)]ϕ1 dx ≤

(∫
Ω

uq+avs−a(s′)ϕ1 dx
)1− 1

γ′
(∫

Ω
v(1−η)γ′(s′)ϕ1 dx

) 1
γ′

.

This estimate and Hölder’s inequality then imply the boundedness of sups′∈[0,T] ‖v(s′)‖γ′,δ by
constant depending on ‖u0‖∞, ‖v0‖∞. Hence the assertion follows with help of Corollary 3.7
and Lemma 3.8.

Lemma 3.9. Let p ≥ 1, p + r < N+3
N+1 and conditions (2.4), (2.7) be true. Let (u, v) be a global

nonnegative solution of problem (1.1). Moreover assume

(p + r)
(

p− 2
N + 1

)
+ r < 1. (3.26)

Then for γ ∈
(

p + r, 1−r
p− 2

N+1

)
, there exists C = C(p, q, r, s, Ω) such that

‖u(t)‖γ,δ ≤ C
(
1 + ‖u0‖γ,δ

)
for t ≥ 0.
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Proof. We choose

γ ∈
(

p + r,
1− r

p− 2
N+1

)
. (3.27)

This choice is possible due to the assumption (3.26). Let a ∈ A. We introduce the following
exponents α1, α2, α3 satisfying conditions

α1, α2, α3 > 0, α1 + α2 + α3 = 1, (3.28)

(1− a)α1 + (p + 1− a)α2 = p, (3.29)

r + γ(p− 1)
γp− (1− r)

< α2 <
p

p + 1
, α2 sufficiently close to

r + γ(p− 1)
γp− (1− r)

. (3.30)

The condition γ > p + r implies r+γ(p−1)
γp−(1−r) < p

p+1 . It is easy to check that there exist α1, α2, α3

such that the conditions (3.28)–(3.30) are true, if a is sufficiently small.
We define exponent

κ = r− aα1 − (r + a− 1)α2.

For a small, there holds 0 < κ < 1. For ε ∈ (0, 1− α2), T ≥ 0, t ∈ [0, T] we estimate

‖u(t)‖γ,δ ≤ C
[
‖u0‖γ,δ +

∫ t

0
e−λ1(α2+ε)(t−s′)(t− s′)−

N+1
2 (1− 1

γ )‖urvp(s′)‖1,δ ds′
]

.

The equality (3.29), Hölder’s inequality and the estimate (2.9) imply

‖urvp(s′)‖1,δ =
∫

Ω

[
uav1−a

]α1
[
ur+a−1vp+1−a(s′)

]α2
[
u

κ
α3 (s′)

]α3
ϕ1 dx

≤ C
(∫

Ω
ur+a−1vp+1−a(s′)ϕ1 dx

)α2
(∫

Ω
u

κ
α3 (s′)ϕ1 dx

)α3

.

Now we prove
κ

α3
< γ (3.31)

for a small. Due to the equality (3.29), α1 + (p+ 1)α2 is close to p and so γ(1+ pα2− p) is close
to γ(1− α1 − α2) = γα3. The condition α2 > r+γ(p−1)

γp−(1−r) implies r + α2(1− r) < γ(1 + pα2 − p),

hence r+α2(1−r)
α3

< γ. Thus we proved (3.31) for a small.
The inequality (3.31), Hölder’s inequality and (2.11) then yield

‖u(t)‖γ,δ ≤ C

[
‖u0‖γ,δ + sup

s′∈[0,T]
‖u(s′)‖κ

γ,δ

(∫ t

0
e−

λ1ε
1−α2

(t−s′)
(t− s′)−

N+1
2 (1− 1

γ )
1

1−α2 ds′
)1−α2

]
.

We prove that for some α2 close to r+γ(p−1)
γp−(1−r) , there holds

N + 1
2

(
1− 1

γ

)
1

1− α2
< 1. (3.32)

For α2 sufficiently close to r+γ(p−1)
γp−(1−r) , is

(
1− 1

γ

) 1
1−α2

close to γp−(1−r)
γ . Our choice of γ implies

γp−(1−r)
γ < 2

N+1 , hence the inequality (3.32) is true. Then Young’s inequality concludes the
proof.
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Lemma 3.10. Let p ≥ 1, p + r < N+3
N+1 and conditions (2.4), (2.7) be true. Let (u, v) be a global

nonnegative solution of problem (1.1). Then there holds∫ T

0
‖u(t)‖γ′,δ dt ≤ C (1 + ‖u(T)‖1,δ) for γ′ ∈

[
1,

N + 1
N − 1

)
,

where C = C(p, q, r, s, Ω, T).

Proof. We choose 1
2−(p+r) < γ′ < N+1

N−1 . We introduce the following exponents α1, α2, α3 satisfy-
ing conditions (3.28), (3.29) with a ∈ A and

r + γ′(p− 1)
γ′p− (1− r)

< α2 <
1− r
2− r

≤ p
p + 1

. (3.33)

Note that the condition γ′ > 1
2−(p+r) implies r+γ′(p−1)

γ′p−(1−r) <
1−r
2−r and p + r ≥ 1 implies 1−r

2−r ≤
p

p+1 .
Observe that there exist α1, α2, α3 such that the conditions (3.28), (3.29) and (3.33) are true, if a
is small.

Let a ∈ A and κ = r − aα1 − (r + a − 1)α2. Due to the condition (3.28) and equality
urvp(s′) =

[
uav1−a(s′)

]α1
[
ur+a−1vp+1−a(s′)

]α2
[
u

κ
α3 (s′)

]α3 , estimate analogous to (3.12) (with γ

replaced by γ
′
) Hölder’s inequality, (2.9) and (2.12) yield∫ T

0
‖u(t)‖γ′,δ dt ≤ C

[
‖u0‖1,δ +

∫ T

0

[∫
Ω

f ϕ1 dx
]α2
[∫

Ω
u

κ
α3 (s′)ϕ1 dx

]α3

ds′
]

≤ C

[
‖u0‖1,δ +

(∫ T

0
‖u(s′)‖

κ
1−α2
κ

α3
,δ ds′

)1−α2
]

,

where f = f (s′) := ur+a−1vp+1−a(s′). Observe that the inequality α2 > r+γ′(p−1)
γ′p−(1−r) implies

κ
α3

< γ′ (cf. the proof of inequality (3.31)) and α2 < 1−r
2−r implies κ

1−α2
< 1 . Hence Jensen’s and

Young’s inequalities imply the assertion of the Lemma.

Lemma 3.11. Let p ≥ 1, p + r < N+3
N+1 , s ≤ 1 and condition (2.7) be true. Let (u, v) be a global

nonnegative solution of problem (1.1). Moreover assume (3.26) and

0 < q <
1− r

p− 2
N+1

(
1− N − 1

N + 1
s
)

(3.34)

Then for τ > 0, there exists C = C(p, q, r, s, Ω, τ, ‖u(τ)‖1,δ, ‖v(τ)‖1,δ) such that

‖u(t)‖k,δ + ‖v(t)‖k,δ ≤ C for k ∈
[

1,
N + 1
N − 1

)
, t ≥ τ.

Remark 3.12. The constant C from Lemma 3.11 may explode if τ → 0+, and is bounded for
‖u(τ)‖1,δ, ‖v(τ)‖1,δ bounded.

Proof. We use Lemmas 3.9 and 3.10 and arguments as in the proof of Lemma 3.5 to obtain

sup
s′∈[τ,τ+T]

‖u(s′)‖γ,δ ≤ C(τ) (1 + ‖u(τ)‖1,δ) ≤ C0 (3.35)

for τ ∈ (0, 1), T ≥ 0, 1 ≤ γ < 1−r
p− 2

N+1
and C0 = C0(τ, ‖u(τ)‖1,δ). C0 may vary from step to

step, but always depends on parameters in brackets. The constant C(τ) in (3.35) may explode
if τ → 0+. We prove the following assertion

sup
s′∈[τ,τ+T]

‖v(s′)‖k,δ ≤ C0 (1 + ‖v(τ)‖k,δ) , T ≥ 0 (3.36)
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for k < N+1
N−1 close to N+1

N−1 . For τ > 0, T ≥ 0, t ∈ [0, T] we estimate

‖v(τ + t)‖k,δ ≤ C
[
‖v(τ)‖k,δ +

∫ τ+t

τ
f
∫

Ω
uqvs(s′)ϕ1 dx ds′

]
, (3.37)

where f = f (s′) := e−
λ1
2 (τ+t−s′)(τ + t− s′)−

N+1
2 (1− 1

k ). Assume s ∈ (0, 1) and let s′ ∈ [τ, τ + T].
We use Hölder’s inequality to obtain∫

Ω
uqvs(s′)ϕ1 dx ≤

(∫
Ω

u
q
θ (s′)ϕ1 dx

)θ (∫
Ω

v
s

1−θ (s′)ϕ1 dx
)1−θ

, (3.38)

where θ = 1− s
k ∈

(
0, 1− N−1

N+1 s
)
. Due to the assumption (3.34) for k < N+1

N−1 sufficiently close

to N+1
N−1 there holds q <

(1−r)(1− s
k )

p− 2
N+1

, hence

q
θ
<

1− r
p− 2

N+1

. (3.39)

Thus there exists some γ > q
θ satisfying the condition (3.27) and we can use (3.35) and (3.38)

to estimate

‖v(τ + t)‖k,δ ≤ C0

[
‖v(τ)‖k,δ + sup

s′∈[τ,τ+T]
‖u(s′)‖s

k,δ

]
.

Now we use Young’s inequality and the assertion (3.36) follows.
If s = 1, then from (3.37) we deduce

‖v(τ + t)‖k,δ ≤ C
[
‖v(τ)‖k,δ +

∫ τ+t

τ
e−

λ1
2 (τ+t−s′)(τ + t− s′)−

N+1
2 (1− 1

k ) ×

×
∫

Ω

[
uav1−a(s′)

]ε [
u

q−aε
θ (s′)

]θ [
v

1−(1−a)ε
1−ε−θ (s′)

]1−ε−θ

ϕ1 dx ds′
]

,

where a ∈ A and 0 < ε < ε′ < 1 for ε′ such that θ := θ(ε′) = 1− ε′ − 1−(1−a)ε′
k ∈ (0, 1) (this

is possible, if k > 1). Hence there holds 1−(1−a)ε
1−ε−θ < k. Note that q−aε

θ > 0 for ε > 0 small,
since q > 0. Due to the assumption (3.34) for k < N+1

N−1 sufficiently close to N+1
N−1 , there holds

q <
(1−r)(1− 1

k )

p− 2
N+1

, hence q−aε
θ(ε′) < 1−r

p− 2
N+1

for ε′ sufficiently small. Thus there exists some γ > q−aε
θ

satisfying the condition (3.27). We can use (2.9) and (3.35) and obvious arguments to finish
the proof of (3.36) for s = 1.

The proof of the assertion (3.36) for s = 0 is obvious.
We prove ∫ τ+T

τ
‖v(t)‖k,δ dt ≤ C(T, C0) (1 + ‖v(τ + T)‖1,δ) (3.40)

for k ∈
[
1, N+1

N−1

)
. As in the proof of Lemma 3.3 we estimate∫ τ+T

τ
‖v(t)‖k,δ dt ≤ CT1− N+1

2 (1− 1
k )
[
‖v(τ)‖1,δ +

∫ τ+t

τ

∫
Ω

uqvs(s′)ϕ1 dx ds′
]

,

where τ > 0, T ≥ 0, t ∈ (τ, T + τ]. Let s ∈ (0, 1]. We apply Hölder’s inequality (3.38) with
θ = 1− s

k . There holds (3.39) for k < N+1
N−1 close to N+1

N−1 and there exists γ > q
θ satisfying (3.27).

Thus due to (3.35) and the definition of θ we have∫ τ+T

τ
‖v(t)‖k,δ dt ≤ C0T1− N+1

2 (1− 1
k )
[
‖v(τ)‖1,δ +

∫ τ+T

τ
‖v(s′)‖s

k,δ ds′
]

.
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If s ∈ (0, 1), then Young’s inequality and (2.3) yield the assertion (3.40). If s = 1, then (2.3)
implies the assertion (3.40) for T sufficiently small. Assertion (3.40) is then true for every
T ≥ 0 fixed (with help of (2.3)).

If s = 0, then the proof of assertion (3.40) is obvious.
Combining (3.36) and (3.40) (using arguments as in the proof of Lemma 3.5) we obtain

sup
s′∈[τ,τ+T]

‖v(s′)‖k,δ ≤ C0(1 + ‖v(τ)‖1,δ) ≤ C1, (3.41)

where k ∈
[
1, N+1

N−1

)
and C1 = C1(τ, ‖u(τ)‖1,δ, ‖v(τ)‖1,δ). Using arguments from previous part

of the proof, one can prove estimates similar to (3.36), (3.40), (3.41) with v, C0 replaced by
u, C1, respectively. Note that always r < 1 due to our assumptions on p, r. The constant C1

then may vary in such estimates, but always depends on τ, ‖u(τ)‖1,δ and ‖v(τ)‖1,δ.

Proof of Theorem 1.2. Denote C0 = C0(τ, ‖u(τ)‖1,δ, ‖v(τ)‖1,δ). C0 may vary from step to step,
but always depends on parameters in brackets. Let τ > 0, T ≥ 0. Assume that there holds

sup
s′∈[τ,τ+T]

‖u(s′)‖k,δ + sup
s′∈[τ,τ+T]

‖v(s′)‖k,δ ≤ C0, for some k ∈
(

N + 1
N − 1

− ε0, ∞
)

, (3.42)

where ε0 > 0 is sufficiently small. In Lemma 3.11 we proved (3.42) for k ∈
[
1, N+1

N−1

)
. For

the whole proof we choose M = k
p+r , M′ = min

{
k, k

q+s

}
. For k chosen in (3.42), it holds

M, M′ > 1, since max{p + r, q + s} < N+1
N−1 . This is true, since

q + s <
(1− r)

(
1− N−1

N+1 s
)

p− 2
N+1

+ s ≤ N + 1
N − 1

(
1− N − 1

N + 1
s
)
+ s =

N + 1
N − 1

.

If r > 0, then we use Hölder’s inequality and (3.42) to obtain(∫
Ω

uMrvMp(s′)ϕ1 dx
) 1

M

≤ ‖u(s′)‖r
k,δ‖v(s′)‖

p
k,δ ≤ C0.

for s′ ∈ [τ, τ + T]. Let r > 0. Denote β := N+1
2

( 1
M −

1
K

)
. For 1 < K ≤ ∞ satisfying β < 1 and

t ∈ [0, T] we estimate

‖u(τ + t)‖K,δ ≤ C

[
‖u(τ)‖K,δ +

∫ τ+t

τ
f
(∫

Ω
uMrvMp(s′)ϕ1 dx

) 1
M

ds′
]

,

where f = f (s′) := e−
λ1
2 (τ+t−s′)(τ + t− s′)−β. In particular, we can take

K < k1(M) :=


N + 1

N+1
M − 2

, M ∈
[
1, N+1

2

)
,

∞, M ≥ N+1
2

if M ≤ N+1
2 and K = ∞ for M > N+1

2 . Hence we have

sup
s′∈[τ,τ+T]

‖u(s′)‖K,δ ≤ C0(1 + ‖u(τ)‖K,δ).

For k1 (M) > K > M, t ∈ (τ, τ + T] we estimate

∫ τ+T

τ
‖u(t)‖K,δ dt ≤ C(T)

[
‖u(τ)‖M,δ +

∫ τ+T

τ

(∫
Ω

uMrvMp(s′)ϕ1 dx
) 1

M

dt

]
.
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Hence we obtain∫ τ+T

τ
‖u(t)‖K,δ dt ≤ C(T, C0) (1 + ‖u(τ)‖M,δ) ≤ C(T, C0) (1 + ‖u(τ)‖k,δ) ,

since k > M. Finally, we get sups′∈[τ,τ+T] ‖u(s′)‖K,δ ≤ C0 for k1 (M) > K > M. Similarly, we
get sups′∈[τ,τ+T] ‖v(s′)‖K,δ ≤ C0 for k1 (M′) > K > M′. From these estimates we deduce that

sup
s′∈[τ,τ+T]

‖u(s′)‖K,δ + sup
s′∈[τ,τ+T]

‖v(s′)‖K,δ ≤ C0

for all K < k1

(
k

max{p+r,q+s}

)
=: k2(k). Note that k2(k) = ∞ for k ≥ (max{p+r,q+s})(N+1)

2 and we

can take K = ∞ for k > (max{p+r,q+s})(N+1)
2 . To finish the proof we use bootstrap argument.

Corollary 3.13. Let p, q, r, s be as in Theorem 1.2 with r = s = 0 and p, q ≥ 1, pq > 1. Then for
every τ > 0, there exists C = C(Ω, p, q, τ) such that

‖u(t)‖∞ + ‖v(t)‖∞ ≤ C, t ≥ τ

for every global nonnegative solution (u, v) of problem (1.1). The constant C may explode if τ → 0+.

Proof. It suffices to prove
‖u(t)‖1,δ + ‖v(t)‖1,δ ≤ C, t ≥ 0, (3.43)

since we can then use Theorem 1.2. Estimate (3.43) was for p, q > 1 proven in [6, Proposi-
tion 4.1]. Let p = 1 and q > 1. From (2.2) we obtain ‖u(1)‖1,δ ≥

∫ 1
0 e−λ1(1−s)‖v(s)‖1,δ ds. This

inequality along with (2.3) imply

‖u(1)‖1,δ ≥ e−λ1‖v0‖1,δ. (3.44)

On the other hand, Lemma 2.2 with (2.9) imply

u(2) ≥ Cδ‖u(1)‖1,δ, v(2) ≥ Cδ‖v(1)‖1,δ.

Let a ∈ A. The estimate (2.9) yields ‖u(1)‖a
1,δ‖v(1)‖

1−a
1,δ ≤ C. Finally, using (2.3) and (3.44) we

have ‖v0‖1,δ ≤ C. Using (2.2), Jensen’s inequality and (2.3) we estimate

C ≥ ‖v(1)‖1,δ ≥
∫ 1

0
e−λ1(1−s)‖uq(s)‖1,δ ds ≥ C‖u0‖q

1,δ.

This proves the estimate (3.43) for p = 1, q > 1.

Proof of Theorem 1.3. We prove Theorem 1.3 for b1 = 0. One can easily modify this proof (and
also the proof of Theorem 1.2) for system (1.6) with b1 > 0. The constants in this proof may
depend on Ω, b2, however we will not emphasize this dependence. Observe that for problem
(1.6), it holds A = (0, 1), since r = p = q = 1 and s = 0 (in sense of the problem (1.1)). Let
s′ ≥ 0. Lemma 2.3 implies ∫

Ω
uav1−a(s′)ϕ1 dx ≤ C, a ∈ (0, 1). (3.45)

Thus there holds ∫ t

0
e−λ1(t−s′)

∫
Ω

(
uav2−a(s′) + u1+av−a(s′)

)
ϕ1 dx ds′ ≤ C (3.46)
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for a ∈ (0, 1). We use inequality u
2+a

2 =
[
u

a2
2 v

(2−a)a
2

] [
u

2+a−a2
2 v−

(2−a)a
2

]
≤ a

2 uav2−a + 2−a
2 u1+av−a

to deduce ∫ 1

0
e−λ1(1−s′)

∫
Ω

u
2+a

2 (s′)ϕ1 dx ds′ ≤ C1, (3.47)

where C1 is independent of u. The constants Ci, i ∈ N will be fixed during the proof (where
Ci, i > 1 will appear below).

Now we prove that there exists t0 ≥ 0 possibly depending on v, such that∫
Ω

v(t0)ϕ1 dx ≤ 4
λ1

b2C1. (3.48)

To prove (3.48) we multiply the second equation in (1.6) by ϕ1 and integrate on Ω × (0, 1).
Thus using (3.47) we have∫

Ω
v(1)ϕ1 dx + λ1

∫ 1

0

∫
Ω

v(s′)ϕ1 dx ds′ = b2

∫ 1

0

∫
Ω

u(s′)ϕ1 dx ds′ +
∫

Ω
v0ϕ1 dx

≤ b2C1 +
∫

Ω
v0ϕ1 dx.

(3.49)

Denote C2 :=
∫

Ω v(0)ϕ1 dx. If there holds C2 ≤ 4
λ1

b2C1, then (3.48) is true with t0 = 0. If there

holds C2 > 4
λ1

b2C1, then necessarily
∫

Ω v(t1)ϕ1 dx <
1+ λ1

2
λ1+1 C2 for some t1 ∈ (0, 1). Indeed, if∫

Ω v(t)ϕ1 dx ≥ 1+ λ1
2

λ1+1 C2 for all t ∈ (0, 1), then (3.49) implies a contradiction. In n-th such step
we obtain ∫

Ω
v(tn)ϕ1 dx <

1 + λ1
2

λ1 + 1
Cn+1 < · · · <

(
1 + λ1

2
λ1 + 1

)n

C2

for some tn ∈ (tn−1, tn−1 + 1) if

C2, C3, . . . , Cn+1 >
4

λ1
b2C1. (3.50)

Hence there exists n0 = n0(C2) such that (3.48) is true with t0 = tn0 provided there holds (3.50)
with n replaced by n0.

For t ≥ 0, a ∈ (0, 1), ε ∈ (0, a) γ ∈
[
1, N+1

N−1

)
and t0 from (3.48) we estimate

‖v(1 + t0 + t)‖γ,δ ≤ C
[
(t + 1)−β‖v(t0)‖1,δ +

∫ 1+t0+t

t0

e−λ1 f (ε+1−a) f−β
∫

Ω
u(s′)ϕ1 dx ds′

]
,

where f = f (t, s′) = 1 + t0 + t− s′ and β = N+1
2

(
1− 1

γ

)
. Hölder’s inequality

∫
Ω

u(s′)ϕ1 dx ≤
(∫

Ω
uav1−a(s′)ϕ1 dx

)a (∫
Ω

u1+av−a(s′)ϕ1 dx
)1−a

and (3.45) yield

‖v(1 + t0 + t)‖γ,δ ≤ C

[
‖v(t0)‖1,δ +

∫ 1+t0+t

t0

e−λ1ε f f−β

(
e−λ1 f

∫
Ω

u1+av−a(s′)ϕ1 dx
)1−a

ds′
]

.

For a < 1 close to 1 we have β
a < 1. Finally, using Hölder’s inequality, (3.48) and (3.46) we

have ‖v(t)‖γ,δ ≤ C, t ≥ T′ for some T′ = T′(v) and γ ∈
[
1, N+1

N−1

)
. The estimate (3.47) implies

‖u(t′)‖1,δ ≤ C for some t′ ∈ (T′, T′ + 1). Finally, we obtain ‖u(t′)‖1,δ + ‖v(t′)‖1,δ ≤ C and
we use Theorem 1.2 (where u, p, r is interchanged with v, q, s, respectively) to conclude the
proof.
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