
Electronic Journal of Qualitative Theory of Differential Equations
2017, No. 7, 1–26; doi: 10.14232/ejqtde.2017.1.7 http://www.math.u-szeged.hu/ejqtde/

Distributional, differential and integral problems:
equivalence and existence results

Giselle A. Monteiro1 and Bianca SatcoB 2

1Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, Prague, Czech Republic
2Stefan cel Mare University, Faculty of Electrical Engineering and Computer Science; Integrated

Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and
Distributed Systems for Fabrication and Control (MANSiD), Universitatii 13, Suceava, Romania

Received 19 February 2016, appeared 26 January 2017

Communicated by Gennaro Infante

Abstract. We are interested in studying the matter of equivalence of the following
problems:

Dx = f (t, x)Dg

x(0) = x0
(1)

where Dx and Dg stand for the distributional derivatives of x and g, respectively;

x′g(t) = f (t, x(t)), mg-a.e.

x(0) = x0
(2)

where x′g denotes the g-derivative of x (in a sense to be specified in Section 2) and mg
is the variational measure induced by g; and

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s), (3)

where the integral is understood in the Kurzweil–Stieltjes sense.
We prove that, for regulated functions g, (1) and (3) are equivalent if f satisfies a

bounded variation assumption. The relation between problems (2) and (3) is described
for very general f , though, more restrictive assumptions over the function g are re-
quired. We provide then two existence results for the integral problem (3) and, using
the correspondences established with the other problems, we deduce the existence of
solutions for (1) and (2).
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1 Introduction

This paper deals with three types of equations aiming to investigate the equivalence of their
solvability, that is, whether the existence of solutions to one of the equations leads to the exis-
tence of solutions to the other two. Among the problems to be studied here, the distributional
differential equations of the form

Dx = f (t, x)Dg

x(0) = x0,
(1)

certainly represent a very general formulation of differential problems. Evidently, when g
is absolutely continuous, then its distributional derivative coincides with the usual deriva-
tive and we retrieve the classical differential equation. Besides, recalling that the distribu-
tional derivative of a function of bounded variation originates a Borel measure, it is clear that
measure-driven equations can be regarded as a particular case of (1); see [3], [31] and the
references therein. Accordingly, equation (1) covers a broad range of problems for the theory
of measure differential equations has been an effective tool in the study of impulsive systems,
retarded equations and equations on time scales (e.g. [13], [14] and [25]).

A novel feature in the present study is that the function g in the distributional problem
(1) is not assumed to be of bounded variation, but only regulated. To treat such a prob-
lem we will make use of the regulated primitive integral introduced in [38]. This integral
somehow inverts the distributional derivatives of regulated functions allowing us to convert
a distributional equation to an integral equation. This method has been used in many papers
recently; see, for instance, [20], [21] and [22]. In our approach, though, we take advantage
of the connection between the regulated primitive integral and the Kurzweil–Stieltjes integral
(cf. [38, Definition 12] or Theorem 2.15). Therefore, we investigate problem (1) by reducing it
to an integral equation (3). It is important to remark that, to avoid paradoxes, extra attention
is required when defining solutions for (1) as functions satisfying (3); see [19] for more details.

The study of derivatives with respect to functions and its connection with integrals is not
exactly new in analysis (cf. [41] and [4]). A rather recent idea, though, is presented in [27]
together with an interesting applicability of such a differentiation process. In [27], the authors
consider derivatives with respect to non-decreasing left-continuous functions; however, noth-
ing really prevents the study of such a notion in a more general setting. Besides, for monotone
g, in most cases we can reduce the differentiation with respect to g to ordinary differentiation.
This motivated us to define g-derivative for left-continuous regulated functions g. The gen-
erality of such a derivative asks for a notion of measure which can be meaningfully applied
to more general functions, thus the use of a variational measure in the present paper (see
Definition 2.4). In the case when g is the identity, it is known even in the abstract setting that
the equivalence between (2) and (3) is always possible by appropriately choosing the integra-
tion process and respectively the type of derivative (see [2]). In our case, the investigation of
g-differentiation problems of the type (2) via integral equations (3) is due to new versions of
the Fundamental Theorems of Calculus we proved under quite weak assumptions.

At last, we provide two existence results for the integral problem (3) which, unlike other
results available in the literature (cf. [13, Theorem 5.3]), do not rely on the assumption of g
being monotone. We conclude the paper by using the correspondences established with the
other problems to deduce the existence of solutions for (1) and (2).
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2 Preliminary results

Recall that a function g : [a, b]→ R is regulated if the one sided-limits exist, more precisely:

g(t+) = lim
r→t+

g(r), t ∈ [a, b), g(s−) = lim
r→s−

g(r), s ∈ (a, b].

It is well-known that regulated functions are bounded and they can have at most a countable
number of points of discontinuity (see [23, Corollary I.3.2]). The space G([a, b]) of real-valued
regulated functions on [a, b] is a Banach space when endowed with the norm

‖g‖∞ = sup
t∈[a,b]

|g(t)|, g ∈ G([a, b]).

Moreover, the set of all left-continuous regulated functions on [a, b] and right-continuous at a
is a closed subspace of G([a, b]) and it will be denoted by G−([a, b]).

The following notion is important when investigating compactness in the space of regu-
lated functions.

Definition 2.1 ([15]). A set F ⊂ G([a, b]) is said to be equiregulated if for every ε > 0 and
every t0 ∈ [a, b] there exists δ > 0 such that, for all x ∈ F we have:

i) |x(t)− x(t−0 )| < ε for every t0 − δ < t < t0;

ii) |x(s)− x(t+0 )| < ε for every t0 < s < t0 + δ.

Lemma 2.2 ([15]). Let f : [a, b]→ R and fn ∈ G([a, b]), n ∈N, be such that

lim
n→∞

fn(t) = f (t) for every t ∈ [a, b].

If the set { fn : n ∈N} is equiregulated, then fn converges uniformly to f .

For regulated functions, the analogous to Arzelà–Ascoli theorem reads as follows.

Lemma 2.3 ([15, Corollary 2.4]). Let F ⊂ G([a, b]) be equiregulated. If for each t ∈ [a, b], the set
{x(t) : x ∈ F} is bounded, then F is relatively compact in G([a, b]).

Given A ⊆ [a, b], a system S on A is a finite collection of tagged intervals

a ≤ a1 < b1 ≤ · · · ≤ am < bm ≤ b

with cj ∈ [aj, bj] ∩ A, j = 1, . . . , m; we write S = {(cj, [aj, bj]) : j = 1, . . . , m}.
Given a gauge δ on A, i.e. δ : A → R+, a system S = {(cj, [aj, bj]) : j = 1, . . . , m} is said to

be δ-fine if
[aj, bj] ⊂ (cj − δ(cj), cj + δ(cj)) for every j = 1, . . . , m .

The set of all of δ-fine systems on A will be denoted by S(A, δ).
A partition of the interval [a, b] is a system S = {(cj, [aj, bj]) : j = 1, . . . , m} satisfying

bj = aj+1, j = 1, . . . , m, where a1 = a and am+1 = b. We remark that for an arbitrary gauge δ

on [a, b] there always exists a δ-fine partition of [a, b]. This is stated by the Cousin lemma (see
[32, Lemma 1.4]).

Throughout this paper, λ(E) denotes the Lebesgue measure of E, for Lebesgue measurable
sets E ⊂ R. The following definition corresponds to the notion of variational measure which
figures in the problem (2).



4 G. A. Monteiro and B. Satco

Definition 2.4. Let g : [a, b]→ R. For each A ⊆ [a, b], we define the g-outer measure of A by

mg(A) = inf
δ

sup{Wg(S) : S ∈ S(A, δ)},

where Wg(S) = ∑m
j=1 |g(bj)− g(aj)| for S = {(cj, [aj, bj]) : j = 1, . . . , m}.

Note that mg is actually the Thomson’s variational measure S0-µg defined in [39] (see [7,
Proposition 4.2 (xiv)]). In the case when g is the identity function, the definition above leads
to the Lebesgue outer measure (see [10, Proposition 3.4] for details). The next proposition
summarizes some of the properties of mg and ensures that it defines a metric outer measure
(see [39, p. 87] and [10, Proposition 3.3] for the proofs).

Proposition 2.5. Let g : [a, b]→ R. The functional mg satisfies:

i) mg(A) ≥ 0 for every A ⊆ [a, b] and mg(∅) = 0;

ii) if A ⊆ B, then mg(A) ≤ mg(B);

iii) mg(
⋃∞

n=1 An) ≤ ∑∞
n=1 mg(An) for any sequence of sets An ⊆ [a, b];

iv) mg(A ∪ B) = mg(A) + mg(B) whenever A and B are contained in two disjoint open subsets of
[a, b];

v) mg({c}) = lim suph→0+ |g(c + h) − g(c)| + lim suph→0− |g(c + h) − g(c)| for every c ∈
[a, b].

Proposition 2.5 (v) shows that the variational measure over singletons provides information
on the ‘size’ of the discontinuity of the function at a point. More important, a function g is
continuous at c if and only if mg({c}) = 0.

Remark 2.6. Regarding the outer measure mg, we will say that a property holds mg-almost
everywhere (shortly, mg-a.e.) if it is valid except for a set N ⊂ [a, b] with mg(N) = 0.

Note that, given A ⊂ [a, b], for a fixed gauge γ : A→ R+ we have

mg(A) ≤ inf
δ≤γ

sup{Wg(S) : S ∈ S(A, δ)}.

Thus, in order to prove that a set A has mg-measure zero, it is enough to show that given
ε > 0, there exists γε : A→ R+ such that

Wg(S) < ε for every S ∈ S(A, γε).

Definition 2.7. Let g : [a, b]→ R. Given a function F : [a, b]→ R, we say that F is g-normal, if
mF(A) = 0 whenever mg(A) = 0, A ⊂ [a, b].

The definition above was presented in [11] for functions g which are continuous and BVG.
In the particular case when g is the identity function (and consequently mg is the Lebesgue
outer measure) the notion of g-normal coincides with the so-called (strong) Lusin condition
(see [29] or [33]). The interested reader can find more details on the relation between these
two notions in [12, Section 5] and [9, Section 4].

The following result is a particular case of [11, Lemma 3].

Lemma 2.8. Let H : [a, b] → R be an increasing function. If H is continuous on a set A ⊂ [a, b],
then mH(A) ≤ λ(H(A)).
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Recall that a function g : [a, b] → R is said to be of bounded variation (or a BV-function)
if its total variation

varb
a(g) = sup

m

∑
i=1
|g(ti)− g(ti−1)|

is finite, where the supremum is taken over all finite divisions

D : a = t0 < t1 < · · · < tm = b

of the interval [a, b]. Enclosing this subsection we will discuss two other general notions of
variation and some of their properties.

Definition 2.9 ([12]). Let g : [a, b]→ R. We say that:

i) g is BV◦ on a set A ⊆ [a, b] if mg(A) < ∞;

ii) g is generalized BV◦ (shortly, BVG◦) if there exists a decomposition [a, b] =
⋃∞

n=1 En such
that g is BV◦ on En for every n ∈N.

It is easy to see that any function g of bounded variation on [a, b] is BV◦ on any A ⊂ [a, b]
and mg(A) ≤ varb

a(g). In particular, if g is a continuous BV-function, varJ(g) = mg(J) for any
subinterval J ⊆ [a, b] (cf. [33, Lemma 3.2]).

We can draw an analogy connecting the concept of BVG◦ functions and σ-finite measure.
Indeed, if g is BVG◦, this means that the outer measure mg is σ-finite on [a, b]. Thus, in view
of [39, Theorem 40.1], the relation between BVG◦ and the notion of generalized bounded
variation, VBG∗ in the sense of Saks [29], reads as follows: a function is BVG◦ if and only if it is
bounded and VBG∗.

From the remarks above, we can see that a BVG◦ function is bounded; moreover, it is
not hard to show that such a function has at most countably many points of discontinuity
(see [39, p. 93]). Although the class BVG◦ encompasses the functions of bounded variation,
a BVG◦ function need not even be regulated. A simple example of this fact is the function
g : [0, 1]→ R given by g(1/n) = 1 for n ∈N, and g(t) = 0 otherwise.

The following proposition provides a useful estimate for BV◦ functions.

Proposition 2.10 ([12, Lemma 3.5]). Let g : [a, b]→ R be BV◦ on a set E ⊆ [a, b]. Then, there exist
a strictly increasing function H : [a, b]→ R and a gauge δ on E such that for every t ∈ E we have

|g(s)− g(t)| ≤ |H(s)− H(t)| whenever |s− t| < δ(t).

Remark 2.11. It is worth emphasizing that in Proposition 2.10 the increasing function H can
be chosen left-continuous when g is supposed to be left-continuous. Indeed, let us recall from
the proof of Lemma 3.5 in [12] that

H(t) = t + sup{Wg(S) : S ∈ S(E, δ), S ⊂ [a, t]},

where the gauge δ on E is chosen so that Wg(S) < mg(E) + 1 for every δ-fine system S on E.
It is not hard to see that for any t ∈ [a, b] and ε > 0

H(t)− H(t− ε) ≤ ε + sup{Wg(S) : S ∈ S(E, δ), S ⊂ (t− ε, t]}
≤ ε + sup{Wg(S) : S ∈ S(E, δ), S ⊂ (t− ε, t)}+

∣∣g(t)− g(t−)
∣∣ .
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Thus, assuming that g is left-continuous, the left-continuity of H at an arbitrary point t ∈ (a, b]
holds once we show that

lim
ε→0+

sup{Wg(S) : S ∈ S(E, δ), S ⊂ (t− ε, t)} = 0.

To prove this fact we follow the method of the proof of Lemma 16 at page 140 in [5]. More
precisely, reasoning by contradiction, suppose that there exists η > 0 such that for every ε > 0,
there exists Sε ∈ S(E, δ), Sε ⊂ (t− ε, t) with Wg(Sε) ≥ η.

Considering 0 < ε1 < t− a, let S1 ∈ S(E, δ) be such that S1 ⊂ (t− ε1, t) and Wg(S1) ≥ η.
Writing S1 = {(c(1)

j , [a
(1)

j , b
(1)

j ]) : j = 1, . . . , n1}, choose 0 < ε2 < t− b
(1)

n1
and let S2 ∈ S(E, δ) be

such that S2 ⊂ (t− ε2, t) and Wg(S2) ≥ η. If we proceed in this way, we obtain a decreasing
sequence of positive numbers εk, k ∈N, and systems Sk ∈ S(E, δ), k ∈N, such that

Sk+1 ⊂ (t− εk, t− εk+1) and Wg(Sk) ≥ η.

Therefore, for every k ∈N, Tk =
⋃k

`=1 Sk is a δ-fine system on E which satisfies

kη ≤
k

∑
j=1

Wg(Sj) = Wg(Tk) < mg(E) + 1;

a direct contradiction to g being BV◦ on E.

In view of the above remark, next assertion provides a characterization of BVG◦ functions
borrowed from [12, Lemma 3.6].

Proposition 2.12. Let g : [a, b] → R be given. Then, g is BVG◦ if and only if there exists a strictly
increasing function H : [a, b]→ R such that

lim sup
s→t

∣∣∣∣ g(s)− g(t)
H(s)− H(t)

∣∣∣∣ < ∞ for every t ∈ [a, b].

If, in addition, g is left-continuous, then H can be chosen left-continuous.

The following result will be useful later.

Lemma 2.13 ([12, Lemma 3.8]). Let H : [a, b] → R be strictly increasing and let E ⊂ [a, b] be such
that mH(E) = 0. If g : [a, b]→ R satisfies

lim sup
s→t

∣∣∣∣ g(s)− g(t)
H(s)− H(t)

∣∣∣∣ < ∞ for every t ∈ E,

then mg(E) = 0.

2.1 Integrals and derivatives

This subsection is devoted to the notions of integrals and their related derivatives which will
be used in our work. We recall some of their basic properties and prove a few new ones which,
to our knowledge, are not available in the literature. As problem (1) is related to the theory
of distributions, we will begin with a short introduction into this setting (see [35, 36] for more
details).
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A distribution on [a, b] is a linear continuous functional on the topological vector space D
of test functions, namely, functions φ : R → R which have continuous derivative φ(j) of any
order j ∈ N vanishing on R \ (a, b). The space D is endowed with the topology induced by
the following convergence of sequences:

φn → φ ⇐⇒ φ
(j)
n → φ(j) uniformly on (a, b), for every j ∈N.

The distributional derivative of a distribution G, denoted by DG, is itself a distribution defined
by

〈DG, φ〉 = −〈G, φ′〉 for every φ ∈ D.

In particular, if f : [a, b] → R is a left-continuous BV-function, then its distributional
derivative corresponds to the Stieltjes measure associated to f , defined by

D f ([c, d)) = f (d)− f (c) for [c, d) ⊂ [a, b]

and then extended to all Borel subsets of [a, b] in the standard way (for details, see [28, Example
6.14]).

To deal with the problem (1) we will make use of the notion of regulated primitive integral
introduced in [38]. Hence, we will restrict ourselves to distributions which correspond to the
distributional derivative of a regulated function, i.e., distributions g on [a, b] such that g = DG
for some left-continuous regulated function G : [a, b]→ R. Note that, in this case, for any test
function φ ∈ D

〈g, φ〉 = 〈DG, φ〉 = − 〈G, φ′〉 = −
∫ b

a
G(t)φ′(t)dt.

These distributions are called RP-integrable in the sense to be specified in the following defi-
nition.

Definition 2.14. Let g be a distribution on [a, b] and G ∈ G−([a, b]) be such that g = DG. The
regulated primitive integral of g is defined by

r
∫ t

s
g = G(t)− G(s), a ≤ s ≤ t ≤ b.

and we say that g is RP-integrable with primitive G. The space of RP-integrable distributions
on [a, b] is denoted by AR([a, b]).

We remark that the definition above can be regarded as a particular case of the notion
introduced in [38] – which is concerned with distributions on the extended real line. It is
shown in [38] that the RP-integral is more general than Riemann, Lebesgue and Henstock–
Kurzweil integrals. Moreover, AR := AR(R) is a Banach space when endowed with the
Alexiewicz norm and, consequently, the completion of the space of signed Radon measures
(see [38, Theorem 4]).

In the sequel we borrow some of the results presented in [38] with an obvious adaptation
to compact intervals.

Proposition 2.15. The multipliers of the space AR([a, b]) are the functions of bounded variation.
Moreover, if f : [a, b]→ R is a BV-function and G ∈ G−([a, b]), the RP-integral of the product f DG
is defined by

r
∫ b

a
f DG =

∫ b

a
f (t) dG(t),

where the integral on the right-hand side is the Kurzweil–Stieltjes integral (see Definition 2.18).
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Remark 2.16. The expression of the product presented in Proposition 2.15, defined via the
integration by parts formula [38, Definition 12], agrees with Definition 11 in the same paper.
In this regard, it is also worth mentioning [26] where, along with a discussion on the product
of distributions, we find the following identity

〈 f DG, φ〉 =
∫ b

a
f (t) φ(t) dG(t), φ ∈ D,

for the case when f is a BV-function, G is regulated and both functions are assumed to be
right-continuous.

The connection between the RP-integral and the distributional derivative is described in
the following Fundamental Theorem of Calculus.

Theorem 2.17 ([38, Theorem 6]). If g ∈ AR([a, b]), then the function

F(t) = r
∫ t

a
g, t ∈ [a, b]

satisfies DF = g.

Now we present a short overview on Kurzweil–Stieltjes integral, which is the integral
found in problem (3). For a more comprehensive study of this topic, see [32] or [34] for
instance.

Definition 2.18. A function f : [a, b] → R is said to be Kurzweil–Stieltjes integrable with
respect to (shortly, KS-integrable w.r.t.) g : [a, b] → R if there exists

∫ b
a f (s)dg(s) ∈ R such

that, for every ε > 0, there is a gauge δε on [a, b] satisfying∣∣∣∣∣ m

∑
j=1

f (τj)(g(tj)− g(tj−1))−
∫ b

a
f (s)dg(s)

∣∣∣∣∣ < ε

for every δε-fine partition {(τj, [tj−1, tj]), j = 1, . . . , m} of [a, b].

Notice that when g(t) = t, t ∈ [a, b], the definition above reduces to the notion of Henstock–
Kurzweil integral (for which the reader is referred to [16], see also [24]). Recall that such
an integral generalizes the Lebesgue integral and integrates all derivatives. When it comes
to Stieltjes-type integrals, it is known that, for integrators of bounded variation, Lebesgue–
Stieltjes integrability implies Kurzweil–Stieltjes integrability (cf. [29, Theorem VI.8.1]), while
the equivalence relies on stronger assumptions (see [6, Theorem 2.71]).

The following result is a special case of [32, Theorem 1.16] (see also [40, Proposition 2.3.16]).

Proposition 2.19. Let f , g : [a, b]→ R be such that f is KS-integrable w.r.t. g. If g ∈ G([a, b]), then
the function F : [a, b]→ R given by

F(t) =
∫ t

a
f (s)d g(s), t ∈ [a, b],

is regulated and satisfies

F(t+)− F(t) = f (t)
[
g(t+)− g(t)

]
and F(t)− F(t−) = f (t)

[
g(t)− g(t−)

]
.

If, in addition, g is a BV-function and f is bounded, then F is a BV-function.
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In order to investigate some properties of the Kurzweil–Stieltjes integral regarding the
variational measure defined previously, we recall the following lemma.

Lemma 2.20 (Saks–Henstock lemma). Let f , g : [a, b]→ R be such that f is KS-integrable w.r.t. g.
Let ε > 0 be given and assume that δ is a gauge on [a, b] such that∣∣∣∣∣ m

∑
j=1

f (τj)(g(tj)− g(tj−1))−
∫ b

a
f (s)dg(s)

∣∣∣∣∣ < ε,

for every δ-fine partition {(τj, [tj−1, tj]), j = 1, . . . , m} of [a, b]. Then,

`

∑
j=1

∣∣∣∣ f (cj)(g(bj)− g(aj))−
∫ bj

aj

f (s)dg(s)
∣∣∣∣ ≤ ε,

for any system S ∈ S([a, b], δ), with S = {(cj, [aj, bj]) : j = 1, . . . , `}.

Next proposition presents two additional properties of the indefinite Kurzweil–Stieltjes
integral (for a similar result in the framework of functions VBG∗ see [37, Lemma 3.12]).

Proposition 2.21. Let f , g : [a, b]→ R be such that f is KS-integrable w.r.t. g. Consider the function
F : [a, b]→ R given by

F(t) =
∫ t

a
f (s)d g(s), t ∈ [a, b],

Then, F is g-normal.
If, in addition, g is a BVG◦ function, then F is BVG◦.

Proof. To prove that F is g-normal, let A ⊂ [a, b] be such that mg(A) = 0. For each n ∈N, con-
sider the set An := {t ∈ A : | f (t)| ≤ n}. Since A =

⋃
n∈N An, in view of Proposition 2.5 (iii), it

is enough to show that mF(An) = 0, for n ∈N.
Given ε > 0 and fixed n ∈N, there is a gauge γ1 : An → R+ such that

Wg(S) <
ε

n
for every S ∈ S(An, γ1).

Let γ2 : [a, b] → R+ be a gauge as in the Saks–Henstock lemma (Lemma 2.20) and consider
the gauge γ(t) = min{γ1(t), γ2(t)}, t ∈ An. Bearing all these in mind, for any system S ∈
S(An, γ), with S = {(cj, [aj, bj]) : j = 1, . . . , m}, we have

m

∑
j=1
|F(bj)− F(aj)| ≤

m

∑
j=1

∣∣F(bj)− F(aj)− f (cj)[g(bj)− g(aj)]
∣∣

+
m

∑
j=1
| f (cj)| |g(bj)− g(aj)|

≤ ε + n Wg(S) < 2 ε.

Therefore, WF(S) < 2 ε for every S ∈ S(An, γ), which implies that

mF(An) ≤ inf
δ≤γ

sup{WF(S) : S ∈ S(An, δ)} ≤ 2 ε

(see Remark 2.6). Since ε > 0 is arbitrary, it follows that mF(An) = 0.

The second statement can be proved in a similar way observing that: if g is BV◦ on a set
E ⊆ [a, b], then F is BV◦ on En := {x ∈ E : | f (x)| ≤ n} for each n ∈N.
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The following result is contained in [12, Proposition 2.9].

Lemma 2.22. Let g : [a, b] → R, and assume that f : [a, b] → R is null, except on a set N ⊂ [a, b]
with mg(N) = 0. Then f is KS-integrable w.r.t. g and

∫ t
a f (s)dg(s) = 0 for every t ∈ [a, b].

Convergence theorems are essential when working with integral equations. In our study
we will need a result based on the following notion.

Definition 2.23. Let g : [a, b]→ R and let F be a family of real functions defined in [a, b]. We
say that F is equiintegrable with respect to g if for every ε > 0 there exists a gauge δ on [a, b]
such that ∣∣∣∣∣ `

∑
j=1

f (τj)[g(tj)− g(tj−1)]−
∫ b

a
f (s) d g(s)

∣∣∣∣∣ < ε,

for every f ∈ F and every δ-fine partition {(τj, [tj−1, tj]), j = 1, . . . , `} of [a, b].

Proposition 2.24 ([30, Proposition 3.4]). Let g ∈ G([a, b]) and assume that F is a family of real
functions defined in [a, b] equiintegrable w.r.t. g. If for each t ∈ [a, b], the set { f (t), f ∈ F} is bounded,
then {∫ ·

a
f (s) dg(s) : f ∈ A

}
is equiregulated.

The proof of the following theorem follows the same approach used in [32, Theorem 1.28]
(see also [18, Theorem 3.28]).

Theorem 2.25. Let g, f , fn : [a, b]→ R, n ∈N, be such that

lim
n→∞

fn(t) = f (t) for t ∈ [a, b].

If { fn : n ∈N} is equiintegrable w.r.t. g, then f is KS-integrable w.r.t. g and

∫ t

a
f (s) d g(s) = lim

n→∞

∫ t

a
fn(s) d g(s) for every t ∈ [a, b].

In [27] a notion of differentiability connected to Stieltjes-type integral was introduced for
non-decreasing left-continuous functions g. In this work, we will consider the g-derivative as
defined in [27], but assuming simply that g is regulated and left-continuous.

Definition 2.26. Let g ∈ G−([a, b]). The derivative with respect to g (or the g-derivative) of a
function f : [a, b]→ R at a point t ∈ [a, b] is given by

f ′g(t) = lim
s→t

f (s)− f (t)
g(s)− g(t)

if g is continuous at t,

f ′g(t) = lim
s→t+

f (s)− f (t)
g(s)− g(t)

if g is discontinuous at t,

provided the limit exists. In this case, we say that f is g-differentiable at t. If f is g-
differentiable at t, for every t ∈ [a, b], we say that f is g-differentiable on [a, b].
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Given a function g ∈ G−([a, b]), we consider the following sets:

Cg = {t ∈ [a, b] : g is constant on (t− ε, t + ε) for some ε > 0} (2.1)

J+g = {t ∈ [a, b] : g(t+)− g(t) > 0}. (2.2)

It is not hard to see that for t ∈ J+g , the g-derivative f ′g(t) exists if and only if f (t+) exists.
In particular, we have the following proposition.

Proposition 2.27. If f , g ∈ G([a, b]) and g is left-continuous, then f is g-differentiable at the points
of J+g .

In [12], a notion of differentiation with respect to another function is defined in terms of
limit superior and limit inferior. It is worth highlighting that, at the points of continuity of g,
our Definition 2.26 coincides with [12, Definition 3.1].

As it was observed in [27], for the points t ∈ [a, b] in which g is continuous, the definition
above has sense only if t 6∈ Cg. However, the next theorem shows that this set is rather ‘small’,
not representing a real drawback to our purposes in this work.

Theorem 2.28. If g ∈ G−([a, b]), then mg(Cg) = 0.

Proof. Since Cg is open, it can be writen as a countable union of disjoint open intervals. Hence,
due to Proposition 2.5 (iii), it is enough to prove that mg((u, v)) = 0, where (u, v) is assumed
to be one of those open intervals.

For n ∈ N, consider the interval Jn := [u + 1
n , v− 1

n ] and let γ(t) = 1
2 n , t ∈ Jn. Note that,

for S ∈ S(Jn, γ), S = {(cj, [aj, bj]) : j = 1, . . . , `}, we have [aj, bj] ⊂ (u, v). By the fact that g is
constant on (u, v), it follows that Wg(S) = 0 for any system S ∈ S(Jn, γ), and consequently

mg(Jn) ≤ inf
δ≤γ

sup{Wg(S) : S ∈ S(Jn, δ)} = 0,

Since (u, v) =
⋃

n∈N Jn, it follows from Proposition 2.5 (iii) that mg((u, v)) = 0.

The following is a direct consequence of Proposition 2.5 (v).

Proposition 2.29. Let g ∈ G−([a, b]). If Cg =
⋃

n∈N(un, vn) is a disjoint decomposition of Cg and

Ng = {un, vn : n ∈N}\J+g ,

then mg(Ng) = 0.

Remark 2.30. In view of Propositions 2.28 and 2.29, whenever a property holds mg-almost
everywhere in some set E ⊆ [a, b], without loss of generality, we can assume that it holds
excluding also the sets Cg and Ng, that is, mg-almost everywhere in E \ (Cg ∪ Ng).

The following proposition is the corresponding to [27, Lemma 6.1].

Proposition 2.31. Let g ∈ G−([a, b]) and assume that F : [a, b]→ R is g-differentiable at t0 ∈ [a, b].

i) If t0 ∈ J+g , then for every ε > 0 there exists ρ(t0) > 0 such that

|F(t)− F(t0)− F′g(t0)(g(t)− g(t0))| ≤ ε|g(t)− g(t0)|

for t0 < t < t0 + ρ(t0).
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ii) If t0 6∈ J+g ∪ Ng, then for every ε > 0 there exists ρ(t0) > 0 such that

|F(s)− F(t)− F′g(t0)(g(s)− g(t))| ≤ ε|g(s)− g(t)|

for t0 − ρ(t0) < t ≤ t0 ≤ s < t0 + ρ(t0).

In order to give conditions ensuring the differentiability with respect to increasing func-
tions, we will need the following classical result from real analysis.

Proposition 2.32 ([11, Proposition 2]). Let F : [a, b]→ R be a given function and consider the set

R(F) = {t ∈ [a, b] : F(s) ≤ F(t), for s ≤ t, and F(s) ≥ F(t), for s ≥ t}. (2.3)

Then, F is differentiable on R(F)\A, where A ⊂ R(F) with λ(A) = 0.

The following result contains a variant of [11, Proposition 4] as well as an analogous to
[8, Lemma 5.2] in the case of functions BV◦.

Proposition 2.33. Let H : [a, b]→ R be a strictly increasing and left-continuous function.

i) If F ∈ G−([a, b]), then F is H-differentiable mH−a.e. on the set R(F) defined in (2.3).

ii) If F ∈ G−([a, b]) is BVG◦, then F is H-differentiable mH-a.e.

Proof. i) Let G : [H(a), H(b)]→ R be given by

G(t) = inf{s ∈ [a, b] : H(s) ≥ t}.

It is not hard to see that G is increasing, continuous and G(H(t)) = t for t ∈ [a, b]. By
Proposition 2.32, F ◦ G is differentiable on R(F ◦ G)\A, where A ⊂ R(F ◦ G) with λ(A) = 0.
Considering the set

N = {t ∈ R(F)\J+H : F ◦ G is not differentiable at H(t)}

and observing that H(R(F)) ⊂ R(F ◦ G), it is clear that for all t ∈ N we must have H(t) ∈ A.
Thus λ(H(N)) = 0, and applying Lemma 2.8 we obtain that mH(N) = 0.

If t ∈ R(F) \ N and t ∈ J+H , Proposition 2.27 implies that F is H-differentiable at t. On the
other hand, for t ∈ R(F) \ (N∪ J+H ), making use of the chain rule found in [27, Theorem 2.3(1)],
for h = F ◦ G and f = g = H, we have

(F ◦ G ◦ H)′H(t) = (F ◦ G)′(H(t)) H′H(t)

that is, F′H(t) = (F ◦ G ◦ H)′H(t) = (F ◦ G)′(H(t)). In summary, F is H-differentiable on
R(F) \ N, which proves (i).

ii) Since, by Proposition 2.27, F is H-differentiable on J+H , it suffices to prove that F is H-
differentiable mH-a.e. on [a, b] \ J+H . The key point in the proof of this assertion is the fact that H
is continuous in [a, b] \ J+H and BVG◦ (due to its motonicity); therefore, the H-differentiability
of F can be understood as the differentiability in the sense of [12, Definition 3.1]. In view
of this and recalling that F is BVG◦, we can apply [12, Proposition 3.10] deducing that F
is differentiable relatively to H in ([a, b] \ J+H ) \U in the sense of [12, Definition 3.1], where
U ⊂ [a, b] \ J+H can be written as a union U = U1 ∪ U2, with mH(U1) = 0 and U2 at most
countable.

Applying Lemma 2.8 we obtain mH(U2) ≤ λ(H(U2)). As U2 is at most countable, so is
H(U2); therefore λ(H(U2)) = 0 from whence mH(U2) = 0. Consequently, by Proposition
2.5 (iii) we get mH(U) = 0 and the assertion is proved.
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Proposition 2.34. Let H : [a, b] → R be strictly increasing and left-continuous, g ∈ G−([a, b]) and
F : [a, b]→ R. If F′H and g′H exist on A ⊆ [a, b], then F is g-differentiable on A\

(
Cg ∪ Z

)
and

F′g(t) =
F′H(t)
g′H(t)

, t ∈ A \ (Cg ∪ Z),

where Z = {t ∈ [a, b]\Cg : g′H(t) = 0}. Moreover, mg(Z) = 0.

Proof. Given t ∈ A\
(
Cg ∪ Z

)
, note that

lim
s→t

H(s)− H(t) =
1

g′H(t)
lim
s→t

g(s)− g(t).

This shows that: g is continuous at t if and only if H is continuous at t.
Therefore, if t is a point of continuity of g,

lim
s→t

F(s)− F(t)
g(s)− g(t)

= lim
s→t

F(s)− F(t)
H(s)− H(t)

H(s)− H(t)
g(s)− g(t)

=
F′H(t)
g′H(t)

,

which shows that F is g-differentiable at t and F′g(t) =
F′H(t)
g′H(t)

. On the other hand, for t ∈
A\
(
Cg ∪ Z

)
such that t ∈ J+g , we have that t is a point of discontinuity of H and

lim
s→t+

F(s)− F(t)
g(s)− g(t)

= lim
s→t+

F(s)− F(t)
H(s)− H(t)

H(s)− H(t)
g(s)− g(t)

=
F′H(t)
g′H(t)

.

Hence F′g(t) =
F′H(t)
g′H(t)

.

Let us prove that mg(Z) = 0. Fixed an arbitrary ε > 0, by Proposition 2.31, for t ∈ Z \ J+H ,
there exists ρ(t) > 0 such that

|g(s)− g(r)| < ε|H(s)− H(r)| for t− ρ(t) < r ≤ t ≤ s < t + ρ(t);

while for t ∈ Z ∩ J+H , there is ρ(t) > 0 such that

|g(s)− g(t)| < ε|H(s)− H(t)| for t < s < t + ρ(t).

Put Z ∩ J+H = {τi : i ∈ Γ}, where Γ ⊆ N, with τi 6= τj for i 6= j. The left-continuity of g
implies that, for each τi ∈ Z ∩ J+H , we can find ηi > 0 such that

|g(s)− g(τi)| <
ε

2i for τi − ηi < t ≤ τi.

Define the gauge γε : Z → R+

γε(t) =

{
ρ(t), if t ∈ Z\J+H ,

min{ηi, ρ(t)}, if t = τi ∈ Z for some i ∈ Γ.

Given S ∈ S(An, γε), with S = {(cj, [aj, bj]) : j = 1, . . . , k}, using the inequalities above we
obtain

Wg(S) = ∑
cj∈Z\J+H

|g(bj)− g(aj)|+ ∑
cj∈Z∩J+H

|g(bj)− g(aj)|

≤ ∑
cj∈Z\J+H

ε(H(bj)− H(aj)) + ∑
cj∈Z∩J+H

(
|g(bj)− g(cj)|+ |g(cj)− g(aj)|

)
≤ 2ε(H(b)− H(a)) + ∑

i∈Γ

ε

2i < ε
(
2(H(b)− H(a)) + 1

)
.

This, together with Remark 2.6, proves that mg(Z) = 0.
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In [27], we find two Fundamental Theorems of Calculus (Theorems 6.2 and 6.5) connect-
ing the KS-integral w.r.t. g with the g-derivative in the case when g is non-decreasing left-
continuous. In Subsection 2.2 we will provide similar results for the case when g is a function
in G−([a, b]) which is BVG◦.

2.2 Fundamental Theorem of Calculus

A descriptive characterization of the Kurzweil–Henstock integral in terms of variational mea-
sures is given in [33]. Concerning Stieltjes-type integral, we can mention the results in [12];
though, some continuity assumption is required. The content of this subsection, devoted to
Fundamental Theorem of Calculus, somehow provides a descriptive characterization of the
Kurzweil–Stieltjes integral.

The first Fundamental Theorem of Calculus to be presented extends the result from
[27, Theorem 6.5] to a more general class of functions g, namely, regulated functions which are
BVG◦. The passage to a BVG◦ integrator is based on the notion of g-normal function, in con-
nection with some elements from [12] and [11]. We mention that this result also generalizes
[12, Corollary 4.8] proved for continuous BVG◦ functions.

Theorem 2.35. Let g ∈ G−([a, b]) be a BVG◦ function. If f : [a, b] → R is KS-integrable w.r.t. g
and F : [a, b]→ R is given by

F(t) =
∫ t

a
f (s)d g(s), t ∈ [a, b],

then, F′g = f on [a, b]\N, where N ⊂ [a, b] and mg(N) = 0.

Proof. Note that F ∈ G−([a, b]) is a BVG◦ function (see Propositions 2.19 and 2.21). Let
H1, H2 : [a, b] → R be strictly increasing left-continuous functions which exist by Proposition
2.12 for F and g, respectively. Defining H = H1 + H2, from Proposition 2.33 we know that
the derivatives F′H and g′H exist on [a, b]\U, where U ⊂ [a, b] and mH(U) = 0. Applying
Proposition 2.34 for A = [a, b]\U, we conclude that F is g-differentiable on [a, b]\

(
U ∪ Cg ∪ Z

)
,

where Z = {t ∈ [a, b]\Cg : g′H(t) = 0}. Taking N = U ∪ Cg ∪ Z ∪ Ng, since mg(Z) = mg(Cg) =

mg(Ng) = 0 (see Theorem 2.28 and Proposition 2.34), it remains to show that mg(U) = 0.
Recalling that H, H1 and H2 are increasing, it is not hard to see that for any system S on N

we have WH(S) = WH1(S) + WH2(S). Thus, mH(U) = 0 implies mH2(U) = 0 and the result is
then a consequence of Lemma 2.13.

Clearly, F′g(t) = f (t) for t ∈ [a, b] \ N with t ∈ J+g (see Proposition 2.19). Let us prove the
equality for points t0 ∈ [a, b] \ N in which g is continuous. Given ε > 0, let δ : [a, b] → R

be a gauge as in Saks–Henstock lemma (Lemma 2.20). Using Proposition 2.31, we can choose
0 < ρ(t0) < δ(t0) so that

|F(t)− F(s)− F′g(t0)(g(t)− g(s))| ≤ ε|g(t)− g(s)|

for [s, t] ⊂ (t0 − ρ(t0), t0 + ρ(t0)). Since t0 6∈ Cg, we can find t ∈ [a, b] so that |t− t0| < ρ(t0)

and |g(t) − g(t0)| = M > 0. Without loss of generality, assume t0 < t. Thus, applying
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Saks–Henstock lemma together with the inequality above we obtain

| f (t0)− F′g(t0)| =
1
M
| f (t0)− F′g(t0)||g(t)− g(t0)|

≤ 1
M

∣∣∣∣ f (t0)(g(t)− g(t0))−
∫ t

t0

f (σ)d g(σ)
∣∣∣∣

+
1
M
|F(t)− F(t0)− F′g(t0)(g(t)− g(t0))|

≤ ε

(
1
M

+ 1
)

.

Since ε is arbitrary, we conclude that F′g(t0) = f (t0) and the result follows.

Also connecting g-derivatives and the KS-integral, next Fundamental Theorem of Calculus
somehow generalizes a similar result given for non-decreasing left-continuous functions in
[27, Theorem 6.2]. The method of proof combines ideas from [27] and [12].

Theorem 2.36. Let g ∈ G−([a, b]) be a BVG◦ function. Assume that F : [a, b] → R satisfies the
following conditions:

i) F is left-continuous at the points of J+g ;

ii) F is g-differentiable on [a, b] \ N, where N ⊂ [a, b] and mg(N) = 0;

iii) F is g-normal.

Then,

F(t)− F(a) =
∫ t

a
h(s)d g(s), for every t ∈ [a, b], (2.4)

where h(s) = F′g(s) for s ∈ [a, b]\N and h(s) = 0 otherwise.

Proof. Consider a disjoint decomposition [a, b] =
⋃∞

n=1 En such that g is BV◦ on En, n ∈N. By
Proposition 2.10, for each n ∈N, there exists a strictly increasing function Hn : [a, b]→ R and
a gauge ψn : En → R+ such that for t ∈ En we have

|g(s)− g(t)| ≤ |Hn(s)− Hn(t)| whenever |s− t| < ψn(t). (2.5)

Let ε > 0 be given. Without loss of generality, by Remark 2.30, we can assume that Ng ⊂ N.
Since F is g-normal, we have mF(N) = 0 and we can choose a gauge γ : N → R+ such that

WF(S) < ε for every S ∈ S(N, γ). (2.6)

Recalling that g has at most a countable number of points of discontinuity we can write
J+g = {τi : i ∈ Γ}, Γ ⊆ N, with τi 6= τj for i 6= j. Due to the left continuity of the functions F
and g, for each i ∈N there exists ηi > 0 such that

|F(s)− F(τi)| ≤
ε

2i+2 and |g(s)− g(τi)| ≤
ε

2i+2(|F′g(τi)|+ 1)
(2.7)

for τi − ηi < s ≤ τi.
For each n ∈N, let Zn := En\N and εn = ε

2n+1(Hn(b)−Hn(a)) .
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Given t ∈ [a, b]\N, we know that t ∈ Zn for some n ∈ N and we have then two cases to
consider: if t ∈ J+g or not. If t ∈ Zn ∩ J+g , by Proposition 2.31, there exists ρn(t) > 0 such that

|F(s)− F(t)− F′g(t)(g(s)− g(t))| ≤ εn|g(s)− g(t)| for t < s < t + ρn(t).

Assuming that ρn(t) < ψn(t), it follows from (2.5) that

|F(s)− F(t)− F′g(t)(g(s)− g(t))| ≤ εn(Hn(s)− Hn(t)) for t < s < t + ρn(t). (2.8)

Analogously, for t ∈ Zn\J+g , we can choose 0 < ρn(t) < ψn(t) so that

|F(s)− F(r)− F′g(t)(g(s)− g(s′))| ≤ εn(Hn(s)− Hn(r)), (2.9)

whenever t− ρn(t) < r ≤ t ≤ s < t + ρn(t).
Consider the gauge δ : [a, b]→ R defined by

δ(t) =


γ(t), if t ∈ N,

ρn(t), if t ∈ Zn\J+g for some n ∈N,

min{ηi, ρn(t)}, if t = τi ∈ Zn for some i ∈ Γ and n ∈N.

and let {(cj, [tj−1, tj]) : j = 1, . . . , `} be a δ-fine partition of [a, b]. Thus,

`

∑
j=1

∣∣F(tj)− F(tj−1)− h(cj)
(

g(tj)− g(tj−1)
)∣∣

= ∑
cj∈N

∣∣F(tj)− F(tj−1)
∣∣+ ∞

∑
n=1

∑
cj∈Zn

∣∣F(tj)− F(tj−1)− F′g(cj)
(

g(tj)− g(tj−1)
)∣∣,

(where the series is actually a sum with finitely many terms). In view of (2.6), it follows that
∑cj∈N

∣∣F(tj) − F(tj−1)
∣∣ < ε. In order to analyse the remaining sum, let us fix an arbitrary

n ∈ N. If Zn ∩ {cj : j = 1, . . . , `} = ∅ there is nothing to be proved, otherwise, at least one of
the sets

Λn = {j ∈ {1, . . . , `} : cj ∈ Zn\J+g }
Γn = {j ∈ {1, . . . , `} : cj = τij ∈ Zn for some ij ∈ Γ}

is non-empty. It is not hard to see that the sum over cj ∈ Zn is obtained by combining the
sums over Λn and Γn. Clearly, by (2.9) we obtain

∑
j∈Λn

∣∣F(tj)− F(tj−1)− F′g(cj)
(

g(tj)− g(tj−1)
)∣∣ ≤ εn ∑

j∈Λn

(Hn(tj)− Hn(tj−1)).

On the other hand, (2.8) together with (2.7) imply

∑
j∈Γn

∣∣F(tj)− F(tj−1)− F′g(τij)
(

g(tj)− g(tj−1)
)∣∣

≤ ∑
j∈Γn

∣∣F(tj)− F(τij)− F′g(τij)
(

g(tj)− g(τij)
)∣∣

+ ∑
j∈Γn

(
|F(τij)− F(tj−1)|+ |F′g(τij)|

∣∣g(τij)− g(tj−1)
∣∣)

≤ εn ∑
j∈Γn

(Hn(tj)− Hn(τij)) + ∑
j∈Γn

(
ε

2ij+2 + |F′g(τij)|
ε

2ij+2(|F′g(τij)|+ 1)

)
≤ εn ∑

j∈Γn

(Hn(tj)− Hn(tj−1)) + ∑
j∈Γn

ε

2ij+1 .
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Combining the inequalities above we obtain

∞

∑
n=1

∑
cj∈Zn

∣∣F(tj)− F(tj−1)− F′g(cj)
(

g(tj)− g(tj−1)
)∣∣

≤
∞

∑
n=1

ε

2n+1 ∑
cj∈Zn

Hn(tj)− Hn(tj−1)

Hn(b)− Hn(a)
+

∞

∑
n=1

∑
j∈Γn

ε

2ij+1 ≤ 2
∞

∑
n=1

ε

2n+1 < ε

wherefrom we conclude that (2.4) holds.

Remark 2.37. At first glance, assumption (iii) on Theorem 2.36 might seem too restrictive.
However, in view of Proposition 2.21, we observe that assumption (iii) simply pinpoints prop-
erties that one might expect from a function satisfying the equality in (2.4). Moreover, in the
case N = Cg, condition (iii) is clearly satisfied if, as in [27, Theorem 6.2], we assume that F is
constant on every subinterval where g is.

3 Main results

3.1 Equivalence of distributional, differential and integral problems

In this section, we investigate the relation between the following three problems:

the distributional equation

Dx = f (t, x)Dg,

x(0) = x0;
(1)

the g-differential equation

x′g(t) = f (t, x(t)), mg-a.e.,

x(0) = x0;
(2)

and the integral equation

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s). (3)

We start by presenting the definition of solution for each of these problems.

Definition 3.1. Let f : [0, 1]×R→ R, g ∈ G−([0, 1]) and x0 ∈ R be given.

1. A function x ∈ G−([0, 1]) is a solution of the problem (1) if the distributional derivative
of x satisfies

Dx = f (t, x)Dg for every t ∈ [0, 1],

and x(0) = x0.

2. A function x ∈ G−([0, 1]) is a solution of the problem (2) if x is g-normal and there exists
N ⊂ [0, 1], with mg(N) = 0, such that the g-derivative of x satisfies

x′g(t) = f (t, x(t)) for every t ∈ [0, 1]\N

and x(0) = x0.
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3. A function x ∈ G−([0, 1]) is a solution of the problem (3) if

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s) for every t ∈ [0, 1].

Remark 3.2. In the definition of a solution of the problem (2), we can always assume that
Cg ⊂ N (see Remark 2.30).

To convert a distributional differential equation to an integral equation in the space of
primitive functions, the Fundamental Theorem of Calculus relatively to the regulated primi-
tive integral found in [38, Theorem 6] is a very useful tool. This approach appears, for instance,
in [20] and [21]. In order to obtain an equivalence between problems (1) and (3), besides the
aforementioned result we take into account the relation described in Remark 2.16.

Theorem 3.3. Let g ∈ G−([0, 1]) and f : [0, 1]×R→ R satisfy the following condition:

t 7→ f (t, x(t)) is a BV-function for every x ∈ G−([0, 1]).

Then x : [0, 1]→ R is a solution of problem (1) if and only if it is a solution of problem (3).

Proof. Suppose that x is a solution of (1). Since hx(t) = f (t, x(t)), t ∈ [0, 1], is a function of
bounded variation and Dg ∈ AR([0, 1]), by Proposition 2.15 we have hx Dg ∈ AR([0, 1]) and

r
∫ t

0
hx Dg =

∫ t

0
hx(s) dg(s) for every t ∈ [0, 1].

(where the integral on the right hand side is the Kurzweil–Stieltjes integral). Moreover, Theo-
rem 2.17 implies that for all t ∈ [0, 1]:

r
∫ t

0
hx Dg = r

∫ t

0
Dx = x(t)− x(0).

Combining these two facts we conclude that x is a solution of (3).

Let now x be a solution of (3). Using the equality found in Proposition 2.15 we get

x(t)− x0 =
∫ t

0
f (s, x(s))dg(s) = r

∫ t

0
hx Dg, t ∈ [0, 1],

where hx(s) = f (s, x(s)), s ∈ [0, 1]. Thus, by Theorem 2.17, the distributional derivative of x
is Dx = f (t, x)Dg and the result follows.

Remark 3.4. The superposition assumption on f in Theorem 3.3 ensures the equivalence of
the mentioned problems for a very large class of functions g, namely for every left-continuous
regulated function. We remark that this assumption on f could be weakened if we require
stronger assumptions on g; that is, if g is a left-continuous BV-function. Indeed, let us recall
that [38, Definition 11] introduces the product hx Dg as the distributional derivative of the
function defined in [38, Proposition 10] as follows:

Ξ(t) = hx(t)g(t)−
∫ t

0
g(s)dhx(s)− ∑

cn<t
(hx(cn)− hx(c+n ))(g(cn)− g(c+n )),
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where {cn, n ∈N} denotes the set of common discontinuity points of g and hx. It can be seen
that Ξ is also BV when g and hx are BV, thus hx Dg is in this case the distributional derivative
of a BV-function. As by Definition 3.1.1. a solution x of problem (1) satisfies the equality

Dx = hxDg,

our solutions x will be in the space of BV-functions. It turns out that in the case when g is BV,
the main assumption in the previous equivalence result can be replaced with the following
(weaker) assumption:

t 7→ f (t, x(t)) is a BV-function for every left-continuous BV-function x.

Conditions ensuring this property of the superposition operator can be found, for instance,
in [1].

On the other hand, recalling that for left-continuous functions of bounded variation the
distributional derivative is a Borel measure, this result ensures the equivalence between mea-
sure differential equations and g-differential equations.

In [27], the authors briefly illustrate the applicability of the g-derivative showing that
ordinary differential equations, dynamic equations on a time scale and impulsive equations
can be regarded as a g-differential problem (2). Next theorem is concerned with the relation
between problem (2) and an integral equation, allowing us to explore other aspects of the
g-differential equation.

Theorem 3.5. Let g ∈ G−([0, 1]) be a BVG◦ function, x0 ∈ R and f : [0, 1] ×R → R. Then
x : [0, 1]→ R is a solution of problem (2) if and only if it is a solution of problem (3).

Proof. Let x be a solution of (2) and, without loss of generality, assume that Cg ⊂ N (see
Remark 2.30). This means that x is g-normal and x′g(t) = f (t, x(t)) for t ∈ [0, 1]\N. Therefore,
by the second Fundamental Theorem of Calculus, Theorem 2.36,

x(t) = x0 +
∫ t

0
f̃ (s, x(s))dg(s), t ∈ [0, 1].

where f̃ is the function given by

f̃ (t, y) =

{
f (t, y), if t ∈ [0, 1] \ N, y ∈ R

0, otherwise

By Lemma 2.22, one can see that
∫ t

0 f̃ (s, x(s))dg(s) =
∫ t

0 f (s, x(s))dg(s) for every t ∈ [a, b],
proving that x is a solution of (3).

Conversely, assume that x is a solution of problem (3), that is

x(t) = x0 +
∫ t

0
f (s, x(s))dg(s) for every t ∈ [0, 1].

Using the Fundamental theorem of calculus, Theorem 2.35, we obtain that x is g-differentiable
mg-a.e. and that

x′g(t) = f (t, x(t)), t ∈ [0, 1]\N

where N ⊂ [0, 1] is such that mg(N) = 0. In summary, x is a solution of problem (2), which
concludes the proof.
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Let us note that if we restrict ourselves to the case when g is non-decreasing and left-
continuous, the equivalence in Theorem 3.5 can be obtained by applying the Fundamental
Theorems of Calculus found in [27]. In this particular case, the role of the outer measure is
played by the Stieljes measure associated to g. Moreover, the relation provided by Theorem 3.5
suggests that problem (2) can be regarded as the differential counterpart of the notion of
measure differential equation in the sense introduced in [13].

From Remark 3.4 and Theorem 3.5 we can deduce the following equivalence result.

Corollary 3.6. Let g : [0, 1] → R be a left-continuous BV-function, x0 ∈ R and f : [0, 1]×R → R

satisfy the following condition:

t 7→ f (t, x(t)) is a BV-function for every left-continuous BV-function x.

Then the problems (1), (2) and (3) are equivalent.

3.2 Existence results

We present in the sequel an existence result for the integral problem (3) based on a Leray–
Schauder alternative which reads as follows.

Theorem 3.7 ([17]). Let E be a normed linear space and Bρ the closed ball in E centered at 0 with
radius ρ. Then, each compact map F : Bρ → E has at least one of the following two properties:

a) F has a fixed point;

b) there exists x ∈ ∂Bρ and λ ∈ (0, 1) such that x = λF(x).

The first existence result is proved in the very general setting of a left-continuous regulated
function g. In what follows, BR(y) stands for the closed ball in G−([0, 1]) with radius R and
centered at the constant y function. If y = 0, the null function, we write simply BR.

Theorem 3.8. Let g ∈ G−([0, 1]), x0 ∈ R and f : [0, 1]×R→ R satisfy the following conditions:

i) for each t ∈ [0, 1], f (t, ·) is continuous on R;

ii) for every R > 0, the family { f (·, x(·)) : x ∈ BR(x0)} is equiintegrable w.r.t. g;

iii) for each R > 0, the set {
∫ t

0 f (s, x(s))dg(s) : x ∈ BR(x0)} is bounded for each t ∈ [0, 1];

iv) there exists R0 > 0 such that for every x ∈ G−([0, 1]) with ‖x− x0‖∞ = R0, we have

x(t)− x0 − λ
∫ t

0
f (s, x(s))dg(s) 6= 0

for every λ ∈ (0, 1) and some t ∈ [0, 1].

Then the integral problem (3) has at least one solution.

Proof. Let B := BR0(x0), where R0 > 0 is the number from assumption (iv). For x ∈ B and
t ∈ [0, 1], let

Tx(t) = x0 +
∫ t

0
f (s, x(s))dg(s).
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By Proposition 2.19, Tx defines a left-continuous, regulated function, that is T : B→ G−([0, 1]).
Note that a solution of (3) is necessarily a fixed point of the operator T. We will prove that the
assumptions of the nonlinear alternative, Theorem 3.7, are satisfied for F : BR0 → G−([0, 1]),
F = T − x0.

Step 1. Let us check that the operator T is continuous. To this end, consider a sequence
(xn)n converging uniformly to x in B. Hypothesis (i) implies that ( f (·, xn(·)))n converges
pointwisely to f (·, x(·)) while assumption (ii) ensures the equiintegrability of the sequence.
Using Theorem 2.25 we get

lim
n→∞

∫ t

0
f (s, xn(s))dg(s) =

∫ t

0
f (s, x(s))dg(s) for each t ∈ [0, 1],

and consequently, limn→∞ Txn(t) = Tx(t). On the other hand, it yields from the convergence
of ( f (·, xn(·)))n that the sequence is pointwisely bounded. Since, it is equiintegrable by as-
sumption (ii), an application of Proposition 2.24 brings us to the equiregularity of the family of
their primitives, that is {Txn : n ∈ N} is equiregulated. Then, by Lemma 2.2 Txn converges
to Tx uniformly on [0, 1], which implies the continuity of T at x ∈ B.

Step 2. We claim that T(B) satisfies that assumptions of Lemma 2.3. Indeed, assumption (iii)
states that {Tx(t) : x ∈ BR0} is bounded for each t ∈ [0, 1], so only the equiregularity of the
family {Tx : x ∈ B} remains to be proved. As before, this is a consequence of Proposition 2.24,
using (ii) and the fact that, due to the continuity in the second argument, for a fixed t ∈ [0, 1],
there is Mt > 0 such that | f (t, x(t))| ≤ Mt for all x ∈ B. Thus, applying Lemma 2.3, we
conclude that T(B) is relatively compact in G−([0, 1]).

Combining steps 1 and 2, we can see that T : B → G−([0, 1]) is a compact mapping. Since
assumption (iv) asserts that the alternative in Theorem 3.7 is not possible, we conclude that
the operator F = T − x0 has a fixed point.

In the case when g is a BVG◦ function, we can deduce another existence result under
weaker assumptions on f .

Theorem 3.9. Let g ∈ G−([0, 1]) be a BVG◦ function, x0 ∈ R and f : [0, 1]×R → R satisfy the
assumptions (i), (ii) and (iv) in Theorem 3.8. Then, the integral problem (3) has at least one solution.

Proof. We will prove that if g ∈ G−([0, 1]) is a BVG◦ function, then the assumption (iii)
in Theorem 3.8 is a consequence of assumptions (i) and (ii). Let R > 0 be given and consider
B := BR(x0) ⊂ G−([0, 1]). Note that assumption (ii) together with Saks-Henstock lemma
imply that there exists a gauge γ : [0, 1]→ R+ such that

∑
j

∣∣∣∣ f (ξ j, x(ξ j))(g(αj)− g(αj−1))−
∫ αj

αj−1

f (s, x(s))dg(s)
∣∣∣∣ ≤ 1, (3.1)

for every γ-fine system (ξ j, [αj−1, αj]) and for all x ∈ B.
Since g is a BVG◦ function, the interval [0, 1] can be written as a disjoint countable union

of sets En such that mg(En) < ∞, n ∈ N. For each n, by the definition of mg, there exists a
gauge δn : En → R+ (which we can assume to be bounded from above by γ) such that

Wg(S) < mg(En) + 1 for every S ∈ S(En, δn). (3.2)



22 G. A. Monteiro and B. Satco

By the continuity of f in the second argument, assumption (i), for each t ∈ [0, 1], we can
find Mt > 0 such that | f (t, x(t))| ≤ Mt for all x ∈ B. Define now for each n, k ∈N:

Ẽn,k = {t ∈ En : Mt ≤ k}.

Given t ∈ [0, 1], there exists n(t) ∈ N such that t ∈ En(t) and there exists also k(t) ∈ N

satisfying
k(t)− 1 < Mt ≤ k(t),

wherefrom we get t ∈ Ẽn(t),k(t). Let

Jt =
(

t− δn(t)(t), t + δn(t)(t)
)

.

Note that, for s ∈ Jt, the system S = (t, [s, t]), if s < t, (or S = (t, [t, s]), if t < s) is δn(t)-fine.
Hence, by (3.1) and (3.2), for x ∈ B we have∣∣∣∣∫ t

s
f (τ, x(τ))dg(τ)

∣∣∣∣ ≤ ∣∣∣∣∫ t

s
f (τ, x(τ))dg(τ)− f (t, x(t))(g(t)− g(s))

∣∣∣∣
+ | f (t, x(t))(g(t)− g(s))|

≤ 1 + Mt|g(t)− g(s)|
≤ 1 + k(t)Wg(S)

< 1 + k(t)mg(En(t)) + k(t),

that is, ∣∣∣∣∫ t

s
f (τ, x(τ))dg(τ)

∣∣∣∣ < k(t)mg(En(t)) + k(t) + 1, (3.3)

for every x ∈ B and |s− t| < δn(t).

We use now (3.3) and the compactness of [0, 1] in order to get the boundedness property
(iii) of Theorem 3.8.

Obviously, {Jt : t ∈ [0, 1]} is a cover of [0, 1], thus there exists a finite set {t1, . . . , tN} ⊂ [0, 1]
such that [0, 1] ⊂ ⋃

i=1,...,N Ji, where Ji = Jti . Without loss of generality we may assume that
ti 6∈ Jj if i 6= j.

Let us denote Ki = k(ti)mg(En(ti)) + k(ti) + 1 for each i = 1, . . . , N. Choosing, si ∈ Ji−1 ∩ Ji
for i = 2, . . . , N, we have

|si − ti−1| < δn(ti−1)(ti−1) and |si − ti| < δn(ti)(ti),

which together with (3.3) imply∣∣∣∣∫ ti

ti−1

f (τ, x(τ))dg(τ)
∣∣∣∣ ≤ ∣∣∣ ∫ si

ti−1

f (τ, x(τ))dg(τ)
∣∣∣+ ∣∣∣ ∫ ti

si

f (τ, x(τ))dg(τ)
∣∣∣

≤ Ki−1 + Ki, (3.4)

for every x ∈ B.
Let M = ∑N

i=1 Ki. Without lost of generality, we can assume that 0 < t1 and tN < 1;
consequently [0, t1] ⊂ J1 and [tN , 1] ⊂ JN . We will show that∣∣∣∣∫ t

0
f (τ, x(τ))dg(τ)

∣∣∣∣ ≤ 2 M, for every t ∈ [0, 1] and x ∈ B. (3.5)
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Given an arbitrary x ∈ B, if t ∈ (0, t1], by (3.3) we have∣∣∣∣∫ t

0
f (τ, x(τ))dg(τ)

∣∣∣∣ ≤ ∣∣∣∣∫ t1

0
f (τ, x(τ))dg(τ)

∣∣∣∣+ ∣∣∣∣∫ t

t1

f (τ, x(τ))dg(τ)
∣∣∣∣ ≤ 2 K1,

and (3.5) holds. Now, consider t ∈ (t1, 1] and let p := max
{

i ∈ {1, . . . , N} : ti < t
}

. Using
(3.3) and (3.4) we obtain∣∣∣∣∫ t

0
f (τ, x(τ))dg(τ)

∣∣∣∣
≤
∣∣∣∣∫ t1

0
f (τ, x(τ))dg(τ)

∣∣∣∣+ p

∑
j=2

∣∣∣∣∫ tj

tj−1

f (τ, x(τ))dg(τ)
∣∣∣∣+ ∣∣∣∣∫ t

tp

f (τ, x(τ))dg(τ)
∣∣∣∣

≤ K1 +
p

∑
j=2

(
Kj−1 + Kj

)
+

∣∣∣∣∫ t

tp

f (τ, x(τ))dg(τ)
∣∣∣∣ ,

that is, ∣∣∣∣∫ t

0
f (τ, x(τ))dg(τ)

∣∣∣∣ ≤ 2
p−1

∑
j=1

Kj + Kp +

∣∣∣∣∫ t

tp

f (τ, x(τ))dg(τ)
∣∣∣∣ .

In order to estimate the last term we have to distinguish two cases: if t belongs or not to Jp.
In case t ∈ Jp, we can apply (3.3) again concluding that∣∣∣∣∫ t

0
f (τ, x(τ))dg(τ)

∣∣∣∣ ≤ 2
p

∑
j=1

Kj ≤ 2 M.

On the other hand, if t 6∈ Jp, since t ≤ tp+1 we must have t ∈ Jp+1. Therefore,∣∣∣∣∫ t

tp

f (τ, x(τ))dg(τ)
∣∣∣∣ ≤ ∣∣∣∣∫ tp+1

tp

f (τ, x(τ))dg(τ)
∣∣∣∣+ ∣∣∣∣∫ t

tp+1

f (τ, x(τ))dg(τ)
∣∣∣∣

≤ Kp + 2 Kp+1,

and consequently ∣∣∣∣∫ t

0
f (τ, x(τ))dg(τ)

∣∣∣∣ ≤ 2
p+1

∑
j=1

Kj ≤ 2 M.

In summary, for each t ∈ [0, 1] and x ∈ B, (3.5) holds, which shows that condition (iii) from
Theorem 3.8 is satisfied.

Remark 3.10. Both existence results, Theorem 3.8 and 3.9, might throw a new light in the
study of measure functional differential equations in the sense of [13]. Actually, problem (3) is
an example of the so-called measure differential equations; however, unlike the theory which
has been developed up to now, here we deal with a more general class of integrators.

In view of the equivalence stated in Theorem 3.3, from our first existence result we derive
the following.

Theorem 3.11. Let g ∈ G−([0, 1]), x0 ∈ R and f : [0, 1]×R→ R satisfy the following conditions:

i) for each t ∈ [0, 1], f (t, ·) is continuous on R and

t 7→ f (t, x(t)) is a BV-function for every x ∈ G−([0, 1]).
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ii) for every R > 0, the family { f (·, x(·)) : x ∈ BR(x0) ⊂ G−[0, 1]} is equiintegrable w.r.t. g;

iii) for each R > 0, the family {
∫ t

0 f (s, x(s))dg(s) : x ∈ BR(x0)} is bounded for each t ∈ [0, 1];

iv) there exists R0 > 0 such that for every x ∈ G−[0, 1] with ‖x− x0‖∞ = R0,

x(t)− x0 − λ
∫ t

0
f (s, x(s))dg(s) 6= 0

for every λ ∈ (0, 1) and some t ∈ [0, 1].

Then the distributional problem (1) has at least one solution.

By combining Theorems 3.5 and 3.9 we obtain the following existence result for prob-
lem (2).

Theorem 3.12. Let g ∈ G−([0, 1]) be a BVG◦ function, x0 ∈ R and f : [0, 1]×R → R satisfy the
assumptions (i), (ii) and (iv) in Theorem 3.8. Then the problem (2) has at least one solution.

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Re-
search, CNCS - UEFISCDI, project number PN-II-RU-TE-2012-3-0336.

The first author has been supported by the Institutional Research Plan No. AV0Z10190503.
The infrastructure used in this work was partially supported from the project “Integrated

Center for research, development and innovation in Advanced Materials, Nanotechnologies,
and Distributed Systems for fabrication and control”, Contract No. 671/09.04.2015, Sectoral
Operational Program for Increase of the Economic Competitiveness co-funded from the Euro-
pean Regional Development Fund.

We would like to thank the referee for his/her suggestions and comments.

References

[1] D. Bugajewska, On the superposition operator in the space of functions of bounded
variation, revisited, Math. Comput. Modell. 522(2010), 791–796. MR2661764; url
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[3] M. Cichoń, B. Satco, Measure differential inclusions – between continuous and discrete,
Adv. Diff. Equations 2014, 2014:56, 18 pp. MR3348625; url

[4] P. J. Daniell, Differentiation with respect to a function of limited variation, Trans. Amer.
Math. Soc. 19(1918), No. 4, 353–362. MR1501108; url

[5] N. Dunford, J. T. Schwartz, Linear operators III, Interscience Publishers, Inc., New-York,
1966. MR1009164

[6] R. M. Dudley, R. Norvaiša, Concrete functional calculus, Springer, New York, 2011.
MR2732563; url

http://www.ams.org/mathscinet-getitem?mr=2661764
https://doi.org/10.1016/j.mcm.2010.05.008
http://www.ams.org/mathscinet-getitem?mr=2109151
https://doi.org/10.1016/j.na.2004.09.041
http://www.ams.org/mathscinet-getitem?mr=3348625
https://doi.org/10.1186/1687-1847-2014-56
http://www.ams.org/mathscinet-getitem?mr=1501108
https://doi.org/10.2307/1988974
http://www.ams.org/mathscinet-getitem?mr=1009164
http://www.ams.org/mathscinet-getitem?mr=2732563
https://doi.org/10.1007/978-1-4419-6950-7


Distributional, differential and integral problems 25

[7] V. Ene, Thomson’s variational measure, Real Anal. Exchange 24(1998/9), 523–565.
MR1704732

[8] V. Ene, Thomson’s variational measure and some classical theorems, Real Anal. Exchange
25(1999/00), 521–545. MR1778509

[9] V. Ene, Thomson’s variational measure and nonabsolutely convergent integrals, Real
Anal. Exchange 26(2000), 35–50. MR1825496

[10] C.-A. Faure, A descriptive definition of some multidimensional gauge integrals, Czech-
slovak Math. J. 45(1995), 549–562. MR1344520

[11] C.-A. Faure, Sur le théorème de Denjoy–Young–Saks (in French) [On the Denjoy–Young–
Saks theorem], C. R. Acad. Sci. Paris Sér. I Math., 320(1995), No. 4, 415–418. MR1320113

[12] C.-A. Faure, A descriptive definition of the KH–Stieltjes integral, Real Anal. Exchange
23(1998-99), No. 1, 113–124. MR1609775

[13] M. Federson, J. G. Mesquita, A. Slavík, Measure functional differential equations and
functional dynamic equations on time scales, J. Differential Equations 252(2012), 3816–3847.
MR2875603; url

[14] M. Federson, J. G. Mesquita, A. Slavík, Basic results for functional differential
and dynamic equations involving impulses, Math. Nachr. 286(2013), No. 2–3, 181–204.
MR3021475; url

[15] D. Fraňková, Regulated functions, Math. Bohem. 116(1991), No. 1, 20–59. MR1100424

[16] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in
Mathematics Vol. 4, American Mathematical Society, Providence, RI, 1994. MR1288751;
url

[17] A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003. MR1987179;
url

[18] U. M. Hanung, Doctoral thesis, Institute of Mathematics, Academy of Sciences of the
Czech Republic, Prague, in preparation.

[19] O. Hájek, Book Review: Differential systems involving impulses, Bull. Amer. Math. Soc.
N.S. 12(1985), No. 2, 272–280. MR1567545; url

[20] S. Heikkilä, On singular nonlinear distributional and initial and boundary value prob-
lems, Boundary Value Probl. 2011, 2011:24, 19 pp. MR2846071

[21] S. Heikkilä, On nonlinear distributional and impulsive Cauchy problems, Nonlin. Anal.
75(2012), 852–870. MR2847462; url

[22] S. Heikkilä, E. Talvila, Distributions, their primitives and integrals with applications to
differential equations, Dynam. Systems Appl. 22(2013), No. 2–3, 207–249. MR3100201

[23] C. S. Hönig, Volterra Stieltjes-integral equations, North-Holland and American Elsevier,
Mathematics Studies, Vol. 16, Amsterdam and New York, 1975. MR0499969

http://www.ams.org/mathscinet-getitem?mr=1704732
http://www.ams.org/mathscinet-getitem?mr=1778509
http://www.ams.org/mathscinet-getitem?mr=1825496
http://www.ams.org/mathscinet-getitem?mr=1344520
http://www.ams.org/mathscinet-getitem?mr=1320113
http://www.ams.org/mathscinet-getitem?mr=1609775
http://www.ams.org/mathscinet-getitem?mr=2875603
https://doi.org/10.1016/j.jde.2011.11.005
http://www.ams.org/mathscinet-getitem?mr=3021475
https://doi.org/10.1002/mana.201200006
http://www.ams.org/mathscinet-getitem?mr=1100424
http://www.ams.org/mathscinet-getitem?mr=1288751
https://doi.org/10.1090/gsm/004
http://www.ams.org/mathscinet-getitem?mr=1987179
https://doi.org/10.1007/978-0-387-21593-8
http://www.ams.org/mathscinet-getitem?mr=1567545
https://doi.org/10.1090/S0273-0979-1985-15377-7
http://www.ams.org/mathscinet-getitem?mr=2846071
http://www.ams.org/mathscinet-getitem?mr=2847462
https://doi.org/10.1016/j.na.2011.09.018
http://www.ams.org/mathscinet-getitem?mr=3100201
http://www.ams.org/mathscinet-getitem?mr=0499969


26 G. A. Monteiro and B. Satco

[24] V. Marraffa, Strongly measurable Kurzweil–Henstock type integrable functions and
series, Quaest. Math. 31(2008), No. 4, 379–386. MR2527448; url

[25] G. A. Monteiro, A. Slavík, Linear measure functional differential equations with infinite
delay, Math. Nachr. 287(2014), 1363–1382. MR3247022; url

[26] M. Pelant, M. Tvrdý, Linear distributional differential equations in the space of regu-
lated functions, Math. Bohem. 118(1993), No. 4, 379–400. MR1251883

[27] R. L. Pouso, A. Rodríguez, A new unification of continuous, discrete, and impulsive
calculus through Stieltjes derivatives, Real Anal. Exchange 40(2014/15), No. 2, 319–353.
MR3499768

[28] W. Rudin, Functional analysis, Second edition, McGraw-Hill, Inc., New York, 1991.
MR1157815

[29] S. Saks, Theory of the integral, Monografie Matematyczne, Warszawa, 1937. MR0167578

[30] B. Satco, Measure integral inclusions with fast oscillating data, Electron. J. Differential
Equations 2015, No. 107, 13 pp. MR3358479

[31] B. Satco, Regulated solutions for nonlinear measure driven equations, Nonlinear Anal.
Hybrid Syst. 13(2014), 22–31. MR3209695; url

[32] Š. Schwabik, Generalized ordinary differential equations, World Scientific, 1992. MR1200241;
url

[33] Š. Schwabik, Variational measures and the Kurzweil–Henstock integral, Math. Slovaca
59(2009), 731–752. MR2564330; url

[34] Š. Schwabik, M. Tvrdý, O. Vejvoda, Differential and integral equations. Boundary problems
and adjoints, Academia and D. Reidel, Praha and Dordrecht, 1979. MR542283

[35] L. Schwartz, Théorie des distributions. Tome I (in French), Hermann, Paris, 1950.
MR0035918

[36] L. Schwartz, Théorie des distributions. Tome II (in French), Hermann, Paris, 1951.
MR0041345

[37] P. Sworowski, Adjoint classes of functions in the H1 sense, Czech. Math. J. 57(2007),
505–522. MR2337612; url

[38] E. Talvila, The regulated primitive integral, Illinois J. Math. 53(2009), No. 4, 1187–1219.
MR2741185

[39] B. S. Thomson, Real functions, Lecture Notes in Mathematics, Vol. 1170, Springer-Verlag,
1985. MR818744

[40] M. Tvrdý, Differential and integral equations in the space of regulated functions, Habil. thesis,
Praha, 2001.

[41] W. H. Young, On integrals and derivatives with respect to a function, Proc. London Math.
Soc. s2-15(1917), No. 1, 35–63. url

http://www.ams.org/mathscinet-getitem?mr=2527448
https://doi.org/10.2989/QM.2008.31.4.6.610
http://www.ams.org/mathscinet-getitem?mr=3247022
https://doi.org/10.1002/mana.201300048
http://www.ams.org/mathscinet-getitem?mr=1251883
http://www.ams.org/mathscinet-getitem?mr=3499768
http://www.ams.org/mathscinet-getitem?mr=1157815
http://www.ams.org/mathscinet-getitem?mr=0167578
http://www.ams.org/mathscinet-getitem?mr=3358479
http://www.ams.org/mathscinet-getitem?mr=3209695
https://doi.org/10.1016/j.nahs.2014.02.001
http://www.ams.org/mathscinet-getitem?mr=1200241
https://doi.org/10.1142/1875
http://www.ams.org/mathscinet-getitem?mr=2564330
https://doi.org/10.2478/s12175-009-0160-1
http://www.ams.org/mathscinet-getitem?mr=542283
http://www.ams.org/mathscinet-getitem?mr=0035918
http://www.ams.org/mathscinet-getitem?mr=0041345
http://www.ams.org/mathscinet-getitem?mr=2337612
https://doi.org/10.1007/s10587-007-0095-z
http://www.ams.org/mathscinet-getitem?mr=2741185
http://www.ams.org/mathscinet-getitem?mr=818744
https://doi.org/10.1112/plms/s2-15.1.35

	Introduction
	Preliminary results
	Integrals and derivatives
	Fundamental Theorem of Calculus

	Main results
	Equivalence of distributional, differential and integral problems
	Existence results


