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Abstract. By the combination of the modified half-linear Prüfer method and the Riccati
technique, we study oscillatory properties of half-linear differential equations. Taking
into account the transformation theory of half-linear equations and using some known
results, we show that the analysed equations in the Riemann–Weber form with per-
turbations in both terms are conditionally oscillatory. Within the process, we identify
the critical oscillation values of their coefficients and, consequently, we decide when
the considered equations are oscillatory and when they are non-oscillatory. As a direct
corollary of our main result, we solve the so-called critical case for a certain type of
half-linear non-perturbed equations.
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1 Introduction

This paper is devoted to the study of the half-linear differential equations[
r(t)tp−1Φ(x′)

]′
+

s(t)
t logp t

Φ(x) = 0, Φ(x) = |x|p−1 sgn x (1.1)

and(r1(t) +
r2(t)

[log (log t)]2

)− p
q

tp−1Φ(x′)

′ + 1
t logp t

(
s1(t) +

s2(t)

[log (log t)]2

)
Φ(x) = 0 (1.2)

with continuous coefficients r > 0, s, r1 > 0, r2, s1, s2, where log denotes the natural logarithm,
p > 1 is a given real constant, and q stands for the number conjugated with p, i.e., p + q = pq.

The main interest in our investigation is the so-called conditional oscillation. Therefore, we
begin with recalling this notion. At first, we should mention that the Sturmian theory is ex-
tendable to half-linear differential equations. Especially, the separation theorem is extendable
BCorresponding author. Email: hasil@mail.muni.cz
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to half-linear equations. This fact enables us to categorize the studied equations as oscilla-
tory (zeros of every solution tend to infinity) and non-oscillatory (every non-zero solution
has the biggest zero). An important role is played by the so-called conditionally oscillatory
equations. They are special types of equations, whose oscillatory properties are determined
by “measuring” their coefficients and the oscillation and non-oscillation can be changed using
the multiplication of at least one coefficient by positive constants. More precisely, we say that
the second order half-linear differential equation[

R(t)Φ(x′)
]′
+ γS(t)Φ(x) = 0 (1.3)

is conditionally oscillatory if there exists a positive constant Γ (called the critical oscillation
constant) such that Eq. (1.3) is oscillatory for γ > Γ and non-oscillatory for γ < Γ. In general,
it is difficult to solve the critical case given by γ = Γ. Many half-linear equations are non-
oscillatory in the critical case. But, there are known cases when it is not possible to decide
whether the studied equations are oscillatory or non-oscillatory. Equations with general coef-
ficients may be both oscillatory and non-oscillatory in the critical case, i.e., while one equation
is oscillatory, another one is non-oscillatory. For more details, see, e.g., [2, 6, 10, 18, 19, 31, 35].
For the basic theory background on half-linear equations, we refer to books [1, 9].

In this paper, we fully solve the critical case of Eq. (1.1) with periodic coefficients r and s,
i.e., we analyse the oscillation of this equation in full. At the same time, we turn our attention
to the perturbed equation (1.2), where the coefficients r1, s1 are periodic and the coefficients
r2, s2 in the perturbations are very general and they can change their signs.

Let us briefly mention the current state of the conditional oscillation theory and give some
historical remarks. As far as we know, the first attempt to the conditional oscillation comes
from [22], where the linear differential equation

x′′ +
γ

t2 x = 0 (1.4)

was studied and its oscillation constant γ0 = 1/4 was obtained. Note that it was also shown
in [22] that Eq. (1.4) is non-oscillatory in the critical case. The non-constant coefficients were
treated in [15, 28], where the equation

[r(t)x′]′ +
γs(t)

t2 x = 0 (1.5)

with positive periodic coefficients r, s was analysed. The critical case of Eq. (1.5) was solved
as non-oscillatory in [29] as a consequence of the study of the perturbed equation

[r(t)x′]′ +
1
t2

[
γs1(t) +

µs2(t)
log2 t

]
x = 0

with positive periodic coefficients r, s1, s2.
In the theory of half-linear equations, the first attempt was made in [11, 12], from where it

follows that the half-linear Euler equation

[Φ(x′)]′ +
γ

tp Φ(x) = 0 (1.6)

is conditionally oscillatory with the oscillation constant γp := q−p. From [13], it is known that
the half-linear Riemann–Weber equation

[Φ(x′)]′ +
1
tp

[
γp +

µ

log2 t

]
Φ(x) = 0 (1.7)
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is also conditionally oscillatory with respect to the oscillation constant µp := q1−p/2.

As a natural continuation of the research of Eq. (1.6) and (1.7), positive constant coefficients
were replaced by positive periodic functions in [8]. The main result of [8] deals with the Euler
type equation [

r(t)Φ(x′)
]′
+

γc(t)
tp Φ(x) = 0 (1.8)

and with the Riemann–Weber type equation

[
r(t)Φ(x′)

]′
+

1
tp

[
γc(t) +

µd(t)
log2 t

]
Φ(x) = 0, (1.9)

where r, c, and d are periodic positive functions with the same period. Since [8] is one of the
main motivations for our research, we reformulate its main result in full. We should recall
that the mean value of a periodic function f over its period, say T > 0, is the number

M( f ) =
1
T

∫ a+T

a
f (x)dx,

where a ∈ R is arbitrary. We can also refer to Definition 4.8 below.

Theorem 1.1 ([8]). Eq. (1.8) is non-oscillatory if and only if

γ ≤ γrc := γp

[
M
(

r1−q
)]1−p

[M(c)]−1.

In the limiting case γ = γrc, Eq. (1.9) is non-oscillatory if

µ < µrd := µp

[
M
(

r1−q
)]

[M(d)]−1,

and it is oscillatory if µ > µrd.

The next motivation comes from papers [4–7,27]. At this place, we state a result concerning
the equation (α1 +

α2

log2 t

)− p
q

Φ(x′)

′ + 1
tp

(
β1 +

β2

log2 t

)
Φ(x) = 0, (1.10)

where α1, α2, β1, β2 are constants and α1 > 0. Note that, due to the exponent in the first term
of Eq. (1.10), the formulations of results are technically easier and the exponent does not mean
any restriction and can be removed. The following theorem can be obtained, e.g., as a direct
corollary of the main result of [6] (or deduced from [4, 5, 7]). We will also use this theorem in
the proof of Lemma 3.1 below which is essential to prove our main result.
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Theorem 1.2 ([6]). The following statements hold.

(i) Eq. (1.10) is oscillatory if β1α
p−1
1 > γp, and non-oscillatory if β1α

p−1
1 < γp.

(ii) Let β1α
p−1
1 = γp. Eq. (1.10) is oscillatory if β2α

p−1
1 + (p − 1)γpα2α−1

1 > µp, and non-
oscillatory if β2α

p−1
1 + (p− 1)γpα2α−1

1 < µp.

As the third result which is strongly connected to the presented one, we mention a result
from [33]. This result is focused on an equation of the same type as Eq. (1.1). More precisely,
it deals with the equation [

r−
p
q (t)tp−1Φ(x′)

]′
+

s(t)
t logp t

Φ(x) = 0, (1.11)

where r > 0 and s are periodic functions with the same period.

Theorem 1.3 ([33]). Eq. (1.11) is oscillatory if [M(r)]p−1 M(s) > γp. Eq. (1.11) is non-oscillatory if
[M(r)]p−1 M(s) < γp.

Besides the above given references, we should mention at least papers [16, 21, 23–26, 32].
Note that the treated topic is also studied in the field of difference equations (see, e.g., [17,30,
34]) and in the field of dynamic equations on time scales (see, e.g., [20, 36]).

In this paper, we generalize Theorem 1.3 into a very general situation. Especially, we solve
the critical case [M(r)]p−1 M(s) = γp. Our aim is to obtain a result similar to Theorem 1.1
which covers also non-periodic coefficients. To make this, we apply Theorem 1.2 and the
method based on the combination of the modified half-linear Prüfer angle and the Riccati
equation. To the best or our knowledge, the used method and the announced result are new
even in the linear case (see also Corollary 4.3 and Example 4.4 below).

This paper is organized as follows. In the following section, we derive the equation for
the modified Prüfer angle, which will be an important tool in the rest of this paper. Then, we
study the behaviour of the Prüfer angle. This leads to the proof of the main result in Section 3.
The paper is finished by corollaries and examples in Section 4.

2 Modified Prüfer angle and average function

At this place, we provide some background calculations which lead to auxiliary equations
that are necessary for our approach. Throughout this paper, we will consider an arbitrarily
given number p > 1 and the conjugated number q := p/(p− 1) and we will use the notation
Ra := (a, ∞) for a ∈ R. In our main result (see Theorem 3.3 below), we will consider the
equation(r1(t) +

r2(t)

[log(log t)]2

)− p
q

tp−1Φ(x′)

′ + 1
t logp t

(
s1(t) +

s2(t)

[log(log t)]2

)
Φ(x) = 0, (2.1)

where r1 : R → R0 and s1 : R → R are α-periodic continuous functions for some α ∈ R0 and
where r2, s2 : Re → R are continuous functions such that

r1(t) +
r2(t)

[log(log t)]2
> 0, t ∈ Re, (2.2)
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lim
t→∞

1√
t log t

∫ t+α

t
|r2(u)|du = 0, (2.3)

and

lim
t→∞

1√
t log t

∫ t+α

t
|s2(u)|du = 0. (2.4)

For future use, we put
r+1 := max

t∈[0,α]
r1(t), s+1 := max

t∈[0,α]
|s1(t)|. (2.5)

For our investigation of Eq. (2.1), we need to express the half-linear Prüfer angle in a very
special form. Let us briefly describe its derivation. At first, we apply the Riccati transformation

w(t) =

(
r1(t) +

r2(t)

[log(log t)]2

)− p
q

tp−1Φ
(

x′(t)
x(t)

)
, (2.6)

where x is a non-zero solution of Eq. (2.1). The obtained function w satisfies the Riccati
equation

w′(t) +
1

t logp t

(
s1(t) +

s2(t)

[log(log t)]2

)
+

p− 1
t

(
r1(t) +

r2(t)

[log(log t)]2

)
|w(t)|q = 0 (2.7)

associated to Eq. (2.1) whenever x(t) 6= 0. For details about the Riccati transformation and
equation, we refer to [9, Section 1.1.4].

Now we use the transformation

v(t) = (log t)
p
q w(t), t ∈ Re, (2.8)

in Eq. (2.7) which gets us to the adapted (or weighted) Riccati type equation

v′(t) =
p
q
(log t)

p
q−1 w(t)

t
+ (log t)

p
q w′(t)

=
p
q

v(t)
t log t

− 1
t log t

(
s1(t) +

s2(t)

[log(log t)]2

)

− p− 1
t

(
r1(t) +

r2(t)

[log(log t)]2

)
|v(t)|q
log t

.

(2.9)

Thus, in one hand, we keep the adapted Riccati equation (2.9). In the other hand, we have
the modified half-linear Prüfer transformation

x(t) = ρ(t) sinp ϕ(t),

(
r1(t) +

r2(t)

[log(log t)]2

)−1

tx′(t) =
ρ(t)
log t

cosp ϕ(t), (2.10)

where sinp and cosp denote the half-linear sine and cosine functions. For fundamental pro-
perties of the half-linear trigonometric functions sinp and cosp, see [9, Section 1.1.2]. In this
paper, we have to mention only that the half-linear sine and cosine functions are periodic and
that they satisfy the half-linear Pythagorean identity

| sinp x|p + | cosp x|p = 1, x ∈ R. (2.11)
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Especially,
| sinp x| ≤ 1, | cosp x| ≤ 1,

∣∣Φ (cosp x
)∣∣ ≤ 1, x ∈ R. (2.12)

We combine the adapted Riccati equation (2.9) with the Prüfer transformation (2.10). We
begin with the observations that the function

y(t) = Φ
(

cosp t
sinp t

)
solves the equation

y′(t) + p− 1 + (p− 1)|y(t)|q = 0

and that (see (2.6), (2.8), and (2.10))

v(t) = (log t)
p
q

(
r1(t) +

r2(t)

[log(log t)]2

)− p
q

tp−1Φ
(

x′(t)
x(t)

)
= Φ

(
cosp ϕ(t)
sinp ϕ(t)

)
. (2.13)

Using (2.11), these two observations lead to the second expression (the first one is the adapted
Riccati equation (2.9) itself)

v′(t) = [y(ϕ(t))]′ = [1− p + (1− p)|y(ϕ(t))|q] ϕ′(t)

= (1− p)

[
1 +

∣∣∣∣Φ(cosp ϕ(t)
sinp ϕ(t)

)∣∣∣∣q
]

ϕ′(t)

= (1− p)

[
1 +

∣∣∣∣cosp ϕ(t)
sinp ϕ(t)

∣∣∣∣p
]

ϕ′(t) =
1− p∣∣sinp ϕ(t)

∣∣p ϕ′(t).

(2.14)

Finally, we compare both of the expressions for v′(t), namely (2.9) and (2.14). Hence, we
have

1− p∣∣sinp ϕ(t)
∣∣p ϕ′(t) =

p
q

v(t)
t log t

− 1
t log t

(
s1(t) +

s2(t)

[log(log t)]2

)

− p− 1
t

(
r1(t) +

r2(t)

[log(log t)]2

)
|v(t)|q
log t

,

from where we immediately express the derivative of the modified Prüfer angle (we are aware
of (2.13))

ϕ′(t) =
1

t log t

[(
r1(t) +

r2(t)

[log(log t)]2

)
| cosp ϕ(t)|p −Φ

(
cosp ϕ(t)

)
sinp ϕ(t)

+

(
s1(t) +

s2(t)

[log(log t)]2

) ∣∣sinp ϕ(t)
∣∣p

p− 1

]
.

(2.15)

We will use Eq. (2.15) to the study of oscillatory properties of Eq. (2.1).
For the period α of the functions r1, s1, we define the function ϕave which determines the

average value of an arbitrarily given solution ϕ : Re → R of Eq. (2.15) over intervals of the
length α; i.e., we put

ϕave(t) :=
1
α

∫ t+α

t
ϕ(u)du, t ∈ Re, (2.16)

where ϕ is a solution of Eq. (2.15) on Re.
We prove an auxiliary result concerning the function ϕave.
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Lemma 2.1. The limit

lim
t→∞

√
t log t |ϕ(s)− ϕave(t)| = 0 (2.17)

exists uniformly with respect to s ∈ [t, t + α].

Proof. For s ∈ [t, t + α], we have

0 ≤ lim inf
t→∞

√
t log t |ϕ(s)− ϕave(t)| ≤ lim sup

t→∞

√
t log t |ϕ(s)− ϕave(t)|

= lim sup
t→∞

√
t log t

∣∣∣∣ϕ(s)− 1
α

∫ t+α

t
ϕ(u)du

∣∣∣∣ = lim sup
t→∞

√
t log t

∣∣∣∣1α
∫ t+α

t
ϕ(s)− ϕ(u)du

∣∣∣∣
≤ lim sup

t→∞

√
t log t max

s1,s2∈[t,t+α]
|ϕ(s1)− ϕ(s2)| = lim sup

t→∞

√
t log t max

s1,s2∈[t,t+α]

∣∣∣∣∫ s2

s1

ϕ′(u)du
∣∣∣∣

= lim sup
t→∞

√
t log t max

s1,s2∈[t,t+α]

∣∣∣∣∣
∫ s2

s1

1
u log u

[(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

−Φ(cosp ϕ(u)) sinp ϕ(u)

+

(
s1(u) +

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p

p− 1

]
du

∣∣∣∣∣
= lim sup

t→∞

√
t log t

{
max

s1,s2∈[t,t+α]

∣∣∣∣∣ 1
s1 log s1

∫ s3

s1

[(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

−Φ(cosp ϕ(u)) sinp ϕ(u)

+

(
s1(u) +

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p

p− 1

]
du

+
1

s2 log s2

∫ s2

s3

[(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

− Φ(cosp ϕ(u)) sinp ϕ(u)

+

(
s1(u) +

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p

p− 1

]
du

∣∣∣∣∣
}

≤ lim sup
t→∞

√
t log t

{
max

s1∈[t,t+α]

∣∣∣∣ 1
s1 log s1

∣∣∣∣·
∣∣∣∣∣
∫ s3

s1

[(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

− Φ(cosp ϕ(u)) sinp ϕ(u)

+

(
s1(u) +

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p

p− 1

]
du

∣∣∣∣∣
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+ max
s2∈[t,t+α]

∣∣∣∣ 1
s2 log s2

∣∣∣∣·
∣∣∣∣∣
∫ s2

s3

[(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

− Φ(cosp ϕ(u)) sinp ϕ(u)

+

(
s1(u)+

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p

p− 1

]
du

∣∣∣∣∣
}

≤ lim sup
t→∞

√
t log t

{
1

t log t
max

s1,s2∈[t,t+α]

∣∣∣∣∣
∫ s2

s1

[(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

−Φ(cosp ϕ(u)) sinp ϕ(u)

+

(
s1(u) +

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p

p− 1

]
du

∣∣∣∣∣
+

1
t log t

max
s1,s2∈[t,t+α]

∣∣∣∣∣
∫ s2

s1

[(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

− Φ(cosp ϕ(u)) sinp ϕ(u)

+

(
s1(u) +

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p

p− 1

]
du

∣∣∣∣∣
}

≤ lim sup
t→∞

2√
t log t

max
s1,s2∈[t,t+α]

∫ s2

s1

∣∣∣∣∣
(

r1(u) +
r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

−Φ(cosp ϕ(u)) sinp ϕ(u)

+

(
s1(u) +

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p

p− 1

∣∣∣∣∣du

≤ 2 lim sup
t→∞

1√
t log t

max
s1,s2∈[t,t+α]

∫ s2

s1

[
r+1 +

|r2(u)|
[log(log u)]2

+ 1 +
1

p− 1

(
s+1 +

|s2(u)|
[log(log u)]2

)]
du

≤ 2 lim sup
t→∞

1√
t log t

∫ t+α

t

[
r+1 +

|r2(u)|
[log(log t)]2

+ 1 +
1

p− 1

(
s+1 +

|s2(u)|
[log(log t)]2

)]
du = 0,

where (2.3), (2.4), (2.5), and (2.12) are used.

3 Results

At first, we discuss the oscillatory behaviour of the equation(α1 +
α2

[log (log t)]2

)− p
q

tp−1Φ(x′)

′ + 1
t logp t

(
β1 +

β2

[log (log t)]2

)
Φ(x) = 0 (3.1)

with constant coefficients α1 ∈ R0, α2, β1, β2 ∈ R. Applying a simple transformation, one can
get the following lemma.
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Lemma 3.1. Eq. (3.1) is oscillatory for α
p−1
1 β1 > q−p and non-oscillatory for α

p−1
1 β1 < q−p. In the

limiting case α
p−1
1 β1 = q−p, Eq. (3.1) is oscillatory if

β2α
p−1
1 +

p− 1
qp

α2

α1
>

q1−p

2
, (3.2)

and non-oscillatory if

β2α
p−1
1 +

p− 1
qp

α2

α1
<

q1−p

2
. (3.3)

Proof. In Eq. (3.1), we have x = x(t) and (·)′ = d/dt. Using the transformation of the inde-
pendent variable

s = log t, i.e.,
d

dt
=

1
t

d
ds

,

we obtain (we put x(t) = y(s))

1
t

d
ds

(α1 +
α2

log2 s

)− p
q

tp−1Φ
(

1
t

dy
ds

)+
1

tsp

(
β1 +

β2

log2 s

)
Φ(y) = 0.

This leads to the equation(α1 +
α2

log2 s

)− p
q

Φ(y′)

′ + 1
sp

(
β1 +

β2

log2 s

)
Φ(y) = 0,

where y = y(s) and (·)′ = d/ds. Now it suffices to use Theorem 1.2.

From Lemma 3.1, we get the lemma below which closes the preliminary results.

Lemma 3.2. Let M(r1), M(s1) ∈ R0 be such that [M(r1)]
p−1M(s1) = q−p.

(i) If X, Y ∈ R satisfy

[M(r1)]
p−1Y +

p− 1
qp

X
M(r1)

>
q1−p

2
, (3.4)

then any solution θ : Re → R of the equation

θ′(t) =
1

t log t

[(
M(r1) +

X

[log(log t)]2

)
| cosp θ(t)|p −Φ

(
cosp θ(t)

)
sinp θ(t)

+

(
M(s1) +

Y

[log(log t)]2

) ∣∣sinp θ(t)
∣∣p

p− 1

] (3.5)

is unbounded from above.

(ii) If V, W ∈ R satisfy

[M(r1)]
p−1W +

p− 1
qp

V
M(r1)

<
q1−p

2
, (3.6)

then any solution ξ : Re → R of the equation

ξ ′(t) =
1

t log t

[(
M(r1) +

V

[log(log t)]2

)
| cosp ξ(t)|p −Φ

(
cosp ξ(t)

)
sinp ξ(t)

+

(
M(s1) +

W

[log(log t)]2

) ∣∣sinp ξ(t)
∣∣p

p− 1

] (3.7)

is bounded from above.
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Proof. Comparing Eq. (3.5) and Eq. (3.7) with Eq. (2.15), one can see that Eq. (3.5) and Eq. (3.7)
is the equation of the Prüfer angle for

(M(r1) +
X

[log(log t)]2

)− p
q

tp−1Φ(x′)

′ + 1
t logp t

(
M(s1) +

Y

[log(log t)]2

)
Φ(x) = 0 (3.8)

and(M(r1) +
V

[log(log t)]2

)− p
q

tp−1Φ(x′)

′ + 1
t logp t

(
M(s1) +

W

[log(log t)]2

)
Φ(x) = 0, (3.9)

respectively.
Let us focus on the first case. The assumption [M(r1)]

p−1M(s1) = q−p and (3.4) give that
Eq. (3.8) is oscillatory (see (3.2) in Lemma 3.1). Now it suffices to consider directly the Prüfer
transformation (2.10) and take into account the form of Eq. (3.5), where sinp θ(t) = 0 implies
θ′(t) > 0 for all large t. Therefore, Eq. (3.8) is oscillatory if and only if its Prüfer angle θ is
unbounded from above. Part (i) is proved.

Considering (3.3) and (3.6), the case (ii) is analogous (Eq. (3.9) is non-oscillatory if and only
if the Prüfer angle ξ is bounded from above).

Now we are ready to formulate and to prove the main result of our paper.

Theorem 3.3. Let [M(r1)]
p−1M(s1) = q−p.

(i) If there exist R, S ∈ R such that

1
α

∫ t+α

t
r2(u)du ≥ R,

1
α

∫ t+α

t
s2(u)du ≥ S (3.10)

for all sufficiently large t and that

[M(r1)]
p−1S +

p− 1
qp

R
M(r1)

>
q1−p

2
, (3.11)

then Eq. (2.1) is oscillatory.

(ii) If there exist R, S ∈ R such that

1
α

∫ t+α

t
r2(u)du ≤ R,

1
α

∫ t+α

t
s2(u)du ≤ S (3.12)

for all sufficiently large t and that

[M(r1)]
p−1S +

p− 1
qp

R
M(r1)

<
q1−p

2
, (3.13)

then Eq. (2.1) is non-oscillatory.



Oscillation and non-oscillation criterion for Riemann–Weber equations 11

Proof. Let us consider the function ϕave given by (2.16), where ϕ is an arbitrary solution of
Eq. (2.15) on Re. It holds

ϕ′ave(t) =
1
α
[ϕ(t + α)− ϕ(t)] =

1
α

∫ t+α

t
ϕ′(u)du

=
1
α

∫ t+α

t

1
u log u

[(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p

−Φ
(
cosp ϕ(u)

)
sinp ϕ(u)

+

(
s1(u) +

s2(u)

[log(log u)]2

) ∣∣sinp ϕ(u)
∣∣p

p− 1

]
du

=
1
α

[∫ t+α

t

1
u log u

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p du

−
∫ t+α

t

1
u log u

Φ
(
cosp ϕ(u)

)
sinp ϕ(u)du

+
∫ t+α

t

1
u log u

(
s1(u) +

s2(u)

[log(log u)]2

) ∣∣sinp ϕ(u)
∣∣p

p− 1
du

]

(3.14)

for any t ∈ Re. Let ε ∈ R0 be arbitrarily given.
We have ∣∣∣∣∣1α

∫ t+α

t

1
u log u

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p du

− 1
α t log t

∫ t+α

t

(
r1(u) +

r2(u)

[log(log t)]2

)
du | cosp ϕave(t)|p

∣∣∣∣∣
≤
∣∣∣∣∣1α
∫ t+α

t

1
u log u

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p du

− 1
α

∫ t+α

t

1
t log t

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p du

∣∣∣∣∣
+

∣∣∣∣∣1α
∫ t+α

t

1
t log t

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p du

− 1
α

∫ t+α

t

1
t log t

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕave(t)|p du

∣∣∣∣∣
+

∣∣∣∣∣1α
∫ t+α

t

1
t log t

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕave(t)|p du

− 1
α

∫ t+α

t

1
t log t

(
r1(u) +

r2(u)

[log(log t)]2

)
| cosp ϕave(t)|p du

∣∣∣∣∣
for all t ∈ Re. Since

lim
t→∞

t(t + α) log t
(

1
t log t

− 1
(t + α) log(t + α)

)
= α, (3.15)



12 P. Hasil and M. Veselý

we obtain (see (2.3), (2.5), and (2.12))∣∣∣∣∣ 1
α

∫ t+α

t

[
1

u log u
− 1

t log t

](
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p du

∣∣∣∣∣
≤ 1

α

∫ t+α

t

[
1

t log t
− 1

(t + α) log(t + α)

](
r1(u) +

|r2(u)|
[log(log t)]2

)
| cosp ϕ(u)|p du

≤ 2
∫ t+α

t

1
t2 log t

(
r+1 +

|r2(u)|
[log(log t)]2

)
du <

1

t
3
2

∫ t+α

t

1√
t log t

(
r+1 + |r2(u)|

)
du <

1

t
3
2

for all large t. Especially, we can assume that∣∣∣∣∣ 1
α

∫ t+α

t

[
1

u log u
− 1

t log t

](
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p du

∣∣∣∣∣ < ε

t log t [log(log t)]2
.

We recall that the considered half-linear functions sinp and Φ(cosp) are periodic and con-
tinuously differentiable. In particular, these facts imply the existence of a positive number L
such that∣∣| sinp x| − | sinp y|

∣∣ ≤ L |x− y| ,
∣∣Φ (cosp x

)
−Φ

(
cosp y

)∣∣ ≤ L |x− y| , (3.16)

and ∣∣| sinp x|p − | sinp y|p
∣∣ ≤ L |x− y| ,

∣∣| cosp x|p − | cosp y|p
∣∣ ≤ L |x− y| (3.17)

for any x, y ∈ R. Applying the second inequality in (3.17), we have (see (2.17) in Lemma 2.1
and again (2.3) and (2.5))∣∣∣∣∣1α

∫ t+α

t

1
t log t

(
r1(u) +

r2(u)

[log(log u)]2

) [
| cosp ϕ(u)|p − | cosp ϕave(t)|p

]
du

∣∣∣∣∣
≤ L

α

∫ t+α

t

1
t log t

(
r+1 +

|r2(u)|
[log(log t)]2

)
|ϕ(u)− ϕave(t)|du

≤ L
α

∫ t+α

t

1
t log t

(
r+1 +

|r2(u)|
[log(log t)]2

)
1√

t log t
du <

ε

t log t [log(log t)]2

(3.18)

for sufficiently large t.
Using

lim
t→∞

t log t

(
1

[log(log t)]2
− 1

[log(log[t + α])]2

)
= 0

and (2.3), we obtain the estimation∣∣∣∣∣ 1
α

∫ t+α

t

r2(u)

[log(log t)]2
du− 1

α

∫ t+α

t

r2(u)

[log(log u)]2
du

∣∣∣∣∣
≤ 1

α

∫ t+α

t
|r2(u)|

(
1

[log(log t)]2
− 1

[log(log[t + α])]2

)
du

≤ 1
t log t

∫ t+α

t
|r2(u)| du ≤ 1√

t log t
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for every large t, which gives (consider also (2.12))

∣∣∣∣∣1α
∫ t+α

t

1
t log t

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕave(t)|p du

−1
α

∫ t+α

t

1
t log t

(
r1(u) +

r2(u)

[log(log t)]2

)
| cosp ϕave(t)|p du

∣∣∣∣∣
≤ 1

αt log t

∫ t+α

t

∣∣∣∣∣ r2(u)

[log(log u)]2
− r2(u)

[log(log t)]2

∣∣∣∣∣ | cosp ϕave(t)|p du

≤
(

1
t log t

) 3
2

<
ε

t log t [log(log t)]2

(3.19)

for all large t.

Thus (see (3.18) and (3.19)), we have

∣∣∣∣∣1α
∫ t+α

t

1
u log u

(
r1(u) +

r2(u)

[log(log u)]2

)
| cosp ϕ(u)|p du

− 1
α t log t

∫ t+α

t

(
r1(u) +

r2(u)

[log(log t)]2

)
du | cosp ϕave(t)|p

∣∣∣∣∣ < 3ε

t log t [log(log t)]2

(3.20)

for all large t.

Analogously (cf. (2.3) and (2.4)), one can show that

∣∣∣∣∣ 1
α(p− 1)

∫ t+α

t

1
u log u

(
s1(u) +

s2(u)

[log(log u)]2

)
| sinp ϕ(u)|p du

− 1
α(p− 1) t log t

∫ t+α

t

(
s1(u) +

s2(u)

[log(log t)]2

)
du | sinp ϕave(t)|p

∣∣∣∣∣
<

3ε

t log t [log(log t)]2

(3.21)

for all large t.

For large t, we have (see (2.12) and (3.15))

∣∣∣∣1α
∫ t+α

t

1
t log t

Φ(cosp ϕ(u)) sinp ϕ(u)du− 1
α

∫ t+α

t

1
u log u

Φ(cosp ϕ(u)) sinp ϕ(u)du
∣∣∣∣

≤ 1
α

∫ t+α

t

∣∣∣∣ 1
t log t

− 1
u log u

∣∣∣∣ ∣∣Φ(cosp ϕ(u)) sinp ϕ(u)
∣∣du

≤ 1
α

∫ t+α

t

1
t log t

− 1
(t + α) log(t + α)

du =
1

t log t
− 1

(t + α) log(t + α)
≤ 2α

t2 log t

(3.22)
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and (see (2.12), (2.17) in Lemma 2.1, and (3.16))∣∣∣∣Φ (cosp ϕave(t)
)

sinp ϕave(t)−
1
α

∫ t+α

t
Φ(cosp ϕ(u)) sinp ϕ(u)du

∣∣∣∣
≤
∣∣∣∣Φ (cosp ϕave(t)

)
sinp ϕave(t)−

1
α

∫ t+α

t
Φ(cosp ϕave(t)) sinp ϕ(u)du

∣∣∣∣
+

∣∣∣∣1α
∫ t+α

t
Φ(cosp ϕave(t)) sinp ϕ(u)du− 1

α

∫ t+α

t
Φ(cosp ϕ(u)) sinp ϕ(u)du

∣∣∣∣
≤ 1

α

∫ t+α

t

∣∣sinp ϕave(t)− sinp ϕ(u)
∣∣du

+
1
α

∫ t+α

t

∣∣Φ(cosp ϕave(t))−Φ(cosp ϕ(u))
∣∣du

≤ L
α

∫ t+α

t
|ϕave(t)− ϕ(u)|du +

L
α

∫ t+α

t
|ϕave(t)− ϕ(u)|du ≤ 1√

t
.

(3.23)

Hence (see (3.22) and (3.23)), it holds∣∣∣∣ 1
t log t

Φ(cosp ϕave(t)) sinp ϕave(t)−
1
α

∫ t+α

t

1
u log u

Φ(cosp ϕ(u)) sinp ϕ(u)du
∣∣∣∣

≤ 1
t log t

∣∣∣∣Φ(cosp ϕave(t)) sinp ϕave(t)−
1
α

∫ t+α

t
Φ(cosp ϕ(u)) sinp ϕ(u)du

∣∣∣∣
+

∣∣∣∣ 1
αt log t

∫ t+α

t
Φ(cosp ϕ(u)) sinp ϕ(u)du

− 1
α

∫ t+α

t

1
u log u

Φ(cosp ϕ(u)) sinp ϕ(u)du
∣∣∣∣

≤ 1
t log t

· 1√
t
+

2α

t2 log t
<

ε

t log t [log(log t)]2

(3.24)

for all large t.
Finally (see (3.14), (3.20), (3.21), and (3.24)), we have∣∣∣∣∣ ϕ′ave(t)−

1
α

∫ t+α

t

1
t log t

[(
r1(u) +

r2(u)

[log(log t)]2

)
| cosp ϕave(t)|p

−Φ
(
cosp ϕave(t)

)
sinp ϕave(t)

+

(
s1(u) +

s2(u)

[log(log t)]2

) ∣∣sinp ϕave(t)
∣∣p

p− 1

]
du

∣∣∣∣∣
<

7ε

t log t [log(log t)]2

(3.25)

for any sufficiently large t.
Part (i). Let ϑ ∈ R0 be such that (see (3.11))

[M(r1)]
p−1(S− ϑ) +

p− 1
qp

R− ϑ

M(r1)
>

q1−p

2
. (3.26)

We consider ε ∈ R0 such that

7ε < ϑ, 7ε (p− 1) < ϑ. (3.27)
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For large t, we have (see (2.11), (3.10), (3.25), and (3.27))

ϕ′ave(t) >
1

αt log t

∫ t+α

t

[(
r1(u) +

r2(u)

[log(log t)]2

)
| cosp ϕave(t)|p −Φ

(
cosp ϕave(t)

)
sinp ϕave(t)

+

(
s1(u) +

s2(u)

[log(log t)]2

) ∣∣sinp ϕave(t)
∣∣p

p− 1

]
du− 7ε

t log t [log(log t)]2

=
1

αt log t

[∫ t+α

t

(
r1(u) +

r2(u)− 7ε

[log(log t)]2

)
| cosp ϕave(t)|p −Φ

(
cosp ϕave(t)

)
sinp ϕave(t)

+

(
s1(u) +

s2(u)− 7ε(p− 1)

[log(log t)]2

) ∣∣sinp ϕave(t)
∣∣p

p− 1
du

]

=
1

t log t

[(
M(r1) +

1
α

∫ t+α
t r2(u)du− 7ε

[log(log t)]2

)
| cosp ϕave(t)|p −Φ

(
cosp ϕave(t)

)
sinp ϕave(t)

+

(
M(s1) +

1
α

∫ t+α
t s2(u)du− 7ε(p− 1)

[log(log t)]2

) ∣∣sinp ϕave(t)
∣∣p

p− 1

]

>
1

t log t

[(
M(r1) +

R− ϑ

[log(log t)]2

)
| cosp ϕave(t)|p −Φ

(
cosp ϕave(t)

)
sinp ϕave(t)

+

(
M(s1) +

S− ϑ

[log(log t)]2

) ∣∣sinp ϕave(t)
∣∣p

p− 1

]
.

It suffices to use Lemma 3.2, (i) (compare (3.4) with (3.26) and Eq. (3.5) with the last estimation
for X = R− ϑ, Y = S− ϑ). Since the Prüfer angle ϕ is unbounded from above (consider (2.17)
in Lemma 2.1), Eq. (2.1) is oscillatory. Therefore, the first part of the theorem is proved.

Part (ii). We consider ϑ ∈ R0 such that (see (3.13))

[M(r1)]
p−1(S + ϑ) +

p− 1
qp

R + ϑ

M(r1)
<

q1−p

2
(3.28)

and ε ∈ R0 satisfying (3.27). We can proceed analogously as in the first case.
For large t, we have (see (2.11), (3.12), (3.25), and (3.27))

ϕ′ave(t) <
1

αt log t

∫ t+α

t

[(
r1(u) +

r2(u)

[log(log t)]2

)
| cosp ϕave(t)|p

−Φ
(
cosp ϕave(t)

)
sinp ϕave(t)

+

(
s1(u) +

s2(u)

[log(log t)]2

) ∣∣sinp ϕave(t)
∣∣p

p− 1

]
du

+
7ε

t log t [log(log t)]2

<
1

t log t

[(
M(r1) +

R + ϑ

[log(log t)]2

)
| cosp ϕave(t)|p

−Φ
(
cosp ϕave(t)

)
sinp ϕave(t)

+

(
M(s1) +

S + ϑ

[log(log t)]2

) ∣∣sinp ϕave(t)
∣∣p

p− 1

]
.

(3.29)
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Using Lemma 2.1 and Lemma 3.2, (ii) (cf. (3.6), (3.7) and (3.28), (3.29) for V = R + ϑ,
W = S + ϑ), we know that the Prüfer angle is bounded from above, which implies the non-
oscillation of Eq. (2.1). The proof is complete.

4 Corollaries and examples

In this section, we illustrate the novelty of Theorem 3.3 on corollaries and examples which are
not covered by any previously known criteria. As a corollary of Theorem 3.3, we obtain the
following new result which enables us to detect the oscillatory behaviour of the non-perturbed
equation in the critical case (cf. Theorem 1.3).

Corollary 4.1. If r : R → R0 and s : R → R are continuous α-periodic functions such that
[M (r)]p−1 M(s) = q−p, then the equation[

r−
p
q (t)tp−1Φ(x′)

]′
+

s(t)
t logp t

Φ(x) = 0 (4.1)

is non-oscillatory.

Proof. It suffices to consider r1(t) = r(t), r2(t) ≡ 0, s1(t) = s(t), and s2(t) ≡ 0 in Eq (2.1) and
to put R := 0 and S := 0 in Theorem 3.3, (ii).

Example 4.2. We can apply Corollary 4.1, e.g., to the equation[(
2

1 + 2 sin2 t

) p
q

tp−1Φ(x′)

]′
+

q−p + p sin t− q cos t
t logp t

Φ(x) = 0 (4.2)

which is in the form of Eq. (4.1), where

M (r) = M
(

1 + 2 sin2 t
2

)
= 1,

M(s) = M
(
q−p + p sin t− q cos t

)
= q−p.

Since [M (r)]p−1 M(s) = q−p, Eq. (4.2) is in the critical case which means that it is non-oscil-
latory.

Now we formulate a direct consequence of Theorems 1.3 and 3.3 and Corollary 4.1 for
linear equations.

Corollary 4.3. Consider the equations[
tx′

r1(t)

]′
+

s1(t)x
t log2 t

= 0, (4.3)

(
[log (log t)]2 tx′

r1(t) [log (log t)]2 + r2(t)

)′
+

1
t log2 t

(
s1(t) +

s2(t)

[log (log t)]2

)
x = 0 (4.4)

with continuous α-periodic coefficients r1 : R → R0, s1 : R → R and with continuous coefficients
r2, s2 : Re → R satisfying (2.2), (2.3), and (2.4).

(i) If 4M(r1)M(s1) > 1, then Eq. (4.3) is oscillatory.
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(ii) If 4M(r1)M(s1) ≤ 1, then Eq. (4.3) is non-oscillatory.

(iii) If 4M(r1)M(s1) = 1 and if there exist R, S ∈ R satisfying

S
M(s1)

+
R

M(r1)
> 1 and

1
α

∫ t+α

t
r2(u)du ≥ R,

1
α

∫ t+α

t
s2(u)du ≥ S, t ∈ Re,

then Eq. (4.4) is oscillatory.

(iv) If 4M(r1)M(s1) = 1 and if there exist R, S ∈ R satisfying

S
M(s1)

+
R

M(r1)
< 1 and

1
α

∫ t+α

t
r2(u)du ≤ R,

1
α

∫ t+α

t
s2(u)du ≤ S, t ∈ Re,

then Eq. (4.4) is non-oscillatory.

Example 4.4. Let a ∈ R1 and b, c, d ∈ R0. From Corollary 4.3, we know that the equation[
tx′

a + sin(cx)

]′
+

b + cos(cx)
t log2 t

x = 0

is oscillatory if and only if 4ab > 1. Note that the case 4ab = 1 is covered by Corollary 4.1
and the case 4ab 6= 1 by Theorem 1.3. In addition, applying Corollary 4.3, we know that the
equation (

tx′

a + sin(cx)

)′
+

1
t log2 t

(
1
4a

+ cos(cx) +
d + sin(cx) cos(cx)

[log (log t)]2

)
x = 0

is oscillatory for 4ad > 1 and non-oscillatory for 4ad < 1.

To formulate the next corollary, we recall the definitions of almost periodicity and asymp-
totic almost periodicity. For more details, we refer to books [3, 14].

Definition 4.5. A continuous function f : R → R is called almost periodic if, for any ε ∈ R0,
there exists a number p(ε) ∈ R0 with the property that any real interval of length p(ε) contains
at least one point s for which

| f (t + s)− f (t)| < ε, t ∈ R.

It is well-known that there exist different (equivalent) ways to define almost periodic func-
tions. The above given definition is the so-called Bohr definition. Another way is given by the
Bochner definition which follows.

Definition 4.6. Let f : R → R be a continuous function. We say that f is almost periodic if,
from any sequence of the form { f (t + sn)}n∈N, where sn are real numbers, one can extract
a subsequence which converges uniformly with respect to t ∈ R.

We remark that the equivalence of Definitions 4.5 and 4.6 is shown, e.g., in [14, Theo-
rem 1.14]. The notion of asymptotic almost periodicity is a direct generalization of almost
periodicity.

Definition 4.7. We say that a continuous function f : R0 ∪ {0} → R is asymptotically almost
periodic if it can be represented in the form f (t) = f1(t) + f2(t), t ∈ R0 ∪ {0}, where f1 is
almost periodic and f2 has the property that limt→∞ f2(t) = 0.
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From Definition 4.7, it is seen that (2.3) and (2.4) hold for all asymptotically almost pe-
riodic functions r2, s2. At the same time, (2.2) is valid for all large t if r2 is asymptotically
almost periodic. Therefore, we can use Theorem 3.3 for any equation of the form (2.1) with
α-periodic coefficients r1, s1 and asymptotically almost periodic coefficients r2, s2. To be as
clear as possible, we use in Corollary 4.9 and Example 4.10 below the fact, that any asymp-
totically almost periodic function has its mean value in the sense of the following definition.
Note that Theorem 3.3 can be applied also for equations with coefficients which have mean
values and which are not asymptotically almost periodic. This situation is closely described
and examples of such coefficients are presented, e.g., in [21, 35].

Definition 4.8. Let a continuous function f : R0 ∪ {0} → R be such that the limit

M( f ) := lim
t→∞

1
t

∫ a+t

a
f (s)ds (4.5)

is finite and exists uniformly with respect to a ∈ R0 ∪ {0}. The number M( f ) is called the
mean value of f .

Corollary 4.9. Let R1 : R → R0, S1 : R → R be continuous α-periodic functions such that
[M (R1)]

p−1 M(S1) = q−p and let R2, S2 : R0 ∪ {0} → R be asymptotically almost periodic func-
tions.

(i) If

[M(R1)]
p−1M(S2) +

p− 1
qp

M(R2)

M(R1)
>

q1−p

2
,

then the equation (R1(t) +
R2(t)

[log(log t)]2

)− p
q

tp−1Φ(x′)

′

+
1

t logp t

(
S1(t) +

S2(t)

[log(log t)]2

)
Φ(x) = 0

(4.6)

is oscillatory.

(ii) If

[M(R1)]
p−1M(S2) +

p− 1
qp

M(R2)

M(R1)
<

q1−p

2
,

then Eq. (4.6) is non-oscillatory.

Proof. The corollary follows from Theorem 3.3 as well. It suffices to replace α by nα for a
sufficiently large number n ∈N and to use the definition of the mean value given in (4.5) and
the existence of δ ∈ R0 with the property that

[M(R1)]
p−1δ +

p− 1
qp

δ

M(R1)
<

∣∣∣∣[M(R1)]
p−1M(S2) +

p− 1
qp

M(R2)

M(R1)
− q1−p

2

∣∣∣∣
if

[M(R1)]
p−1M(S2) +

p− 1
qp

M(R2)

M(R1)
6= q1−p

2
.
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Example 4.10. Let a, b, c ∈ R and u, v ∈ R \ {0} determine the coefficients of the equation(3 + Φ(sin t)
3

+
a + sin(bt) + sin(ct)

[log(log[t + 1])]2

)− p
q

tp−1Φ(x′)

′

+
1

t logp t

(
2 sin2 t

qp +

[
sin(ut) cos(ut) + v + t−2

log(log t)

]2
)

Φ(x) = 0

(4.7)

which has the form of Eq. (4.6) for

R1(t) =
3 + Φ(sin t)

3
, S1(t) =

2 sin2 t
qp ,

R2(t) = [a + sin(bt) + sin(ct)]
[

log(log t)
log(log[t + 1])

]2

, S2(t) =
[

sin(ut) cos(ut) + v +
1
t2

]2

.

One can verify that R2, S2 are asymptotically almost periodic functions and that

M(R1) = 1, M(S1) = q−p, M(R2) = a, M(S2) =
8v2 + 1

8
.

Especially, [M(R1)]
p−1M(S1) = q−p. Hence, we can apply Corollary 4.9 which gives the

oscillation of Eq. (4.7) for
8v2 + 1

8
+

a(p− 1)
qp >

q1−p

2

and its non-oscillation for
8v2 + 1

8
+

a(p− 1)
qp <

q1−p

2
.

In the final corollary and example, we consider Eq. (2.1) with constant coefficients r1, s1

and periodic coefficients r2, s2, which do not need to have any common period. We point out
that we get a new result even in the case when the periods of r2, s2 are same.

Corollary 4.11. Let a, b ∈ R0 satisfy ap−1b = q−p. Let R, S : R → R be periodic continuous
functions.

(i) If

ap−1M(S) +
p− 1
aqp M(R) >

q1−p

2
,

then the equation(a +
R(t)

[log (log t)]2

)− p
q

tp−1Φ(x′)

′ + 1
t logp t

(
b +

S(t)

[log (log t)]2

)
Φ(x) = 0 (4.8)

is oscillatory.

(ii) If

ap−1M(S) +
p− 1
aqp M(R) <

q1−p

2
,

then Eq. (4.8) is non-oscillatory.
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Proof. The corollary is a special case of Corollary 4.9.

Example 4.12. We illustrate Corollary 4.11 by the equation(1 +
c + d sin t

[log(log t)]2

)− p
q

tp−1Φ(x′)

′ + 1
t logp t

q−p +
C + D cos

(√
2 t
)

[log(log t)]2

Φ(x) = 0, (4.9)

where c, d, C, D ∈ R are arbitrary constants. For a := 1, b := q−p, R(t) := c + d sin t, and
S(t) := C + D cos

(√
2 t
)
, we have ap−1b = q−p and M(R) = c, M(S) = C. Hence, Eq. (4.9) is

oscillatory for

C +
p− 1

qp c >
q1−p

2
, i.e., Cqp + (p− 1) c >

q
2

,

and non-oscillatory for

C +
p− 1

qp c <
q1−p

2
, i.e., Cqp + (p− 1) c <

q
2

.
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