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FUNCTION BOUNDS FOR SOLUTIONS OF VOLTERRA INTEGRO

DYNAMIC EQUATIONS ON TIME SCALES

MURAT ADIVAR

Abstract. Introducing shift operators on time scales we construct the integro-dynamic equa-
tion corresponding to the convolution type Volterra differential and difference equations in
particular cases T = R and T = Z. Extending the scope of time scale variant of Gronwall’s
inequality we determine function bounds for the solutions of the integro dynamic equation.

1. Introduction

In this paper, we are concerned with the investigation of function bounds for the solutions of
integro dynamic equation of type

x∆(t) = −a(t)x(t) +

∫ t

t0

b(δ−(s, t))x(s)∆s, t ∈ [t0,∞) ∩ T, (1.1)

which includes the following Volterra equations in particular cases:

• Volterra integro differential equation of convolution type: For T = R with δ−(s, t) = t−s
and t0 = 0

x′(t) = −a(t)x(t) +

∫ t

0
b(t − s)x(s)ds, t ∈ [0,∞). (1.2)

• Volterra integral equation with nonconvolutional kernel: For T = R with δ−(s, t) = t/s
and t0 = 1

x′(t) = −a(t)x(t) +

∫ t

1
b(

t

s
)x(s)ds, t ∈ [1,∞). (1.3)

• Volterra integro difference equation of convolution type: For T = Z with δ−(s, t) =
t − s + λ and t0 = λ

∆x(t) = −a(t)x(t) +

t−1∑

k=λ

b(t − k + λ)x(k), t ∈ [λ,∞) ∩ Z+, (1.4)

where ∆ is the forward difference operator.
• Volterra integro q−difference equation: For T = qZ with δ−(s, t) = t/s and t0 = 1

∆qx(t) = −a(t)x(t) +
∑

s∈[1,t)∩qZ

µ(s)b(
t

s
)x(s), t ∈ [1,∞) ∩ qZ, (1.5)

where ∆q is the q-difference operator given by ∆qx(t) = x(qt)−x(t)
(q−1)t .
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Many papers have appeared in the literature on Volterra equations on particular time scales
such as R, Z and qN. An early contribution to integro q-difference equations was made by Tr-
jitzinsky [19]. In [15] and [16] Elaydi dealt with stability analysis of convolution type Volterra
integro difference equations of the form (1.4). In [4], Becker derived an extension of Gronwall’s
inequality to find function bounds for the solutions of Eq. (1.2), where a, b : [0,∞) → R are con-
tinuous functions and b is nonnegative. Since the time scale theory provides a wide perspective
for the unification of discrete and continuous analyses, Volterra integro dynamic equations on
general time scales became topic of several research papers. For instance, boundedness of the
solutions of nonlinear Volterra integro-dynamic equations on time scales has been investigated
in [3] by means of nonnegative definite Lyapunov functionals on time scales. Furthermore, in
[2], existence of periodic solutions of nonlinear system of Volterra type integro-dynamic equa-
tions has been shown using the topological degree method and Schaefer’s fixed point theorem.
However, to the best of our knowledge, function bounds for the solutions of Volterra integral
equations of the form (1.3) has not been treated elsewhere before.

Motivated by the results of [4], we bring the integro dynamic equation (1.1) under investigation
to obtain more general results which are not known even for the above mentioned particular
cases. Some applications are also given to illustrate the usefulness of our results.

The remaining part of this paper is organized as follows: In the second section, we propose
an extension of Gronwall’s inequality ( [7, Corollary 6.7, p.257]) on time scales. In the third
section, we introduce the shift operators δ± to construct the kernel of integro dynamic equation
(1.1). In the last section, we give several theorems and corollaries regarding the function bounds
for the solutions of (1.1). Hence, it turns out that the results in Sections III and Section IV are
valid only for the time scales containing an initial point t0 so that there exist shift operators
δ±(s, t) on [t0,∞)T.

For the sake of brevity, we assume familiarity with time scale calculus. For a comprehensive
review on fundamental aspects of the theory we refer the reader to [7] and [8].

Throughtout the paper, we denote by σ and ρ the forward and backward jump operators,
σ : T → T and ρ : T → T, defined by σ(t) := inf {s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t},
respectively. A point t ∈ T is said to be right dense (right scattered) if σ(t) = t (σ(t) > t). We
say t ∈ T is left dense (left scattered) if ρ(t) = t (ρ(t) < t). The graininness (step size) function
µ : T → [0,∞) is defined by µ(t) := σ(t) − t. A function f : T → R is called rd-continuous if
it is continuous at right dense points and its left sided limits exists (finite) at left dense points.
We use the notation Crd to indicate the set of rd-continuous function on T. Hereafter, we shall
denote by [u, v)T the time scale interval [u, v) ∩ T. The intervals (u, v)T, [u, v]

T
, and (u, v]T are

defined similarly.
We list the following theorems which will be needed at several occasions throughout this

study.

Theorem 1 (First Mean Value Theorem). [8, Theorem 5.41. p. 142] Let f and g be bounded
and ∆ integrable functions on [u, v]

T
, and let g be nonnegative (or nonpositive) on [u, v]

T
. Let

us set

m = inf {f(t) : t ∈ [u, v)T} and M = sup {f(t) : t ∈ [u, v)T} .

Then there exists a real number Λ satisfying the inequalities m ≤ Λ ≤ M such that
∫ t2

t1

f(t)g(t)∆t = Λ

∫ t2

t1

g(t)∆t.
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Theorem 2 (Intermediate Value Theorem). [7, Theorem 1.115] Assume x : T → R is continu-
ous, u < v are points in T, and

x(u)x(v) < 0.

Then there exists c ∈ [u, v)T such that either x(c) = 0 or x(c)xσ(c) < 0.

Theorem 3 (Chain Rule). ([7, Theorem 1.93]) Assume f : T → R is strictly increasing and

T̃ := f(T) is a time scale. Let g : T̃ → R. If f∆(t) and g∆̃(f(t)) exist for t ∈ T
κ, then

(g ◦ f)∆ = (g∆̃ ◦ f)f∆.

Lemma 1. [8, Corollaries 1.15-16, p.5] Let f be a continuous function on [u, v]
T

that is ∆
differentiable on [u, v)T.

i. If f∆(t) = 0 for all t ∈ [u, v)T, then f is a constant function on [u, v]
T
.

ii. f is increasing, decreasing, nondecreasing, and nonincreasing on [u, v]
T

if f∆(t) > 0,
f∆(t) < 0, f∆(t) ≥ 0, and f∆(t) ≤ 0 for all t ∈ [u, v)T, respectively.

Definition 1. [7, Definitions 2.25, 2.45] A function p : T → R is said to be regressive provided
that 1 + µ(t)p(t) 6= 0 for all t ∈ T

κ. The set of all regressive rd-continuous functions p : T → R

is denoted by R. We also denote by R+ the set R+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}
of positively regressive functions.

Let p ∈ R and µ(t) > 0 for all t ∈ T. The exponential function on T is defined by

ep(t, s) = exp

(∫ t

s

1

µ(z)
Log(1 + µ(z)p(z))∆z

)
. (1.6)

The exponential function y(t) = ep(t, s) is the solution to the initial value problem y∆ = p(t)y,
y(s) = 1. In particular, if T = Z, then

ep(t, t0) =
t−1∏

s=t0

(1 + p(s)), t ∈ [t0,∞)T. (1.7)

Other properties of the exponential function are given by the following.

Lemma 2. [6, Lemma 2.7.] If p, q ∈ R, then

ep(t, t) = 1, ep(t, s) = 1/ep(s, t), ep(t, u)ep(u, s) = ep(t, s),

ep(σ(t), s)(1 + µ(t)p(t))ep(t, s), ep(s, σ(t)) =
ep(s, t)

1 + µ(t)p(t)
,

e∆
p (., s) = pep(., s), e∆

p (s, .) = (⊖p)ep(s, .),

ep⊕q = epeq, ep⊖q =
ep

eq
.

Theorem 4. [7, Theorem 6.1] Let τ ∈ T, y, f ∈ Crd, and p ∈ R+. Then

y∆(t) ≤ p(t)y(t) + f(t) for all t ∈ T

implies

y(t) ≤ y(τ)ep(t, τ) +

∫ t

τ
ep(t, σ(s))f(s)∆s for all t ∈ [τ,∞)T.
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2. Gronwall’s inequality

There is no doubt that Gronwall’s inequality [14, p.293] plays a substantial role in the in-
vestigation of stability and convergence properties of solutions of Volterra integral equations.
The purpose of this section is to extend the scope of time scale analogue of Gronwall’s inequal-
ity, which will be used to obtain function bounds for the solutions of Volterra integro-dynamic
equations on time scales. A variant of Gronwall’s inequality on time scales is given as follows:

Theorem 5. [7, Corollary 6.7, p.257] Let y ∈ Crd and ω ∈ R+, ω ≥ 0, and α ∈ R. Then

y(t) ≤ α +

∫ t

t0

y(s)ω(s)∆s for all t ∈ [t0,∞)T (2.1)

implies

y(t) ≤ αeω(t, t0) for all t ∈ [t0,∞)T.

For more on Gronwall’s inequalities on time scales we refer to [7, p.256], [18], and [20].
One may easily see by setting T = [0, 1]∪ [2,∞), α = 3/2, t0 = 0, ω(t) = −t, and y(t) = 1 for

t ∈ [0, 1] and y(t) = 0 for t ∈ [2,∞) that nonnegativity condition on the function ω in Theorem
5 cannot be omitted. However, in the next theorem, we keep positive regressivity condition
ω ∈ R+ and rule out nonnegativity condition on ω by making more stringent assumption than
(2.1). Therefore, we obtain important relaxations for the particular cases. For instance, if
T = R, then µ(t) = 0, i.e., all functions ω : R → R are positively regressive, if T = Z, the
functions ω : Z → R satisfying ω(t) > −1 for all t ∈ Z are positively regressive. That is, the
following result is valid for all functions ω : R → R and for all functions ω̃ : Z → R satisfying
ω̃(t) > −1.

Theorem 6 (An extension of Gronwall’s inequality). Let f and γ be continuous functions on
[t0, T )T where T ≤ ∞. Suppose that −γ ∈ R+.

i. If

f(t) +

t∫

τ

γ(s)f(s)∆s ≤ f(τ) (2.2)

for all τ, t ∈ [t0, T )T with τ ≤ t, then

f(t) ≤ f(t0)e−γ(t, t0) for t ∈ [t0, T )T. (2.3)

ii. If

f(t) +

t∫

τ

γ(s)f(s)∆s ≥ f(τ)

for all τ, t ∈ [t0, T )T with τ ≤ t, then

f(t) ≥ f(t0)e−γ(t, t0) for t ∈ [t0, T )T.

Hereafter, we present some results which are essential for the proof of Theorem 6.

Lemma 3. Let f, γ, and ξ be rd-continuous functions on [t0, T )T where T ≤ ∞. Let ξ ∈ R+.
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i. If γ(t) > 0 for t ∈ (t0, T )T and

t∫

τ

γ(s)[f(s) − f(τ)eξ(s, τ)]∆s ≤ 0 (2.4)

for all τ, t ∈ [t0, T )T with τ ≤ t, then

f(t) ≤ f(t0)eξ(t, t0) for t ∈ [t0, T )T. (2.5)

ii. If γ(t) < 0 for t ∈ (t0, T )T and

t∫

τ

γ(s)[f(s) − f(τ)eξ(s, τ)]∆s ≥ 0 (2.6)

for all τ, t ∈ [t0, T )T with τ ≤ t, then

f(t) ≤ f(t0)eξ(t, t0) for t ∈ [t0, T )T. (2.7)

Proof. Let γ(t) > 0 for t ∈ (t0, T )T and (2.4) be satisfied. Suppose contrary that there is a
nonempty interval (t1, t2)T ⊂ [t0, T )T, with t0 ≤ t1 < t2 < T such that

f(t1) ≤ f(t0)eξ(t1, t0)

and

f(t) > f(t0)eξ(t, t0) for all t ∈ (t1, t2)T, (2.8)

i.e. (2.5) does not hold. Then using eξ(t, t1)eξ(t1, t0) = eξ(t, t0) we have

f(t) > f(t0)eξ(t, t1)eξ(t1, t0) ≥ f(t1)eξ(t, t1), (2.9)

which, along with γ > 0, yields

t2∫

t1

γ(t)[f(t) − f(t1)eξ(t, t1)]∆t > 0, (2.10)

contradicting our assumption (2.4). The statement (ii.) can be verified by applying similar
arguments. The proof is complete. �

One can similarly prove the next result by reversing the directions of the inequalities (2.8-
2.10).

Corollary 1. Let f, γ, and ξ be rd-continuous functions on [t0, T )T where T ≤ ∞. Suppose
that ξ ∈ R+.

i. If γ(t) > 0 for t ∈ (t0, T )T and

t∫

τ

γ(s)[f(s) − f(τ)eξ(s, τ)]∆s ≥ 0

for all τ, t ∈ [t0, T )T with τ ≤ t, then

f(t) ≥ f(t0)eξ(t, t0) for t ∈ [t0, T )T.
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ii. If γ(t) < 0 for t ∈ (t0, T )T and

t∫

τ

γ(s)[f(s) − f(τ)eξ(s, τ)]∆s ≤ 0

for all τ, t ∈ [t0, T )T with τ ≤ t, then

f(t) ≥ f(t0)eξ(t, t0) for t ∈ [t0, T )T.

Now, we are ready to prove Theorem 6.

Proof of Theorem 6. We proceed by considering two cases: First, we consider the case in which
γ is equivalently zero, strictly positive or strictly negative. Second, we handle the proof for the
case when γ changes sign.
Case I. If γ ≡ 0, then (2.3) follows from (2.2). Suppose γ(t) > 0 for all t ∈ (t0, T )T. For an
arbitrary τ ∈ [t0, T )T define

xτ (t) =

t∫

τ

γ(s)f(s)∆s for t ∈ [τ, T )T.

Invoking the differentiation rule ([7, Theorem 1.117]) we have

x∆
τ (t) = γ(t)f(t).

Then multiplying both sides of (2.2) by γ(t), we obtain

x∆
τ (t) + γ(t)xτ (t) ≤ f(τ)γ(t), (2.11)

Let us denote by p the function
p(t) = ⊖ (−γ(t)) .

Evidently, γ(t) > 0 and −γ ∈ R+ imply that p = γ
1−µγ > 0 and that

eσ
p (t, τ) = (1 + µp)ep(t, τ) > 0

for all t ∈ (t0, T )T. Using the equality

eσ
p (t, τ)γ(t) = (1 + µ(t)p(t)) γ(t)ep(t, τ)

=

(
1 +

µ(t)γ(t)

1 − µ(t)γ(t)

)
γ(t)ep(t, τ)

=
γ(t)

1 − µ(t)γ(t)
ep(t, τ)

= ⊖ (−γ(t)) ep(t, τ)

= e∆
p (t, τ),

and a multiplying both sides of (2.11) by eσ
p (t, τ) we find

eσ
p (t, τ)x∆

τ (t) + eσ
p (t, τ)γ(t)xτ (t) ≤ f(τ)γ(t)eσ

p (t, τ),

which yields
eσ
p (t, τ)x∆

τ (t) + e∆
p (t, τ)xτ (t) ≤ f(τ)e∆

p (t, τ),

and hence,
[ep(t, τ) (xτ (t) − f(τ))]∆ ≤ 0 for all t ∈ [τ, T )T.
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Lemma 1 implies that the function ep(t, τ) (xτ (t) − f(τ)) is nonincreasing on [τ, T )T. That is,

ep(t, τ) (xτ (t) − f(τ)) ≤ ep(τ, τ) (xτ (τ) − f(τ))

for all t ∈ [τ, T )T. Utilizing ep(τ, τ) = 1 and xτ (τ) = 0, we obtain

ep(t, τ)xτ (t) ≤ f(τ)(ep(t, τ) − 1).

Multiplying this inequality by e−γ(t, τ), we get

xτ (t) ≤ f(τ) (1 − e−γ(t, τ)) = f(τ)

t∫

τ

γ(s)e−γ(s, τ)∆s,

and therefore,
t∫

τ

γ(s)[f(s) − f(τ)e−γ(t, τ)]∆s ≤ 0 for all t ∈ [τ, T )T. (2.12)

Since τ ∈ [t0, T )T was arbitrary (2.12) holds for all t, τ ∈ [t0, T )T satisfying τ ≤ t. This is (2.4)
with ξ = −γ. Consequently, we obtain (2.3) by making use of Lemma 3. To get (2.3) in the
case when γ(t) < 0 for all t ∈ (t0, T ), it suffices to reverse direction of all the inequalities above
and use the fact that (2.6) implies (2.7).
Case II. Now, suppose γ changes sign. Hereafter, we will use continuity of the function γ on
[t0, T )T to show that the interval [t0, T )T can be partitioned into disjoint subintervals of the form
[tn−1, tn)T so that γ is strictly negative, strictly positive, or identically zero on each of the open
intervals (tn−1, tn)T.
Let us define the set S ⊂ [t0, T )T as follows

S = {t ∈ [t0, T )T : γ(t)γ(σ(t)) < 0} .

It is obvious that the set S consists only of right scattered points of [t0, T )T and can be expressed
as follows

S = ∪t∈S [t, σ(t)).

Let us separate this set from [t0, T )T and define

K = [t0, T )T − S.

Denote the set of zeros of γ in K by A, i.e.,

A = {t ∈ K : γ(t) = 0} .

Since the single point set {0} is closed in R, we get by continuity of γ that the set

A = γ−1 {{0}} ∩ K = {t ∈ K : γ(t) = 0}
is closed in K (here, we are considering R with its standard topology and the subset K with

the subspace topology inherited from the topology on R). Thus, the complement Ã = K − A

of A in K is open in K. Consequently, the set Ã is composed of disjoint open intervals in K,

each of which have one of the following forms: (a, b) ∩ Ã or [t0, b) ∩ Ã, where a, b ∈ [t0, T ]T and
a < b. We conclude from Theorem 2 that on each of these open intervals, the function γ is

either strictly positive or strictly negative. Because, if there exist two points t1, t2 ∈ (a, b) ∩ Ã

such that γ(t1)γ(t2) < 0 then, Theorem 2 implies the existence of a point c ∈ [t1, t2) ∩ Ã such
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that either γ(c) = 0 or γ(c)γ(σ(c)) < 0. This is not possible since Ã∩ (A∪ S) = ∅. So, there is
an increasing sequence (tn)n∈J of distinct points such that

∪n∈J [tn−1, tn)T = [t0, T )T

and the values of γ on (tn−1, tn) are always positive or always negative or always zero. Quan-
titative properties of the index set J depends on the function γ and the interval [t0, T )T , i.e.,
the set J can be either a finite set {1, 2, ..., N} or the set of natural numbers N.
From Case I we know that the inequality

f(t) ≤ f(tn−1)e−γ(t, tn−1) for t ∈ [tn−1, tn)T (2.13)

is satisfied, where [tn−1, tn)T is any subinterval of the above mentioned partition of [t0, T )T. The
rest of the proof proceeds by induction. Suppose that (2.3) holds on [t0, tn−1)T = ∪n−1

k=1 [tk−1, tk),
i.e.,

f(t) ≤ f(t0)e−γ(t, t0) for t ∈ [t0, tn−1)T. (2.14)

If tn−1 is a left dense point, then continuity of both sides of (2.14) implies

f(tn−1) ≤ f(t0)e−γ(tn−1, t0). (2.15)

To see that (2.15) holds in the case when tn−1 is left scattered, assume that tn−2 ∈ [t0, tn−1)T is
a point such that σ(tn−2) = tn−1 and define the function

F (t) := f(t0)e−γ(t, t0). (2.16)

By (2.2) we have

f(tn−2) ≥ f(tn−1) +

∫ tn−1

tn−2

γ(s)f(s)∆s

= f(tn−1) + µ(tn−2)γ(tn−2)f(tn−2),

and therefore,

(1 − µ(tn−2)γ(tn−2))f(tn−2) ≥ f(tn−1). (2.17)

It follows from (2.14), (2.16), and (2.17) that

F (tn−1) = F (tn−2) + µ(tn−2)F
∆(tn−2)

= f(t0)e−γ(tn−2, t0) {1 − µ(tn−2)γ(tn−2)}
≥ f(tn−2) {1 − µ(tn−2)γ(tn−2)} ≥ f(tn−1).

Hence, (2.15) holds in any case. Thus, by (2.13) and (2.15) we get that

f(t) ≤ f(tn−1)e−γ(t, tn−1)

≤ f(t0)e−γ(tn−1, t0)e−γ(t, tn−1)

≤ f(t0)e−γ(t, t0)

for t ∈ [tn−1, tn)T. This shows that (2.3) holds on the interval [t0, tn)T. By induction we conclude
that (2.3) holds on the entire interval [t0, T )T.
For the proof of second statement of theorem we reverse the directions of inequalities (2.2-2.3)
and invoke Corollary 1 to modify the proof of the first statement accordingly. The proof is
complete. �
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3. Shift operators on time scales

In this section, we introduce the shift operators δ± : [t0,∞)T → R to construct the integro-
dynamic equation

x∆(t) = −a(t)x(t) +

∫ t

t0

b(δ−(s, t))x(s)∆s, t ∈ [t0,∞)T. (3.1)

An arbitrary time scale (e.g., T =qN) does not have to include t−s and 0. Therefore, different
than the kernel b(t− s) and the lower limit 0 of the integral in (1.2), we use b(δ−(s, t)) and t0 in
(3.1), respectively. An intuition for the determination of the shift operator δ− can be developed
by understanding the idea behind the use of b(t− s) in (1.2). Informally, the expression b(t− s)
in (1.2) can be regarded as a shift (or delay) of the function b. However, since t − s /∈ qN for
the time scale T = qN, the expression b(t − s) cannot be used as the shift of b. On the other
hand, t/s ∈ qN for all t, s ∈ qN satisfying t ≥ s ≥ 1. Inspired by these examples and common
properties of the operations t− s and t/s, we can construct backward shift operator δ− on time
scales. Similarly, we can describe properties of the forward shift operator δ+ considering the
properties of the operations t + s and ts.

Definition 2. Suppose we are given an initial point t0 ∈ T so that there exists operators δ± :
[t0,∞)T × [t0,∞)T → [t0,∞)T satisfying the following properties:

P.1 δ+(s, t) ∈ [t0,∞)T for all s, t ∈ [t0,∞)T and δ−(s, t) ∈ [t0,∞)T for all s, t ∈ [t0,∞)T

satisfying t0 ≤ s ≤ t,
P.2 Given a fixed element T0 ∈ [t0,∞)T, the functions δ± are strictly increasing with respect

to their second arguments, i.e.,

T0 ≤ t < u implies δ±(T0, t) < δ±(T0, u),

P.3 If T1 < T2 for T1,T2 ∈ [t0,∞)T, then

δ−(T1, u) > δ−(T2, u) for all u ∈ [T2,∞)T

and
δ+(T1, u) < δ+(T2, u) for all u ∈ [t0,∞)T,

P.4 δ−(t0, u) = δ+(t0, u) = u for all u ∈ [t0,∞)T,
P.5 δ+(t, s) = δ+(s, t) for all t, s ∈ [t0,∞)T,
P.6 δ−(δ+(s, u), δ+(u, v)) = δ−(s, v) for all u ∈ [t0,∞)T and s, v ∈ [t0,∞)T with s ≤ v,
P.7 δ+(δ−(s, u), δ−(u, v)) = δ−(s, v) for all s, u, v ∈ [t0,∞)T satisfying s ≤ u ≤ v.

Then the operators δ− and δ+ associated with the initial point t0 are called backward and
forward shift operators on [t0,∞)T, respectively.

Generalized shifts and the associated geometry on a general time scale were first dealt with
in [11]. Also, generalized convolution on time scales was treated by [13]. Afterwards, in [10,
Definition 2.1] shift operators was defined to propose convolution on time scales. Note that the
shift operators δ± defined here are different than the ones in the above mentioned literature.

Example 1. The operators δ± described in (1.2-1.5) satisfy P.1-7 on the given time scales.

This example shows that we can define different type shift operators on the same time scale.

For instance, on T = R, we have the shift operators δ±(s, t) = t± s and δ̂±(s, t) = ts±1 with the
initial points 0 and 1, respectively.

Making use of properties P.1-7, we obtain the following result.
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Lemma 4. i. For a fixed T ∈ (t0,∞)T we have

δ+(T, t) > δ+(t0, t) = t for all t ∈ [t0,∞)T

and
δ−(T, t) < δ+(t0, t) = t for all t ∈ [T,∞)T.

ii. u = δ−(s, t) implies t = δ+(u, s) for all t ∈ [t0,∞)T and s, u ∈ [t0, t]T,
iii. u = δ−(s, t) implies s = δ−(u, t) for all t ∈ [t0,∞)T and s, u ∈ [t0, t]T,
iv. δ−(δ−(s, t), t) = s for all s, t ∈ [t0,∞)T satisfying s ≤ t,
v. δ+(δ−(s, t), s) = t for all s, t ∈ [t0,∞)T satisfying s ≤ t,
vi. δ−(s, δ+(s, u)) = u for all s, u ∈ [t0,∞)T,
vii. δ−(u, u) = t0 for all u ∈ [t0,∞)T.

Proof. (i) follows from P.2 and P.3. To show (ii), use P.4-5 and P.7 to obtain

δ+(u, s) = δ+(δ−(s, t), δ−(t0, s))

= δ+(δ−(t0, s), δ−(s, t))

= δ−(t0, t) = t.

For the proof of (iii) we use (ii) to get

u = δ−(s, t) ⇒ t = δ+(u, s).

This, along with P. 4 and P.6, yields

s = δ−(t0, s) = δ−(δ+(t0, u), δ+(u, s)) = δ−(u, t).

(iv) is direct implication of (iii) since u = δ−(s, t) implies s = δ−(u, t) and

s = δ−(u, t) = δ−(δ−(s, t), t).

(v) is obtained by assuming u = δ−(s, t), using (ii), i.e., t = δ+(u, s), and

t = δ+(u, s) = δ+(δ−(s, t), s).

To verify (vi) take u = δ−(s, t) use (ii) to get t = δ+(s, u) and

u = δ−(s, t) = δ−(s, δ+(s, u)).

(vii) is proven by substituting s = v = t0 in P.6. The proof is complete. �

Notice that shift operators δ± are defined once the initial point t0 ∈ T is known. For instance,
we choose the initial point t0 = 0 to define shift operators δ±(s, t) = t± s on T = R. However, if

we take the initial point λ ∈ (0,∞) then we can define new shift operators by δ̃±(s, t) = t∓λ±s
and in terms of δ± as

δ̃±(s, t) = δ∓(λ, δ±(s, t)).

Example 2. In the following table, we give several particular time scales to show the change in
the formula of shift operators as the initial points change.

T = N
1/2

T = hZ T = 2N

t0 0 λ 0 hλ 1 2λ

δ−(s, t)
√

t2 − s2
√

t2 + λ2 − s2 t − s t + hλ − s t/s 2λts−1

δ+(s, t)
√

t2 + s2
√

t2 − λ2 + s2 t + s t − hλ + s ts 2−λts

where λ ∈ Z+, N
1/2 = {√n : n ∈ N}, 2N = {2n : n ∈ N}, and hZ = {hn : n ∈ Z}.
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In general, let T be a time scale with shift operators δ± associated with initial point t0.

Choosing a new initial point λ ∈ [t0,∞)T, we can define the new shift operators δ̃± associated
with λ by

δ̃−(s, t) = δ+(λ, δ−(s, t)), (3.2)

δ̃+(s, t) = δ−(λ, δ+(s, t)). (3.3)

Using P.1-7, one may easily verify that the new shift operators δ̃± satisfy the following properties:

P̃ .1 δ̃+(s, t) ∈ [λ,∞)T for all s, t ∈ [λ,∞)T and δ̃−(s, t) ∈ [λ,∞)T for all s, t ∈ [λ,∞)T

satisfying λ ≤ s ≤ t,

P̃ .2 Given a fixed element T0 ∈ [λ,∞)T, the functions δ̃± are strictly increasing with respect
to their second arguments, i.e.,

T0 ≤ t < u implies δ̃±(T0, t) < δ̃±(T0, u),

P̃ .3 If T1 < T2 for T1,T2 ∈ [λ,∞)T, then

δ̃−(T1, u) > δ̃−(T2, u) for all u ∈ [T2,∞)T

and

δ̃+(T1, u) < δ̃+(T2, u) for all u ∈ [λ,∞)T,

P̃ .4 δ̃−(λ, u) = δ̃+(λ, u) = u for all u ∈ [λ,∞)T,

P̃ .5 δ̃+(t, s) = δ̃+(s, t) for all t, s ∈ [λ,∞)T,

P̃ .6 δ̃−(δ̃+(s, u), δ̃+(u, v)) = δ̃−(s, v) for all u ∈ [t0,∞)T and s, v ∈ [t0,∞)T with s ≤ v,

P̃ .7 δ̃+(δ̃−(s, u), δ̃−(u, v)) = δ̃−(s, v) for all s, u, v ∈ [t0,∞)T satisfying s ≤ u ≤ v.

Moreover, the properties given in Lemma 4 are also valid for the operators δ̃±.

4. Function Bounds for Solutions of Volterra Equations

Hereafter, we suppose that T is a time scale including an initial point t0 so that there exists
shift operators δ± satisfying properties P.1-7 in Definition 2. Let a, b : [t0,∞)T → R be two
continuous functions with b(t) ≥ 0 for all t ∈ [t0,∞)T and −a ∈ R+.Hereafter, we denote by
x(t) := x(t, t0, x0) the unique differentiable solution of

x∆(t) = −a(t)x(t) +

t∫

t0

b(δ−(s, t))x(s)∆s (4.1)

satisfying x(t0) = x0. For the existence and boundedness of such a solution we refer the reader
to [1], [3], and [12]. For brevity, we shall use the notation x(t) instead of x(t, t0, x0).

Theorem 7. Let γ be defined by

γ(u) = a(u) −
u∫

t0

b(δ−(s, u))ep(u, s)∆s, (4.2)

where p is given by

p(t) = ⊖(−a(t)). (4.3)
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i. If x0 ≥ 0, then

x0e−a(t, t0) ≤ x(t) ≤ x0e−γ(t, t0) for all t ∈ [t0,∞)T. (4.4)

ii. If x0 < 0, then

x0e−γ(t, t0) ≤ x(t) ≤ x0e−a(t, t0) for all t ∈ [t0,∞)T. (4.5)

Proof. First we show that x(t) is nonnegative for all t ∈ [t0,∞)T. If x0 = 0, then x(t) ≡ 0 is
the unique differentiable solution of (4.1) and (4.4) holds for such x. Hereafter, we assume that
x0 > 0. Let the set Ω be defined by

Ω := {t ∈ T : t > t0 and b(s) = 0 for all s ∈ [t0, t)T} .

If Ω is unbounded above, then b(t) = 0 for all t ∈ [t0,∞)T. Hence, (4.1) turns into

x∆(t) = −a(t)x(t) and x(t0) = x0 (4.6)

for all t ∈ [t0,∞)T, which has the unique solution

x(t) = x0e−a(t, t0). (4.7)

The solution (4.7) can also be derived from the fact that (4.6) implies

x(t) +

t∫

τ

a(u)x(u)∆u = x(τ)

for all τ, t satisfying t0 ≤ τ ≤ t. This, along with Theorem 6, yields (4.7). On the other hand,
by (P.1-P.4) we get that

u = δ−(t0, u) ≥ δ−(s, u) ≥ δ−(u, u) = t0 for t0 ≤ s ≤ u, (4.8)

i.e., δ−(s, u) ∈ [t0, u)T for t0 ≤ s ≤ u. That is, if Ω is unbounded abaove, then b(δ−(s, u)) = 0
for all s ∈ [t0, u)T and

γ(u) = a(u) for all u ∈ [t0,∞)T, (4.9)

by (4.2). Thus, (4.4) follows from (4.7) and (4.9).
It remains to show that (4.4) is satisfied whenever Ω is empty or bounded above. To do so, we
first need to show that x(t) > 0 for all t ∈ [t0,∞)T. Define the non-negative number T ≥ t0 by

T =

{
t0 if Ω = ∅

supΩ otherwise
.

If T = t0, then x(T ) = x0 > 0. Let T > t0 and b(T ) > 0. If T is left scattered, then there exists
a right scattered point t̂ ∈ [t0, T )T such that σ(t̂) = T . Since b(t) = 0 for all t ∈ [t0, t̂]T we have
x(t̂) > 0. Using (4.1) and the formula

xσ(t) = x(t) + µ(t)x∆(t), (4.10)

(see [7, Theorem 1.16 (iv)]), we find

x(T ) = x(t̂) + µ(t̂)x∆(t̂) =
(
1 − a(t̂)µ(t̂)

)
x(t̂) > 0.

If T ∈ (t0,∞)T is a left dense point, then the inequality x(t) = x0e−a(t, t0) > 0 on [t0, T )T and
continuity of x imply x(t) > 0 for all [t0, T ]

T
.

To see nonnegativity of x(t) on the interval (T,∞)T it suffices to prove that the set M− given
by

M− := {t ∈ (T,∞)T : x(t) < 0}
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is empty. Suppose contrary that M− 6= ∅ and denote by t1 the real number

t1 := inf M−.

Henceforth, we show that t1 ∈ M−, i.e., x(t1) < 0. It follows from continuity of x that

x(t1) ≤ 0,

in which the case x(t1) = 0 leads to a contradiction in the sign of x∆(t1). To see this, let
x(t1) = 0. Thus, t1 is right dense, and hence, M− includes a continuous interval (t1, a) on which
x is nonincreasing, i.e., x∆(t1) ≤ 0. On the other hand, from (4.1) and Theorem 1 we arrive at

x∆(t1) = −a(t1)x(t1) +

∫ t1

t0

b(δ−(s, t1))x(s)∆s

≥
∫ T

t0

b(δ−(s, t1))x(s)∆s

= Λ1

∫ T

t0

b(δ−(s, t1))∆s

where Λ1 is a real number satisfying

m1 ≤ Λ1 ≤ M1 (4.11)

in which m1 and M1 are given by

m1 = min {x(t) : t ∈ [t0, T ]T} and M1 = max {x(t) : t ∈ [t0, T ]T}
Evidently,

m1 > 0. (4.12)

On the other hand, similar to (4.8) we get that t0 ≤ s ≤ T implies

t1 = δ−(t0, t1) ≥ δ−(s, t1) ≥ δ−(T, t1) > δ−(t1, t1) = t0.

This shows that b(δ−(s, t1)) is not equally zero on the interval [t0, T )T. From (4.11-4.12) we find

Λ1

∫ T

t0

b(δ−(s, t1))∆s > 0.

Therefore, we have t1 ∈ M−, i.e., x(t1) < 0. Since x(T )x(t1) < 0, Theorem 2 guarantees the
existence of a c ∈ [T, t1) such that

x(c) = 0 or x(c)x(σ(c)) < 0,

where x(c)x(σ(c)) < 0 is not possible. To see this, we show that the set given by

D := {t ∈ [T, t1)T : x(t)xσ(t) < 0}
is empty. If there exists a t∗ ∈ D, then x(t∗) > 0 and x(σ(t∗)) < 0. Since t1 = inf M− ∈ M− we
have

σ(t∗) = t1 /∈ D.

This along with −a ∈ R+, i.e., 1 − µ(t)a(t) > 0, implies

x(t1) = x(σ(t∗)) = {1 − µ(t∗)a(t∗)}x(t∗) + µ(t∗)

∫ t∗

t0

b(δ−(s, t∗))x(s)∆s ≥ 0,
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where we also used (4.1) and (4.10). This leads to a contradiction. Hence, we have x(c) = 0 for
a c ∈ (T, t1)T. This shows that the set

M0 = {t ∈ (T, t1)T : x(t) = 0}
is non-empty. Let

η = supM0.

It follows from continuity of x that η ∈ M0. Since D = ∅, as a consequence of Theorem 2, there
cannot be any element t ∈ (η, t1)T such that x(t) > 0. Thus, (η, t1)T = ∅ and then x is strictly
decreasing on [η, t1)T, i.e., x∆(η) < 0 by Lemma 1. However, we get from Theorem 1 that

x∆(η) = −a(c)x(η) +

η∫

t0

b(δ−(s, η))x(s)∆s

= Λ

η∫

t0

b(δ−(s, η))∆s ≥ 0,

where Λ is a real number satisfying 0 ≤ Λ ≤ sup {x(t) : t ∈ (t0, η)T}. We obtain this contradic-
tion by assuming that M 6= ∅. Consequently, M− = ∅, i.e., x(t) ≥ 0 for all t ∈ [t0, T )T. Taking
the integral in (4.1) from τ to t, we arrive at

x(t) − x(τ) = −
t∫

τ

a(u)x(u)∆u +

t∫

τ

u∫

t0

b(δ−(s, u))x(s)∆s∆u. (4.13)

Having both b(δ−(s, u)) and x(s) are nonnegative we obtain

x(t) +

t∫

τ

a(u)x(u)∆u ≥ x(τ), (4.14)

for all t, τ ∈ [t0,∞)T satisfying τ ≤ t. By Theorem 6, we find the lower bound

x(t) ≥ x0e−a(t, t0) for t ∈ [t0,∞)T. (4.15)

Using this lower bound we can write

x(s) ≤ ep(u, s)x(u) for all u ≥ s ≥ t0, (4.16)

where p is as in (4.3). Combining (4.13) and (4.16), for all τ, t ∈ [t0,∞)T with τ ≤ t

x(t) ≤ x(τ) −
t∫

τ

a(u)x(u)∆u +

t∫

τ

u∫

t0

b(δ−(s, u))ep(u, s)x(u)∆s∆u

= x(τ) −
t∫

τ


a(u) −

u∫

t0

b(δ−(s, u))ep(u, s)∆s


x(u)∆u

= x(τ) −
t∫

τ

γ(u)x(u)∆u, (4.17)
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where γ is defined as in (4.2). Note that −γ ∈ R+ since −a ∈ R+ and b(δ−(s, u)) ≥ 0 for all
s ∈ [t0, u)T. Theorem 6 yields

x(t) ≤ x0e−γ(t, t0). (4.18)

Consequently, the result (4.4) follows from inequalities (4.15) and (4.18).
To see that (4.5) holds for x0 = x(t0) < 0, it is enough to employ (4.4) by taking into account
that −x(t) is the unique solution of Eq. (4.1) satisfying the initial condition −x(t0) = −x0 > 0.
The proof is complete. �

Let λ ∈ [t0,∞) be any fixed element. Consider the integro-dynamic equation

x∆(t) = −a(t)x(t) +

t∫

λ

b(δ−(s, t))x(s)∆s. (4.19)

Henceforth, we denote by X(t) the unique differentiable solution X(t, λ,X0) of Eq. (4.19)
satisfying the initial condition X(λ) = X0.

In the next corollary, we shall provide lower and upper bounds for X(t) by using the results of
Theorem 7. To be able to employ Theorem 7 in the analysis, first of all the kernel of the integral
term in (4.19) should include the shift operator associated with λ. As we have mentioned in

Section 3 we may move the initial point t0 to λ, and define the new shift operators δ̃± associated

with λ as in (3.2) and (3.3), respectively. Let us define the function b̃ : [λ,∞)T→[0,∞) by

b̃(u) = b(δ−(λ, u)). (4.20)

It is obvious that b̃(u) ≥ 0 for all [λ,∞)T. Also we get by Lemma 4 (vi) and (3.2) that

b̃(δ̃−(s, t)) = b(δ−(λ, δ̃−(s, t)))

= b(δ−(λ, δ+(λ, δ−(s, t))))

= b(δ−(s, t)).

Hence, we can rewrite Eq. (4.19) as follows

x∆(t) = −a(t)x(t) +

t∫

λ

b̃(δ̃−(s, t))x(s)∆s. (4.21)

Define the functions

γ̃(u) = a(u) −
u∫

λ

b̃(δ̃−(s, u))ep(u, s)∆s, (4.22)

and

q(u) = a(u) −
u∫

λ

b̃(δ̃−(s, u))∆s,

respectively. Note that b̃ = b, and hence, γ̃ = γ whenever λ = t0.
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Corollary 2. Let a, b : [t0,∞)T → R be two continuous functions with b(t) ≥ 0 for all t ∈
[t0,∞)T and let −a ∈ R+. Let the function b̃ be given by (4.20). Suppose

a(u) ≥
u∫

λ

b̃(δ̃−(s, u))ep(u, s)∆s (4.23)

for all u ∈ [λ,∞)T.

i. If X0 ≥ 0, then X(t) is nonincreasing on [λ,∞)T and

X0e−q(t, λ) ≤ X(t) ≤ X0e−eγ(t, λ) (4.24)

for all t ∈ [λ,∞)T,
ii. If X0 < 0, then X(t) is nondecreasing on [λ,∞)T and

X0e−eγ(t, λ) ≤ X(t) ≤ X0e−q(t, λ) (4.25)

for all t ∈ [λ,∞)T.

Proof. Considering Eq. (4.21), we will proceed in a way similar to proof of Theorem 7. First we
will show that (4.24) holds. By (4.23), we know that γ̃(t) ≥ 0 for all t ∈ [λ,∞)T. As in Theorem
7, we can show that if X0 ≥ 0, then X(t) ≥ 0 for all t ∈ [λ,∞)T. Similar to (4.17) we have

X(t) ≤ X(τ) −
t∫

τ

a(u)X(u)∆u +

t∫

τ

u∫

λ

b̃(δ̃−(s, u))ep(u, s)X(u)∆s∆u

= X(τ) −
t∫

τ


a(u) −

u∫

λ

b̃(δ̃−(s, u))ep(u, s)∆s


X(u)∆u

= X(τ) −
t∫

τ

γ̃(u)X(u)∆u,

for all t, τ ∈ [λ,∞)T with τ ≤ t. Hence,

X(u) ≤ X(s) for all u, s ∈ [τ,∞)T with s ≤ u.

This shows monotonicity of solutions. Substituting X(u) for X(s) in

X(t) − X(τ) = −
t∫

τ

a(u)X(u)∆u +

t∫

τ

u∫

λ

b̃(δ̃−(s, u))X(s)∆s∆u

we arrive at

X(τ) ≤ X(t) +

t∫

τ


a(u) −

u∫

λ

b̃(δ̃−(s, u))∆s


 X(u)∆u = X(t) +

t∫

τ

q(u)X(u)∆u (4.26)

for all t, τ ∈ [λ,∞)T with τ ≤ t. Since −a ∈ R+ and

u∫

λ

b̃(δ̃−(s, u)) ≥ 0 for all u ∈ [λ,∞)T,
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we have −q ∈ R+ on [λ,∞)T. Applying Theorem 6 to (4.26), we get the lower bound

X0e−q(t, λ) ≤ X(t).

The upper bound in (4.24) can easily be obtained by using the similar arguments to the ones
in (4.16-4.18). In the case X0 < 0, (4.25) can be proved as it is done at the end of Theorem 7.
The proof is complete. �

We need the condition (4.23) to guarantee the monotonicity of the solutions of (4.19). In the
following corollary, we rule out this condition to obtain weaker conditions leading to lower and
upper bounds for the solutions of (4.19).

Corollary 3. Let a, b : [t0,∞)T → R be two continuous functions with b(t) ≥ 0 for all t ∈
[t0,∞)T and let −a ∈ R+.

i. If X0 ≥ 0, then
X0e−a(t, λ) ≤ X(t) ≤ X0e−eγ(t, λ) (4.27)

for all t ∈ [λ,∞)T,
ii. If X0 < 0, then

X0e−eγ(t, λ) ≤ X(t) ≤ X0e−a(t, λ) (4.28)

for all t ∈ [λ,∞)T.

Proof. Notice that this corollary is equivalent to Theorem 7 when λ = t0. To verify (4.27) for
λ > t0, we proceed in a way similar to proof of Corollary 2. The upper bound in (4.27) can be
obtained as it is done in the proof of Corollary 2. So, we only need to find the lower bound.
From (4.21) we have

X(t) − X(τ) = −
t∫

τ

a(u)X(u)∆u +

t∫

τ

u∫

λ

b̃(δ̃−(s, u))X(s)∆s∆u,

in which X(t) ≥ 0 whenever X0 ≥ 0 by Theorem 7. Since the function b̃ is also nonnegative, we
find

X(t) +

t∫

τ

a(u)X(u)∆u ≥ X(τ), for all t, τ ∈ [λ,∞)T with τ ≤ t,

and therefore, by Theorem 6
X0e−a(t, λ) ≤ X(t).

The proof is completed as we did in the proof of Theorem 7. �

Considering [4, Examples 3.2, 3.7] one may see the consistency of the results with the special
case T = R (see also [5]). For the case T = Z the following example numerically illustrates the
bounds obtained in Corollary 3.

Example 3. Let us take T = Z, a(t) = 1/2, δ−(k, t) = t − k, and

b(t − k) =
1

2t−k(t − k + 6)(t − k + 5)

to construct the convolution type Volterra integro difference equation

x(t + 1) =
x(t)

2
+

t−1∑

k=1

x(k)

2t−k(t − k + 6)(t − k + 5)
, t ∈ [1,∞)Z. (4.29)
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It is obvious from (1.7) that

e−a(t, 1) = (0.5)t−1

and

γ̃(t) =
1

2
−

t−1∑

k=1

1

(t − k + 6)(t − k + 5)

=
1

3
+

1

t + 5
.

Hence,

e−eγ(t, 1) =

t−1∏

k=1

(
2

3
− 1

k + 5

)
.

Let X(t) denote the solution of (4.29) satisfying X(1) = 1. Using MATLAB 6.12, the numerical
values of the functions L(t) := e−a(t, 1) = (0.5)t−1, X(t), U(t) := e−eγ(t, 1), and E(t) :=

exp(−1
3(t − 1)) for t ∈ [1, 10]Z are computed as follows:

t L(t) X(t) U(t) E(t)
1 1 1 1 1
2 0, 5 0, 5 0, 5 0, 7165
3 0, 25 0, 2619 0, 2619 0, 5134
4 0, 125 0, 1414 0, 1419 0, 3679
5 0, 0625 0, 0778 0, 0788 0, 2636
6 0, 0313 0, 0433 0, 0447 0, 1889
7 0, 0156 0, 0243 0, 0257 0, 1353
8 0, 0078 0, 0137 0, 015 0, 097
9 0, 0039 0, 0077 0, 0088 0, 0695
10 0, 002 0, 0044 0, 0053 0, 0498

As depicted in Figure 1, graphs of the functions L and U lie alongside that of X(t).
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Fig. 1. Upper and lower bounds for a solution X(t) of (4.29)

We continue this section by listing some remarks. The following remark can be found in [9].

Remark 1. (1) For a nonnegative ϕ with −ϕ ∈ R+, we have the inequalities

1 −
∫ t

s
ϕ(u) ≤ e−ϕ(t, s) ≤ exp

{
−

∫ t

s
ϕ(u)

}
for all t ≥ s

(2) If ϕ is rd-continuous and nonnegative, then

1 +

∫ t

s
ϕ(u) ≤ eϕ(t, s) ≤ exp

{∫ t

s
ϕ(u)

}
for all t ≥ s

It follows from (1.6) that eϕ(t, s) > 0 for ϕ ∈ R+ and t ≥ s. One may derive the next result
using Remark 1.

Remark 2. (1) If ϕ ∈ R+ and ϕ(t) < 0 for all t ∈ T, then for all s ∈ T with s ≤ t we have

0 < eϕ(t, s) ≤ exp

(∫ t

s
ϕ(r)∆r

)
< 1.

(2) If ϕ ∈ R+, then

0 < eϕ(t, s) ≤ exp

(∫ t

s
ϕ(r)∆r

)
(4.30)

for all t ∈ [s,∞)T.

For more on inequalities regarding the exponential function on time scales see also [7, Theorem
2.44, p.66].

Corollary 4. In addition to all assumptions of Corollary 3 suppose also that

lim
t→∞

∫ t

λ
γ̃(s)∆s = ∞, (4.31)
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then for any X0 ∈ R, X(t) = X(t, λ,X0) tends to zero as t → ∞.

Proof. Since b̃ takes only nonnegative values, we get by (4.22) that

a(u) ≥ γ̃(u) for all u ∈ [λ,∞)T, (4.32)

and hence,
1 − µ(u)a(u) ≤ 1 − µ(u)γ̃(u) for all u ∈ [λ,∞)T,

i.e., −γ̃ ∈ R+. On the other hand, by (4.27), (4.28), and (4.30) we obtain

0 ≤ X(t) ≤ X0 exp

(
−

∫ t

λ
γ̃(s)∆s

)
for X0 ≥ 0

and

X0 exp

(
−

∫ t

λ
γ̃(s)∆s

)
≤ X(t) < exp

(
−

∫ t

λ
γ̃(s)∆s

)
for X0 < 0

for all t ∈ [λ,∞)T. The proof follows from (4.31). �

Remark 3. In the particular case T = Z, Corollary 4 provides alternative conditions implying
asymptotic stability of zero solution of convolution type Volterra difference equations

xn+1 = axn +

n−1∑

s=0

bn−sxs, n ≥ 0,

handled in [15, Theorem 1.1] ( see also [16] and [17]).

Corollary 5. In addition to assumptions of Corollary 2 suppose also that there exists an ε > 0
such that

a(u) −
u∫

λ

b̃(δ̃−(s, u))ep(u, s)∆s ≥ ε (4.33)

holds for all u ∈ [λ,∞)T.

i. If X0 > 0, then the solution X(t) = X(t, λ,X0) of (4.19) is strictly decreasing on [λ,∞)T

and
X0e−q(t, λ) ≤ X(t) ≤ X0 exp (−ε(t − λ)) (4.34)

for all t ∈ [λ,∞)T,
ii. If X0 < 0, then the solution X(t) = X(t, λ,X0) of (4.19) is strictly increasing on [λ,∞)T

and
X0 exp (−ε(t − λ)) ≤ X(t) ≤ X0e−q(t, λ) (4.35)

for all t ∈ [λ,∞)T.

Proof. Upper and lower bounds in (4.34) follow from (4.24), (4.30), and (4.33). The upper
bound in (4.35) is obtained from (4.25). On the other hand, for X0 < 0, (4.30) yields

e−eγ(t, λ) ≤ exp

(
−

∫ t

λ
γ̃(s)∆s

)
≤ exp (−ε(t − λ)) ,

and

X0e−eγ(t, λ) ≥ X0 exp

(
−

∫ t

λ
γ̃(s)∆s

)
≥ X0 exp (−ε(t − λ)) .

Hence, the lower bound in (4.35) can be found by using (4.25). Note that (4.33) implies that γ̃ is
strictly positive. Thus, by (4.17) the solution X(t) = X(t, λ,X0) of (4.19) is strictly decreasing
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on [λ,∞)T provided X0 > 0. For X0 < 0, monotonicity of X(t) = X(t, λ,X0) is obtained by
applying the same type of argument that ends the proof of Theorem 7. The proof is complete. �

It is obvious that the function γ̃ in Example 3 satisfies the inequality γ̃(t) ≥ 1
3 . This is (4.33)

with ε = 1
3 . Hence, considering Figure 1 and (4.34) with ε = 1

3 one may see the validity of the

upper bound E(t) = exp(−1
3(t − 1)) for the solutions of (4.29).

Corollary 6. Suppose all assumptions of Corollary 5. Then

i. If X0 > 0, then the solution X(t) = X(t, λ,X0) of (4.19) is strictly decreasing on [λ,∞)T

and
X0e−q(t, λ) ≤ X(t) ≤ X0e⊖ε(t, λ) (4.36)

for all t ∈ [λ,∞)T,
ii. If X0 < 0, then the solution X(t) = X(t, λ,X0) of (4.19) is strictly increasing on [λ,∞)T

and
X0e⊖ε(t, λ) ≤ X(t) ≤ X0e−q(t, λ) (4.37)

for all t ∈ [λ,∞)T.

Proof. Monotonicity of the solutions X(t, λ,X0) can be obtained similar to that in Corollary 5.
Since γ̃ > ε by (4.33), the inequality

−γ̃ < −ε <
−ε

1 + µ(t)ε
= ⊖ε

yields

e∆
−eγ(t, λ) = −γ̃(t)e−eγ(t, λ) ≤ ⊖εe−eγ(t, λ).

This, along with Theorem 4, implies

e−eγ(t, λ) ≤ e⊖ε(t, λ) for all t ∈ [λ,∞)T.

Thus, the bounds in (4.36) and (4.37) follow from (4.24) and (4.25). The proof is complete. �
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