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Abstract. We attempt to unify and extend the theory of asymptotic properties of so-
lutions to difference equations of various types. Usually in difference equations some
functions are used which generate transformations of sequences. We replace these func-
tions by abstract operators and investigate some properties of such operators. We are
interested in properties of operators which correspond to continuity or boundedness or
local boundedness of functions. Next we investigate asymptotic properties of the set of
all solutions to ‘abstract’ and ‘functional’ difference equations. Our approach is based
on using the iterated remainder operator and the asymptotic difference pair. More-
over, we use the regional topology on the space of all real sequences and the ‘regional’
version of the Schauder fixed point theorem.
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1 Introduction

Let N, R denote the set of positive integers and the set of real numbers, respectively. Moreover,
let SQ = RN denote the space of all real sequences x : N→ R. In the paper we assume that

m ∈N, F : SQ→ SQ

and consider difference equations of the form

∆mxn = anF(x)(n) + bn, (E)

where an, bn ∈ R. We say that (E) is an abstract difference equation of order m.
Let p ∈ N. We say that a sequence x ∈ SQ is a p-solution of equation (E) if equality (E) is

satisfied for any n ≥ p. We say that x is a solution if it is a p-solution for certain p ∈ N. If x
is a p-solution for any p ∈N, then we say that x is a full solution.
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As a special case of (E) we get equations of type:

∆mxn = an f (n, xσ1(n), . . . , xσk(n)) + bn, f : N×Rk → R, (E1)

where k ∈N, σ1, . . . , σk : N→N, or

∆mxn = an f (n, xn, ∆xn, ∆2xn, . . . , ∆kxn) + bn, f : N×Rk+1 → R, (E2)

where k is an arbitrary natural number (the case k > m is not excluded).
In the series of papers [15–23] a new method in the study of asymptotic properties of solu-

tions to difference equations is presented. This method, based on using the iterated remainder
operator, and the regional topology on the space of all real sequences, allows us to control the
degree of approximation. In the paper [22], summarizing some earlier results, the notion of a
difference asymptotic pair was introduced and the theory of such pairs was used to study the
asymptotic properties of solutions to autonomous difference equations of the form

∆mxn = an f (xσ(n)) + bn.

In this paper we extend the results from [22] to more general classes of equations. Our
approach to the study of asymptotic properties of solutions were inspired by the papers [1–14]
and [24–33].

The paper is organized as follows. In Section 2, we introduce notation and terminology. In
Section 3 we introduce the notion of mezocontinuous operator and we give some examples to
show that the mezocontinuity of the operator F in equation (E) corresponds to the continuity
of the function f in equations (E1) and (E2). Main results are obtained in Section 4. In Section 5
we apply our results to ‘functional’ equations (E1) and (E2).

2 Notation and terminology

If p, k ∈N, p ≤ k, then N(p), N(p, k) denote the sets defined by

N(p) = {p, p + 1, . . . }, N(p, k) = {p, p + 1, . . . , k}.

We use the symbols
Sol(E), Solp(E), Sol∞(E)

to denote the set of all full solutions of (E), the set of all p-solutions of (E), and the set of all
solutions of (E) respectively. If x, y in SQ, then xy and |x| denote the sequences defined by
xy(n) = xnyn and |x|(n) = |xn| respectively. Let a, b ∈ SQ, p ∈ N. We will use the following
notations

Fin(p) = {x ∈ SQ : xn = 0 for n ≥ p}, Fin =
∞⋃

p=1

Fin(p),

o(1) = {x ∈ SQ : x is convergent to zero}, O(1) = {x ∈ SQ : x is bounded},
o(a) = {ax : x ∈ o(1)}+ Fin, O(a) = {ax : x ∈ O(1)}+ Fin,

∆−mb = {y ∈ SQ : ∆my = b}, Pol(m− 1) = Ker∆m.

For a subset Y of a metric space X and c > 0 let

B∗(Y, c) =
⋃

y∈Y

B∗(y, c),
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where B∗(y, c) denotes the closed ball of radius c centered at y. For y, ρ ∈ SQ and p ∈ N we
define

B∗(y, ρ, p) = {x ∈ SQ : |x− y| ≤ |ρ| and xn = yn for n < p}.

Assume that Z is a linear subspace of a linear space X. We say that a subset W of X is
Z-invariant if W + Z ⊂W.

2.1 Regional topology

Let X be a real vector space. We say that a function ‖ · ‖ : X → [0, ∞] is a regional norm if the
condition ‖x‖ = 0 is equivalent to x = 0 and for any x, y ∈ X and α ∈ R we have

‖αx‖ = |α|‖x‖, ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Hence, the notion of a regional norm generalizes the notion of a usual norm. Note that a
regional norm may take the value ∞. If a regional norm on X is given, then we say that X is
a regional normed space, if there exists a vector x ∈ X such that ‖x‖ = ∞, then we say that X is
extraordinary.

Assume X is a regional normed space. We say that a subset Z of X is ordinary if ‖x− y‖ <
∞ for any x, y ∈ Z. We regard any ordinary subset Z of X as a metric space with metric
defined by

d(x, y) = ‖x− y‖.

We say that a subset U of X is regionally open if U ∩ Z is open in Z for any ordinary subset Z
of X. The family of all regionally open subsets is a topology on X which we call the regional
topology. We regard any subset of X as a topological space with topology induced by the
regional topology. Let

Reg(0) = {x ∈ X : ‖x‖ < ∞}.

Obviously Reg(0) is a linear subspace of X. Moreover, the regional norm induces a usual
norm on Reg(0). We say that X is a Banach regional space if Reg(0) is complete. Let x ∈ X.
We say that the set

Reg(x) = x + Reg(0)

is a region of x. If y ∈ X and ‖x − y‖ < ∞, then Reg(x) = Reg(y). Any region is ordinary
and open in X. Moreover, any region is connected and is metrically equivalent to the normed
space Reg(0). From a topological point of view, the space X is a disjoint union of all regions.
Note that if x ∈ X, then the region Reg(x) is the ordinary component of x and the connected
component of x. Hence any ordinary subset of X is a subset of a certain region, and any
connected subset of X is ordinary. Moreover, if H : SQ→ SQ is continuous and x ∈ SQ, then

H(Reg(x)) ⊂ Reg(H(x)).

We say that a subset Y of X is regional if Reg(y) ⊂ Y for any y ∈ Y. The basic properties
of the regional topology are presented in [21]. We will use the following theorem (see [21,
Theorem 3.1]).

Theorem 2.1 (Generalized Schauder theorem). Assume Q is a closed and convex subset of a
regional Banach space X, a map H : Q → Q is continuous and the set HQ is ordinary and totally
bounded. Then there exists a point x ∈ Q such that Hx = x.
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We will use the standard regional norm on SQ defined by

‖x‖ = sup{|xn| : n ∈N}.

Moreover, we will use the following fixed point theorem.

Theorem 2.2. Assume y ∈ SQ, ρ ∈ o(1), p ∈ N, and B = B∗(y, ρ, p). Then any continuous map
H : B→ B has a fixed point.

Proof. By [21, Theorem 3.3], B is ordinary, convex and compact. Hence the assertion is a
consequence of Theorem 2.1.

2.2 Remainder operator

For t ∈ [1, ∞) and m ∈N let

A(t) :=
{

a ∈ SQ :
∞

∑
n=1

nt−1|an| < ∞
}

,

rm : A(m)→ o(1), rm(a)(n) =
∞

∑
j=n

(
m− 1 + j− n

m− 1

)
aj.

Then rm is a linear operator which we call the iterated remainder operator of order m. The
value rm(a)(n) we denote also by rm

n (a) or simply rm
n a. The following lemma is a consequence

of [20, Lemma 3.1], [20, Lemma 4.2], and [20, Lemma 4.8].

Lemma 2.3. Assume a ∈ A(m), u ∈ O(1), k ∈ {0, 1, . . . , m}, and p ∈N. Then

(a) O(a) ⊂ A(m) ⊂ o(n1−m), |rm(ua)| ≤ ‖u‖rm|a|, ∆rm|a| ≤ 0,

(b) |rm
p a| ≤ rm

p |a| ≤ ∑∞
n=p nm−1|an|, rka ∈ A(m− k),

(c) ∆mrma = (−1)ma, rmFin(p) = Fin(p) = ∆mFin(p).

For more information about the remainder operator see [20].

2.3 Asymptotic difference pairs

We say that a pair (A, Z) of linear subspaces of SQ is an asymptotic difference pair of order m
or, simply, m-pair if

Fin + Z ⊂ Z, O(1)A ⊂ A, A ⊂ ∆mZ.

We say that an m-pair (A, Z) is evanescent if Z ⊂ o(1). The following lemma is a consequence
of [22, Lemma 3.5 and Lemma 3.7].

Lemma 2.4. Assume (A, Z) is an m-pair, a, b, x ∈ SQ. Then

(a) if a− b ∈ A, then ∆−ma + Z = ∆−mb + Z,

(b) if a ∈ A and ∆mx ∈ O(a) + b, then x ∈ ∆−mb + Z,

(c) if Z ⊂ o(1), then A ⊂ A(m) and rm A ⊂ Z.
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Example 2.5. Assume s ∈ R, t ∈ (−∞, m− 1], λ ∈ (1, ∞), and

(s + 1)(s + 2) · · · (s + m) 6= 0.

Then
(o(ns), o(ns+m)), (O(ns), O(ns+m)), (A(m− t), o(nt)),

(o(λn), o(λn)), (O(λn), O(λn))

are m-pairs.

Example 2.6. Assume s ∈ (−∞,−m), t ∈ (−∞, 0], u ∈ [1, ∞), and λ ∈ (0, 1). Then

(o(ns), o(ns+m)), (O(ns), O(ns+m)), (A(m− t), o(nt)),

(A(m + u), A(u)), (o(λn), o(λn)), (O(λn), O(λn))

are evanescent m-pairs.

For more information about difference pairs see [22].

3 Mezocontinuous operators

Assume W ⊂ X ⊂ SQ and H : X → SQ. We define ‖H‖ ∈ [0, ∞] by

‖H‖ = sup{|H(x)(n)| : x ∈ X, n ∈N}.

We say, that H is bounded if ‖H‖ < ∞. Let P be a property of operators. We say that H has
the property P on W if the restriction H|W has the property P. Recall that we regard any
subset of SQ as a topological space with topology induced by the regional topology. Hence,
the continuity of H is defined by a standard way. We say, that H is:

paracontinuous if for any ε > 0 and any n ∈ N there exists a δ = δ(n, ε) > 0 such that if
x, z ∈ X, and ‖x− z‖ < δ, then |H(x)(n)− H(z)(n)| < ε,

mezocontinuous if it is paracontinuous on any bounded subset of X,

regionally bounded if it is bounded on X ∩ Reg(x) for any x ∈ X.

We say that a map G : X → Y from a subset X of SQ to a metric space Y is uniformly continuous
if it is uniformly continuous on any ordinary subset Z of X.

Remark 3.1. For n ∈N let evn denote the evaluation (projection operator) defined by

evn : SQ→ R, evn(x) = xn.

If X ⊂ SQ, then an operator H : X → SQ is paracontinuous if and only if for any n the
function evn ◦ H : SQ→ R is uniformly continuous.

Remark 3.2. If X ⊂ SQ, H1, H2, . . . , Hk : X → SQ are paracontinuous, and a function
ϕ : Rk → R is uniformly continuous, then the operator H : X → SQ defined by

H(x)(n) = ϕ(H1(x)(n), . . . , Hk(x)(n))

is paracontinuous.
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Example 3.3. Assume ϕn : R→ R is a sequence of uniformly continuous functions. Then the
operator H : SQ→ SQ defined by H(x)(n) = ϕn(xn) is paracontinuous.

Example 3.4. Assume k ∈N, f : N×Rk → R is continuous and σ1, σ2, . . . , σk : N→N. Then
the operator

H : SQ→ SQ, H(x)(n) = f (n, xσ1(n), . . . , xσk(n))

is mezocontinuous.

Justification. Assume S is a bounded subset of SQ. Choose a positive ε and an index n. Let

Sn = {(xσ1(n), . . . , xσk(n)) : x ∈ S}.

Since S is bounded, the set Sn is a bounded subset of Rk. Choose a compact interval I such
that Sn ⊂ Ik. The function

g : Rk → R, g(t1, . . . , tk) = f (n, t1, . . . , tk)

is uniformly continuous on Ik. Choose δ > 0 such that if α, β ∈ Ik, and ‖α − β‖ < δ, then
|g(α)− g(β)| < ε. Now, assume x, z ∈ S and ‖x− z‖ < δ. Then

x∗ := (xσ1(n), . . . , xσk(n)) ∈ Sn, y∗ := (yσ1(n), . . . , yσk(n)) ∈ Sn

and ‖x∗ − y∗‖ ≤ ‖x− y‖ < δ. Hence |g(x∗)− g(y∗)| < ε. This means that

|H(x)(n)− H(y)(n)| < ε.

Therefore H is paracontinuous on S.

Example 3.5. If k ∈N and f : N×Rk+1 → R is continuous, then the operator

H : SQ→ SQ, H(x)(n) = f (n, xn, ∆xn, ∆2xn, . . . , ∆kxn)

is mezocontinuous.

Justification. Assume S is a bounded subset of SQ. Choose a positive ε and an index n. Let

Sn = {(xn, ∆xn, ∆2xn, . . . , ∆kxn) : x ∈ S}.

Since S is bounded, the set Sn is a bounded subset of Rk+1. Choose a compact interval I such
that Sn ⊂ Ik+1. The function

g : Rk+1 → R, g(t0, t1, . . . , tk) = f (n, t0, t1, . . . , tk)

is uniformly continuous on Ik+1. Note that if x, y ∈ SQ, then

‖∆x− ∆y‖ ≤ 2‖x− y‖, . . . , ‖∆kx− ∆ky‖ ≤ 2k‖x− y‖.

Choose δ > 0 such that if α, β ∈ Ik+1, and ‖α− β‖ < 2kδ, then |g(α)− g(β)| < ε. Now, assume
x, z ∈ S and ‖x− z‖ < δ. Then

x∗ := (xn, ∆xn, ∆2xn, . . . , ∆kxn) ∈ Sn, y∗ := (yn, ∆yn, ∆2yn, . . . , ∆kyn) ∈ Sn

and ‖x∗ − y∗‖ < 2kδ. Hence |g(x∗)− g(y∗)| < ε. This means that

|H(x)(n)− H(y)(n)| < ε.

Therefore H is paracontinuous on S.
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Example 3.6. Assume B is a bounded subset of R, f : R→ R, the restriction f |B is continuous
but not uniformly continuous, p ∈N, W = {x ∈ SQ : x(N) ⊂ B}, and

H : W → SQ, H(x)(n) :=

{
f (xp) for n = p

xn for n 6= p.

Then H is continuous but not mezocontinuous.

Justification. Let x ∈ W and ε > 0. Choose δ ∈ (0, ε) such that if t ∈ X and |t − xp| < δ,
then | f (t)− f (xp)| < ε. Now, if z ∈ B and ‖z− x‖ < δ, then ‖Hz− Hx‖ < ε. Hence H is
continuous. Choose positive ε and δ. Since f |B is not uniformly continuous, there exist s, t ∈ B
such that |s− t| < δ and | f (s)− f (t)| ≥ ε. Define sequences x, z by: xn = zn = s for n 6= p,
xp = s, zp = t. Then x, z ∈W, ‖z− x‖ = |zp − xp| = |t− s| < δ, and

|H(z)(p)− H(x)(p)| = | f (t)− f (s)| ≥ ε.

Hence H is not paracontinuous. Since W is bounded, H is not mezocontinuous.

Example 3.7. Let f : R→ R and H : SQ→ SQ is given by H(x)(n) = f (xn). Then:

(a) if f is uniformly continuous then H is uniformly continuous,

(b) if f is continuous then H is mezocontinuous,

(c) if f is not uniformly continuous then H is discontinuous.

Justification. The assertion (a) is obvious, and (b) is a consequence of Example 3.4. Assume f
is not uniformly continuous. Then there exists a positive ε such that for any n ∈N there exist
xn, zn ∈ R satisfying |xn − zn| < 1/n and | f (xn)− f (zn)| ≥ ε. Let δ > 0. Choose k ∈ N such
that δ < 1/k and define y ∈ SQ by

yn =

{
xn for n ≤ k,

zn for n > k.

Then ‖x− y‖ < δ and ‖Hx− Hy‖ ≥ ε. Hence H is discontinuous at x.

4 Solutions of abstract equations

Let W ⊂ SQ, a ∈ A(m), and p ∈N. We say that W is

(F, a, p)-regular if for any y ∈ W there exists a positive constant M such that F is para-
continuous on B = B∗(y, Mrm|a|, p) and ‖F|B‖ ≤ M,

F-regular if for any y ∈ W there exist a positive constant c and an index q such that
F|B∗(y, c, q) is paracontinuous and bounded,

F-optimal if W is o(1)-invariant and F|W is mezocontinuous and regionally bounded,

F-ordinary if F(W) ⊂ O(1).

Theorem 4.1. Assume (A, Z) is an evanescent m-pair, a ∈ A, p ∈N, M > 0,

y ∈ ∆−mb, ρ = Mrm|a|, B = B∗(y, ρ, p), ‖F|B‖ ≤ M,

and F is paracontinuous or continuous on B. Then y ∈ Solp(E) + Z.
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Proof. If x ∈ B, then the sequence Fx is bounded. Hence aFx ∈ O(a) ⊂ A(m). Define

H : S→ SQ, H(x)(n) =

{
yn for n < p,

yn + (−1)mrm
n (aFx) for n ≥ p.

If n ≥ p, then using Lemma 2.3 we have

|H(x)(n)− yn| = |rm
n (aFx)| ≤ rm

n |aFx| ≤ Mrm
n |a| = ρn.

Hence HB ⊂ B. Let ε > 0. Assume that F is paracontinuous on B. There exist q ≥ p and α > 0
such that

M
∞

∑
n=q

nk−1|an| < ε and α
q

∑
n=p

nk−1|an| < ε.

For any n ∈ {p, . . . , q} there exists δn > 0 such that if x, z ∈ B and ‖x− z‖ < δn, then

|F(x)(n)− F(z)(n)| < α.

Let δ = min(δp, δp+1, . . . , δq). If x, z ∈ B and ‖x− z‖ < δ, then using Lemma 2.3, we obtain

‖Hx− Hz‖ = sup
n≥1
|H(x)(n)− H(z)(n)| = sup

n≥p
|rm

n (aFx)− rm
n (aFz)|

= sup
n≥p
|rm

n (aFx− aFz)| ≤ sup
n≥p

rm
n |aFx− aFz|

= rm
p |aFx− aFz| ≤

∞

∑
n=p

nm−1|anF(x)(n)− anF(z)(n)|

≤
q

∑
n=p

nm−1|anF(x)(n)− anF(z)(n)|+
∞

∑
n=q

nm−1|anF(x)(n)− anF(z)(n)|

≤ α
q

∑
n=p

nm−1|an|+
∞

∑
n=q

nm−1|anF(x)(n)|+
∞

∑
n=q

nm−1|anF(z)(n)| < 3ε.

Hence H is continuous. Now assume that F is continuous on B and x ∈ B. There exists
a δ(x, ε) > 0 such that the condition ‖z − x‖ < δ(x, ε) implies |Fx − Fz| < ε. If z ∈ B,
‖z− x‖ < δ(x, ε), and n ≥ p, then, we obtain

|H(x)(n)− H(z)(n)| = |rm
n (aF(x))− rm

n (aF(z))|
≤ rm

n (|a||Fx− Fz|) ≤ rm
n (ε|a|) ≤ εrm

1 |a| = M−1ρ1ε.

Hence ‖Hx − Hz‖ ≤ M−1ρ1ε. Therefore H is continuous. By Theorem 2.2, there exists an
x ∈ B such that Hx = x. Then xn = yn + (−1)mrm

n aF(x) for n ≥ p. Hence

x− y− (−1)mrmaFx ∈ Fin(p). (4.1)

Using Lemma 2.3 we have

∆m((−1)mrmaF(x)) = aF(x), and ∆mFin(p) = Fin(p). (4.2)

Using (4.1), (4.2), and the equality ∆my = b, we get

∆mx− aF(x)− b ∈ Fin(p).
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Hence x ∈ Solp(E). Moreover, we have (−1)maFx ∈ O(a). Hence, by (4.1),

y ∈ x + rmO(a) + Fin(p).

By Lemma 2.3 we get

rmO(a) + Fin(p) = rmO(a) + rmFin(p) = rm(O(a) + Fin(p))

= rmO(a) ⊂ rm A ⊂ Z.

Corollary 4.2. Assume (A, Z) is an evanescent m-pair, a ∈ A, p ∈N, and W is an (F, a, p)-regular
subset of SQ. Then

W ∩ ∆−mb ⊂ Solp(E) + Z.

Proof. The assertion is an immediate consequence of Theorem 4.1.

Corollary 4.3. Assume (A, Z) is an evanescent m-pair, a ∈ A, and W is an F-regular subset of SQ.
Then

W ∩ ∆−mb ⊂ Sol∞(E) + Z. (4.3)

Proof. Let y ∈ W ∩ ∆−mb. Choose a positive constant c and an index q such that F is paracon-
tinuous and bounded on B∗(y, c, q). Let

M = ‖F|B∗(y, c, q)‖.

Since rm|a| ∈ o(1), there exists an index k ≥ q such that Mrm
k |a| ≤ c. Since the sequence rm|a|

is nonincreasing, we have
B∗(y, Mrm|a|, k) ⊂ B∗(y, c, q).

By Theorem 4.1, y ∈ Solk(E) + Z ⊂ Sol∞(E) + Z and we obtain (4.3).

Example 4.4. Assume g : R→ R is positive, continuous, and nondecreasing,

f : N×R→ R, f (n, t) = g(t), F : SQ→ SQ, F(x)(n) = f (n, xn).

Moreover, assume a ∈ A(m), p ∈N, M, α, λ ∈ R, g(λ) = M, λ > α, and
∞

∑
n=p

nm−1|an| ≤
λ− α

M

Then the set W = {y ∈ SQ : y(N) ⊂ (−∞, α)} is (F, a, p)-regular.

Justification. By Lemma 2.3

rm
n |a| ≤ rm

p |a| ≤
∞

∑
n=p

nm−1|an| ≤
λ− α

M

for any n ≥ p. Let y ∈W and let

B = B∗(y, Mrm|a|, p).

If x ∈ B, then |xn − yn| ≤ Mrm
p |a| for any n. Hence xn ≤ yn + Mrm

p |a| and

|F(x)(n)| = | f (n, xn)| = g(xn) ≤ g(yn + Mrm
p |a|) ≤ g(α + λ− α) = g(λ) = M

for any x ∈ B and any n ∈ N. Hence ‖F|B‖ ≤ M. By Example 3.4, F is paracontinuous on B.
Therefore W is (F, a, p)-regular.
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The following theorem is a consequence of Lemma 2.4. Note that in this theorem we do
not assume that a pair (A, Z) is evanescent.

Theorem 4.5. Assume (A, Z) is an m-pair, a ∈ A, and W is an F-ordinary subset of SQ. Then

W ∩ Sol∞(E) ⊂ ∆−mb + Z. (4.4)

Proof. If x ∈ Sol∞(E) and Fx ∈ O(1), then

∆mx ∈ aF(x) + b + Fin ⊂ O(a) + b + Fin = O(a) + b.

Hence, using Lemma 2.4, we obtain (4.4).

Lemma 4.6. Assume X is a linear space, W, S, Y ⊂ X, Z is a linear subspace of X, W is Z-invariant
and W ∩ S ⊂ Y + Z. Then W ∩ S ⊂W ∩Y + Z.

Proof. Let w ∈ W ∩ S. By assumption, w = y + z for some y ∈ Y and z ∈ Z. Since W is
Z-invariant, we have y = w− z ∈W. Hence y ∈W ∩Y and we obtain

w = y + z ∈W ∩Y + Z.

Theorem 4.7. Assume (A, Z) is an evanescent m-pair, a ∈ A, and W is a Z-invariant subset of SQ.
Then

(a) if W is F-regular, then
W ∩ Sol∞(E) + Z = W ∩ ∆−mb + Z,

(b) if W is F-optimal, then

W ∩ Sol(E) + Z = W ∩ Sol∞(E) + Z = W ∩ ∆−mb + Z.

Proof. Assume W is F-regular. Then W is F-ordinary and, by Theorem 4.5,

W ∩ Sol∞(E) ⊂ ∆−mb + Z. (4.5)

By Corollary 4.3, we have
W ∩ ∆−mb ⊂ Sol∞(E) + Z. (4.6)

Using (4.6), (4.5), and Lemma 4.6 we obtain (a).
Assume W is F-optimal. Then, W is F-ordinary and, using Theorem 4.5,

W ∩ Sol(E) ⊂W ∩ Sol∞(E) ⊂ ∆−mb + Z. (4.7)

Assume y ∈W ∩ ∆−mb. Let M = ‖F|Reg(y)‖. Since a ∈ A ⊂ A(m), we have

∞

∑
n=1

nm−1|an| < ∞.

Choose a positive c such that

M
∞

∑
n=1

nm−1|an| < c.

Then
B∗(y, Mrm|a|, 1) ⊂ B∗(y, c, 1) ⊂ y + O(1) = Reg(y).
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By Theorem 4.1,
y ∈ Sol1(E) + Z = Sol(E) + Z.

Hence
W ∩ ∆−mb ⊂ Sol(E) + Z. (4.8)

Using (4.8), (4.7), and Lemma 4.6 we obtain (b).

Let X ⊂ SQ. We say that an operator H : X → SQ is unbounded at a point p ∈ [−∞, ∞] if
there exists a sequence x ∈ X and an increasing sequence α : N→N such that

lim
n→∞

x(α(n)) = p and lim
n→∞
|H(x)(α(n))| = ∞.

Let
U(H) = {p ∈ [−∞, ∞] : H is unbounded at p}.

For x ∈ SQ let
L(x) = {p ∈ [−∞, ∞] : p is a limit point of x}.

The following theorem extends [22, Theorem 4.2].

Theorem 4.8. Assume (A, Z) is an m-pair, a ∈ A, and x ∈ Sol∞(E). Then

x ∈ ∆−mb + Z or L(x) ∩U(F) 6= ∅.

Proof. Assume L(x) ∩U(F) = ∅. If the sequence F(x) is unbounded from above, then there
exists an increasing sequence β : N→N such that

lim
n→∞

F(x)(β(n)) = ∞. (4.9)

Let y = x ◦ β and let p ∈ L(y). There exists an increasing sequence γ : N→N such that

lim
n→∞

y(γ(n)) = p. (4.10)

Let α = β ◦ γ. Then

x(α(n)) = (x ◦ β ◦ γ)(n) = (x ◦ β)(γ(n)) = y(γ(n)).

Hence, by (4.10), limn→∞ x(α(n)) = p. Moreover, using (4.9), we get

lim
n→∞

F(x)(α(n)) = lim
n→∞

F(x)(β(γ(n))) = ∞.

Therefore p ∈ U(F). Since y is a subsequence of x, we have p ∈ L(x). Thus

p ∈ L(x) ∩U(F).

Analogously, if the sequence F(x) is unbounded from below, then L(x)∩U(F) 6= ∅. Therefore
F(x) is bounded. Since x ∈ Sol∞(E), we have

∆mx ∈ aF(x) + b + Fin ⊂ aO(1) + Fin + b = O(a) + b.

By Lemma 2.4 (b) we get x ∈ ∆−mb + Z.
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5 Solutions of functional equations

For a subset V of R we denote by V the closure of V in the extended line [−∞, ∞].

Theorem 5.1. Assume (A, Z) is an evanescent m-pair, a ∈ A, k, p ∈N, c > 0,

f : N×Rk → R, σ1, . . . , σk : N→N, σi(n)→ ∞ for i = 1, . . . , k,

V ⊂ R, W = {x ∈ SQ : L(x) ⊂ V}, U = N(p)× B∗(V, c)k,

and f is continuous. Then W is o(1)-invariant and

(a) if f is bounded on U, then for any Z-invariant subset Q of W we have

Q ∩ ∆−mb + Z = Q ∩ Sol∞(E1) + Z; (5.1)

(b) if f is bounded, then for any Z-invariant subset Q of SQ we have

Q ∩ Sol(E1) + Z = Q ∩ Sol∞(E1) + Z = Q ∩ ∆−mb + Z. (5.2)

Proof. If y ∈ SQ and z ∈ o(1), then L(y + z) = L(y). Hence the set W is o(1)-invariant. Let

F : SQ→ SQ, F(x)(n) = f (n, xσ1(n), . . . , xσk(n)).

Assume f is bounded on U. Choose y ∈W and ε ∈ (0, c/2). It is easy to see that the set

y(N) \ B∗(V, ε)

is finite. Hence there exists an index p1 ≥ p such that yn ∈ B∗(V, ε) for any n ≥ p1. Choose
q ∈N such that σi(n) ≥ p1 for any n ≥ q and any i ∈ {1, . . . , k}. Let

q1 = max
k⋃

i=1

σi(N(1, q)), Y = y(N(1, q1)), C = N(1, q)× B∗(Y, ε)k.

Then C is compact and f is bounded on C. Define

M1 = ‖ f |U‖ and M2 = ‖ f |C‖.

Let x ∈ B∗(y, ε, q). Then |xn − yn| ≤ ε for any n. If n ≥ q and i ∈N(1, k), then σi(n) ≥ p1 and

yσi(n) ∈ B∗(V, ε).

Hence there exists u ∈ V such that |u− yσi(n)| ≤ ε. Then

|xσi(n) − u| ≤ |xσi(n) − yσi(n)|+ |yσi(n) − u| ≤ 2ε < c.

Hence (xσ1(n), . . . , xσk(n)) ∈ B∗(V, c)k and for n ≥ q we get

|F(x)(n)| = | f (n, xσ1(n), . . . , xσk(n))| ≤ M1.

If n ≤ q and i ∈N(1, k), then

xσi(n) ∈ B∗(yσi(n), ε) ⊂ B∗(Y, ε)
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Hence
(n, xσ1(n), . . . , xσk(n)) ∈ C and |F(x)(n)| ≤ M2.

Therefore F is bounded on B∗(y, ε, q). By Example 3.4, F is paracontinuous on B∗(y, ε, q). Thus
W is F-regular. Hence any subset Q of W is F-regular. If, moreover Q is Z-invariant, then, by
Theorem 4.7 (a), we obtain (5.1). Now, assume f is bounded on N×Rk and Q is a Z-invariant
subset of SQ. Then we can take V = R, W = SQ, and by (5.1), we obtain

Q ∩ Sol(E1) + Z ⊂ Q ∩ Sol∞(E1) + Z = Q ∩ ∆−mb + Z. (5.3)

Assume y ∈ Q ∩ ∆−mb. Let M = ‖ f ‖. Then ‖F‖ ≤ M and

‖F|B∗(y, Mrm|a|, 1)‖ ≤ M.

By Example 3.4, F is paracontinuous on B∗(y, Mrm|a|, 1). Hence, by Theorem 4.1,

y ∈ Sol1(E1) + Z = Sol(E1) + Z.

Therefore
Q ∩ ∆−mb ⊂ Sol(E1) + Z. (5.4)

Using (5.3), (5.4) and Lemma 4.6 we obtain (5.2).

Theorem 5.2. Assume (A, Z) is an evanescent m-pair, a ∈ A, k, p ∈N, c > 0,

V0, V1, . . . , Vk ⊂ R, U = N(p)× B∗(V0, c)× · · · × B∗(Vk, c),

W =
{

x ∈ SQ : L(∆ix) ⊂ Vi for i = 0, 1, . . . , k
}

,

and f : N×Rk+1 → R is continuous. Then W is o(1)-invariant and

(a) if f is bounded on U, then for any Z-invariant subset Q of W we have

Q ∩ ∆−mb + Z = Q ∩ Sol∞(E2) + Z; (5.5)

(b) if f is bounded, then for any Z-invariant subset Q of SQ we have

Q ∩ Sol(E2) + Z = Q ∩ Sol∞(E2) + Z = Q ∩ ∆−mb + Z. (5.6)

Proof. Obviously W is o(1)-invariant. Let

F : SQ→ SQ, F(x)(n) = f (n, xn, ∆xn, ∆2xn, . . . , ∆kxn).

Assume f is bounded on U. Choose y ∈ W and ε ∈ (0, c/2k+1). It is easy to see that, for any
i ∈N(0, k), the set

∆iy(N) \ B∗(Vi, ε)

is finite. Hence there exists an index p such that ∆iyn ∈ B∗(Vi, ε) for any i ∈ N(0, k) and any
n ≥ p. Let M = ‖F|U‖, x ∈ B∗(y, ε, p) and n ≥ p. If i ∈N(0, k), then

|∆ixn − ∆iyn| ≤ 2iε

and there exists a point ui ∈ Vi such that |∆iyn − ui| < ε. Hence

∆ixn ∈ B∗(Vi, 2i+1ε) ⊂ B∗(Vi, c).
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Therefore |F(x)(n)| ≤ M for any x ∈ B∗(y, ε, p) and any n ≥ p. Thus F is bounded on
B∗(y, ε, p). By Example 3.5, F is paracontinuous on B∗(y, ε, p). Hence W is F-regular. Assume
Q is a Z-invariant subset of W. Then Q is F-regular and, by Theorem 4.7 (a), we obtain (5.5).
Now, assume f is bounded and Q is a Z-invariant subset of SQ. Then we can take

V0 = V1 = · · · = Vk = R, W = SQ,

and, by (5.5) we obtain

Q ∩ Sol(E2) + Z ⊂ Q ∩ Sol∞(E2) + Z = Q ∩ ∆−mb + Z. (5.7)

Assume y ∈ Q ∩ ∆−mb. Let M = ‖ f ‖. Then ‖F‖ ≤ M and

‖F|B∗(y, Mrm|a|, 1)‖ ≤ M.

By Example 3.4, F is paracontinuous on B∗(y, Mrm|a|, 1). Hence, by Theorem 4.1,

y ∈ Sol1(E2) + Z = Sol(E2) + Z.

Therefore
Q ∩ ∆−mb ⊂ Sol(E2) + Z. (5.8)

Using (5.7), (5.8) and Lemma 4.6 we obtain (5.6).
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