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EXISTENCE OF A POSITIVE SOLUTION TO A RIGHT FOCAL
BOUNDARY VALUE PROBLEM

RICHARD I. AVERY, JOHNNY HENDERSON AND DOUGLAS R. ANDERSON

Abstract. In this paper we apply the recent extension of the Leggett-Williams Fixed Point
Theorem which requires neither of the functional boundaries to be invariant to the second order
right focal boundary value problem. We demonstrate a technique that can be used to deal with
a singularity and provide a non-trivial example.

1. Introduction

The recent topological proof and extension of the Leggett-Williams fixed point theorem [3]
does not require either of the functional boundaries to be invariant with respect to a functional
wedge and its proof uses topological methods instead of axiomatic index theory. Functional
fixed point theorems (including [2, 4, 5, 6, 8]) can be traced back to Leggett and Williams [7]
when they presented criteria which guaranteed the existence of a fixed point for a completely
continuous map that did not require the operator to be invariant with regard to the concave
functional boundary of a functional wedge. Avery, Henderson, and O’Regan [1], in a dual of
the Leggett-Williams fixed point theorem, gave conditions which guaranteed the existence of a
fixed point for a completely continuous map that did not require the operator to be invariant
relative to the concave functional boundary of a functional wedge. We will demonstrate a
technique to take advantage of the added flexibility of the new fixed point theorem for a right
focal boundary value problem.

2. Preliminaries

In this section we will state the definitions that are used in the remainder of the paper.

Definition 1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called a

cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;

(ii) x ∈ P,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.

Definition 2. An operator is called completely continuous if it is continuous and maps bounded

sets into precompact sets.
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Definition 3. A map α is said to be a nonnegative continuous concave functional on a cone

P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx+ (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative continuous convex

functional on a cone P of a real Banach space E if β : P → [0,∞) is continuous and

β(tx+ (1 − t)y) ≤ tβ(x) + (1 − t)β(y)

for all x, y ∈ P and t ∈ [0, 1].

Let α and ψ be non-negative continuous concave functionals on P and δ and β be non-negative
continuous convex functionals on P ; then, for non-negative real numbers a, b, c and d, we define
the following sets:

(1) A := A(α, β, a, d) = {x ∈ P : a ≤ α(x) and β(x) ≤ d},

(2) B := B(α, δ, β, a, b, d) = {x ∈ A : δ(x) ≤ b},
and

(3) C := C(α, ψ, β, a, c, d) = {x ∈ A : c ≤ ψ(x)}.
We say that A is a functional wedge with concave functional boundary defined by the concave
functional α and convex functional boundary defined by the convex functional β. We say
that an operator T : A → P is invariant with respect to the concave functional boundary, if
a ≤ α(Tx) for all x ∈ A, and that T is invariant with respect to the convex functional boundary,
if β(Tx) ≤ d for all x ∈ A. Note that A is a convex set. The following theorem is an extension
of the original Leggett-Williams fixed point theorem [7].

Theorem 4. [Extension of Leggett-Williams] Suppose P is a cone in a real Banach space

E, α and ψ are non-negative continuous concave functionals on P , δ and β are non-negative

continuous convex functionals on P , and for non-negative real numbers a, b, c and d the sets A,

B and C are as defined in (1), (2) and (3). Furthermore, suppose that A is a bounded subset

of P , that T : A→ P is completely continuous and that the following conditions hold:

(A1) {x ∈ A : c < ψ(x) and δ(x) < b} 6= ∅ and {x ∈ P : α(x) < a and d < β(x)} = ∅;
(A2) α(Tx) ≥ a for all x ∈ B;

(A3) α(Tx) ≥ a for all x ∈ A with δ(Tx) > b;
(A4) β(Tx) ≤ d for all x ∈ C; and,

(A5) β(Tx) ≤ d for all x ∈ A with ψ(Tx) < c.

Then T has a fixed point x∗ ∈ A.

3. Right Focal Boundary Value Problem

In this section we will illustrate the key techniques for verifying the existence of a positive
solution for a boundary value problem using the newly developed extension of the Leggett-
Williams fixed point theorem, applying the properties of a Green’s function, bounding the
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nonlinearity by constants over some intervals, and using concavity to deal with a singularity.
Consider the second order nonlinear focal boundary value problem

x′′(t) + f(x(t)) = 0, t ∈ (0, 1),(4)

x(0) = 0 = x′(1),(5)

where f : R → [0,∞) is continuous. If x is a fixed point of the operator T defined by

Tx(t) :=

∫ 1

0

G(t, s)f(x(s))ds,

where

G(t, s) =

{

t : t ≤ s,

s : s ≤ t,

is the Green’s function for the operator L defined by

Lx(t) := −x′′,
with right-focal boundary conditions

x(0) = 0 = x′(1),

then it is well known that x is a solution of the boundary value problem (4), (5). Throughout
this section of the paper we will use the facts that G(t, s) is nonnegative, and for each fixed
s ∈ [0, 1], the Green’s function is nondecreasing in t.

Define the cone P ⊂ E = C[0, 1] by

P := {x ∈ E : x is nonnegative, nondecreasing, and concave} .
For fixed ν, τ, µ ∈ [0, 1] and x ∈ P , define the concave functionals α and ψ on P by

α(x) := min
t∈[τ,1]

x(t) = x(τ), ψ(x) := min
t∈[µ,1]

x(t) = x(µ),

and the convex functionals δ and β on P by

δ(x) := max
t∈[0,ν]

x(t) = x(ν), β(x) := max
t∈[0,1]

x(t) = x(1).

In the following theorem, we demonstrate how to apply the Extension of the Leggett-Williams
Fixed Point Theorem (Theorem 4), to prove the existence of at least one positive solution to
(4), (5).

Theorem 5. If τ, ν, µ ∈ (0, 1] are fixed with τ ≤ µ < ν ≤ 1, d and m are positive real numbers

with 0 < m ≤ dµ and f : [0,∞) → [0,∞) is a continuous function such that

(a) f(w) ≥ d
ν−τ

for w ∈ [τd, νd],
(b) f(w) is decreasing for w ∈ [0, m] with f(m) ≥ f(w) for w ∈ [m, d], and

(c)
∫ µ

0
s f

(

ms
µ

)

ds ≤ 2d−f(m)(1−µ2)
2

,

then the operator T has at least one positive solution x∗ ∈ A(α, β, τd, d).
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Proof. Let a = τd, b = νd = aν
τ

, and c = dµ. Let x ∈ A(α, β, a, d) then if t ∈ (0, 1), by the
properties of the Green’s function (Tx)′′(t) = −f(x(t)) and Tx(0) = 0 = (Tx)′(1), thus

T : A(α, β, a, d) → P.

We will also take advantage of the following property of the Green’s function. For any y, w ∈
[0, 1] with y ≤ w we have

(6) min
s∈[0,1]

G(y, s)

G(w, s)
≥ y

w
.

By the Arzela-Ascoli Theorem it is a standard exercise to show that T is a completely continuous
operator using the properties ofG and f , and by the definition of β, we have that A is a bounded
subset of the cone P . Also, if x ∈ P and β(x) > d, then by the properties of the cone P ,

α(x) = x(τ) ≥
(τ

1

)

x(1) = τβ(x) > τd = a.

Therefore,
{x ∈ P : α(x) < a and d < β(x)} = ∅.

For any K ∈
(

2d
2−µ

, 2d
2−ν

)

the function xK defined by

xK(t) ≡
∫ 1

0

KG(t, s)ds =
Kt(2 − t)

2
∈ A,

since

α(xK) = xK(τ) =
Kτ(2 − τ)

2
>
dτ(2 − τ)

2 − µ
≥ dτ = a,

β(xK) = xK(1) =
K

2
<

d

2 − ν
≤ d,

and xK has the properties that

ψ(xK) = xK(µ) =
Kµ(2 − µ)

2
>

(

2d

2 − µ

) (

µ(2 − µ)

2

)

= dµ = c

and

δ(xK) = xK(ν) =
Kν(2 − ν)

2
<

(

2d

2 − ν

) (

ν(2 − ν)

2

)

= dν = b.

Hence
{x ∈ A : c < ψ(x) and δ(x) < b} 6= ∅.

Claim 1: α(Tx) ≥ a for all x ∈ B.

Let x ∈ B. Thus by condition (a),

α(Tx) =

∫ 1

0

G(τ, s) f(x(s)) ds ≥
(

a

τ(ν − τ)

)
∫ ν

τ

G(τ, s) ds

=

(

a

τ(ν − τ)

)

(τ(ν − τ)) = a.
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Claim 2: α(Tx) ≥ a, for all x ∈ A with δ(Tx) > b.

Let x ∈ A with δ(Tx) > b. Thus by the properties of G (6),

α(Tx) =

∫ 1

0

G(τ, s) f(x(s)) ds ≥
(τ

ν

)

∫ 1

0

G(ν, s) f(x(s)) ds

=
(τ

ν

)

δ(Tx) >
(τ

ν

)

(dν) = a.

Claim 3: β(Tx) ≤ d, for all x ∈ C.

Let x ∈ C, thus by the concavity of x, for s ∈ [0, µ] we have

x(s) ≥ cs

µ
≥ ms

µ
.

Hence by properties (b) and (c),

β(Tx) =

∫ 1

0

G(1, s) f(x(s)) ds =

∫ 1

0

s f(x(s)) ds

=

∫ µ

0

s f(x(s)) ds+

∫ 1

µ

s f(x(s)) ds

≤
∫ µ

0

s f

(

ms

µ

)

ds+ f(m)

∫ 1

µ

s ds

≤ 2d− f(m)(1 − µ2)

2
+
f(m)(1 − µ2)

2
= d.

Claim 4: β(Tx) ≤ d, for all x ∈ A with ψ(Tx) < c.

Let x ∈ A with ψ(Tx) < c. Thus by the properties of G (6),

β(Tx) =

∫ 1

0

G(1, s) f(x(s)) ds ≤
(

1

µ

)
∫ 1

0

G(µ, s) f(x(s)) ds

=

(

1

µ

)

Tx(µ) =

(

1

µ

)

ψ(Tx) ≤
(

1

µ

)

c = d.

Therefore, the hypotheses of Theorem 4 have been satisfied; thus the operator T has at least
one positive solution x∗ ∈ A(α, β, a, d). �

We note that because of the concavity of solutions, the proof of Theorem 5 remains valid for
certain singular nonlinearities as presented in this example.

Example: Let

d =
5

4
, τ =

1

16
, µ =

3

4
, and ν =

15

16
.
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Then the boundary value problem

x′′ +
1√
x

+
√
x = 0,

with right-focal boundary conditions

x(0) = 0 = x′(1),

has at least one positive solution x∗ which can be verified by the above theorem, with

5/64 ≤ x∗(1/16) and x∗(1) ≤ 5/4.
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