Existence of extremal solutions of a three-point boundary value problem for a general second order p-Laplacian integro-differential equation

Bashir Ahmad ${ }^{1}$, Ahmed Alsaedi
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
E-mail: bashir_qau@yahoo.com, aalsaedi@hotmail.com

Abstract

In this paper, we prove the existence of extremal positive, concave and pseudo-symmetric solutions for a general three-point second order p-Laplacian integro-differential boundary value problem by using an abstract monotone iterative technique. Keywords and Phrases: extremal solutions, integro-differential equations, p-Laplacian, nonlocal conditions. AMS Subject Classifications (2000): 34B15, 45J05.

1 Introduction

The subject of multi-point second order boundary value problems, initiated by Il'in and Moiseev $[9,10]$, has been extensively addressed by many authors, for instance, see $[6,7,13,16,17]$. There has also been a considerable attention on p-Laplacian boundary value problems $[3,8,12,19]$ as p-Laplacian appears in the study of flow through porous media ($p=3 / 2$), nonlinear elasticity ($p \geq 2$), glaciology ($1 \leq$ $p \leq 4 / 3$), etc. Recently, Sun and Ge [18] discussed the existence of positive pseudosymmetric solutions for a second order three-point boundary value problem involving p-Laplacian operator given by

$$
\begin{gathered}
\left(\psi_{p}\left(u^{\prime}(t)\right)\right)^{\prime}+q(t) f\left(t, u(t), u^{\prime}(t)\right)=0, t \in(0,1), \\
u(0)=0, \quad u(\eta)=u(1), \quad 0<\eta<1 .
\end{gathered}
$$

Ahmad and Nieto [1] studied a three-point second order p-Laplacian integrodifferential boundary value problem with the non-integral term of the form $f(t, x(t))$. In this paper, we allow the nonlinear function f to depend on x^{\prime} along with x and consider a more general three-point second order p-Laplacian integro-differential boundary value problem of the form

$$
\begin{equation*}
\left(\psi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+a(t)\left(f\left(t, x(t), x^{\prime}(t)\right)+\int_{t}^{(1+\eta) / 2} K(t, \zeta, x(\zeta)) d \zeta\right)=0, t \in(0,1) \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
x(0)=0, \quad x(\eta)=x(1), \quad 0<\eta<1, \tag{1.2}
\end{equation*}
$$

\]

where $p>1, \psi_{p}(s)=s|s|^{p-2}$. Let ψ_{q} be the inverse of ψ_{p}.
We apply an abstract monotone iterative technique due to Amann [2] to prove the existence of extremal positive, concave and pseudo-symmetric solutions for (1.1)(1.2). For the details of the abstract monotone iterative method, we refer the reader to the papers $[1,4-5,14-15,18]$. The importance of the work lies in the fact that integro-differential equations are encountered in many areas of science where it is necessary to take into account aftereffect or delay. Especially, models possessing hereditary properties are described by integro-differential equations in practice. Also, the governing equations in the problems of biological sciences such as spreading of disease by the dispersal of infectious individuals, the reaction-diffusion models in ecology to estimate the speed of invasion, etc. are integro-differential equations.

2 Preliminaries

Let $E=C^{1}[0,1]$ be the Banach space equipped with norm $\|x\|=$ $\max _{0 \leq t \leq 1}\left[x^{2}(t)+\left(x^{\prime}(t)\right)^{2}\right]^{1 / 2}$ and let P be a cone in E defined by $P=\{x \in E$: x is nonnegative, concave on $[0,1]$ and pseudo-symmetric about $(1+\eta) / 2$ on $[0,1]\}$. Further, for $\theta>0$, let $\bar{P}_{\theta}=\{x \in P:\|x\| \leq \theta\}$.
A functional γ is said to be concave on $[0,1]$ if

$$
\gamma(t x+(1-t) y) \geq t \gamma(x)+(1-t) \gamma(y), \forall x, y \in[0,1] \text { and } t \in[0,1] .
$$

A function x is said to be pseudo-symmetric about $(1+\eta) / 2$ on $[0,1]$ if x is symmetric on the interval $[\eta, 1]$, that is, $x(t)=x(1-(t-\eta))$ for $t \in[\eta, 1]$.

Throughout the paper, we assume that
$\left(\mathbf{A}_{1}\right) f(t, x, y):[0,1] \times[0, \infty) \times R \rightarrow[0, \infty)$ is continuous with $f\left(t, x_{1}, y_{1}\right) \leq$ $f\left(t, x_{2}, y_{2}\right)$, for any $0 \leq t \leq 1,0 \leq x_{1} \leq x_{2} \leq \theta, 0 \leq\left|y_{1}\right| \leq\left|y_{2}\right| \leq \theta(f$ is nondecreasing in x and $|y|)$ and $f(t, x, y)$ is pseudo-symmetric in t about $(1+\eta) / 2$ on $(0,1)$ for any fixed $x \in[0, \infty), y \in R$. Moreover, $f(t, 0,0)$ is not identically equal to zero on any subinterval of $(0,1)$.
$\left(\mathbf{A}_{\mathbf{2}}\right) K(t, \zeta, x):[0,1] \times[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous, nondecreasing in x and for any fixed $(\zeta, x) \in[0,1] \times[0, \infty), K(t, \zeta, x)$ is pseudo-symmetric in t and ζ about $(1+\eta) / 2$ on $(0,1)$. Further, $K(t, \zeta, 0)$ is not identically equal to zero for $0 \leq t, \zeta \leq 1$.
$\left(\mathbf{A}_{\mathbf{3}}\right) a(t) \in L(0,1)$ is nonnegative on $(0,1)$ and pseudo-symmetric in t about $(1+$ $\eta) / 2$ on $(0,1)$. Further, $a(t)$ is not identically zero on any nontrivial compact subinterval of $(0,1)$.
$\left(\mathbf{A}_{\mathbf{4}}\right) \max _{0 \leq t \leq 1}\left\{f(t, \theta, \theta)+\int_{t}^{(1+\eta) / 2} K(t, \zeta, \theta) d \zeta\right\} \leq \psi_{p}(\theta / \Theta)$, where $\Theta=\max \left\{\sqrt{2} \Theta_{1}, \sqrt{2} \Theta_{2}\right\}$,

$$
\Theta_{1}=\int_{0}^{(1+\eta) / 2} \psi_{q}\left(\int_{w}^{(1+\eta) / 2} a(\nu) d \nu\right) d w, \quad \Theta_{2}=\psi_{q}\left(\int_{0}^{(1+\eta) / 2} a(\nu) d \nu\right)
$$

Definition 2.1. Let us define an operator $\mathcal{G}: P \rightarrow E$ as follows

$$
(\mathcal{G} x)(t)=\left\{\begin{array}{r}
\int_{0}^{t} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
t \in[0,(1+\eta) / 2] \\
\int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
+\int_{t}^{1} \psi_{q}\left[\int_{(1+\eta) / 2}^{w} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
t \in[(1+\eta) / 2,1]
\end{array}\right.
$$

By the definition of \mathcal{G}, it follows that $\mathcal{G} x \in C^{1}[0,1]$ and is nonnegative for each $x \in P$, and is a solution of (1.1) and (1.2) if and only if $\mathcal{G} x=x$.
In order to develop the iteration schemes for (1.1) and (1.2), we establish some properties of the operator $\mathcal{G} x$.
Since

$$
(\mathcal{G} x)^{\prime}(t)=\left\{\begin{array}{r}
\psi_{q}\left[\int_{t}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] \\
t \in[0,(1+\eta) / 2] \\
-\psi_{q}\left[\int_{(1+\eta) / 2}^{t} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] \\
t \in[(1+\eta) / 2,1]
\end{array}\right.
$$

is continuous and nonincreasing on $[0,1]$ with $(\mathcal{G} x)^{\prime}((1+\eta) / 2)=0$, therefore, it follows that $\mathcal{G} x$ is concave. The nondecreasing nature of $\mathcal{G} x$ in x and $\left|x^{\prime}\right|$ follows from the assumptions $\left(A_{1}\right)$ and $\left(A_{2}\right)$. Now, we show that $\mathcal{G} x$ is pseudo-symmetric about $(1+\eta) / 2$ on $[0,1]$. For that, we note that $(1-(t-\eta)) \in[(1+\eta) / 2,1]$ for all $t \in[\eta,(1+\eta) / 2]$. Thus,

$$
\begin{aligned}
& (\mathcal{G} x)(1-(t-\eta)) \\
= & \int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
+ & \int_{1-(t-\eta)}^{1} \psi_{q}\left[\int_{(1+\eta) / 2}^{w} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
& -\int_{t}^{\eta} \psi_{q}\left[\int_{(1+\eta) / 2}^{1-(w-\eta)} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
& =\int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
& +\int_{\eta}^{t} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{1-(\nu-\eta)} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
& =\int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
& +\int_{\eta}^{t} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
& =\int_{0}^{t} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
& =(\mathcal{G} x)(t) .
\end{aligned}
$$

Now, $\forall t \in[(1+\eta) / 2,1]$, we have $(1-(t-\eta)) \in[\eta,(1+\eta) / 2]$. Thus,

$$
\begin{aligned}
& (\mathcal{G} x)(1-(t-\eta)) \\
= & \int_{0}^{1-(t-\eta)} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
= & \int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
+ & \int_{\eta}^{1-(t-\eta)} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
= & \int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
+ & \int_{t}^{1} \psi_{q}\left[\int_{1-(w-\eta)}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
= & \int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
+ & \int_{t}^{1} \psi_{q}\left[\int_{(1+\eta) / 2}^{w} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{1-(\nu-\eta)}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
= & \int_{0}^{\eta} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
+ & \int_{t}^{1} \psi_{q}\left[\int_{(1+\eta) / 2}^{w} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
= & (\mathcal{G} x)(t) .
\end{aligned}
$$

So $(\mathcal{G} x)$ is pseudo-symmetric about $(1+\eta) / 2$ on $[0,1]$. Hence we conclude that $\mathcal{G}: P \rightarrow P$. Also, it follows by the standard arguments $[1,18]$ that $\mathcal{G}: P \rightarrow P$ is completely continuous.

Next, we show that $\mathcal{G}: \bar{P}_{\theta} \rightarrow \bar{P}_{\theta}$. For $u \in \bar{P}_{\theta}$, it follows that $|u| \leq \theta$ and

$$
0 \leq u(t) \leq \max _{0 \leq t \leq 1}|u(t)| \leq\|u\| \leq \theta, \quad 0 \leq\left|u^{\prime}(t)\right| \leq \max _{0 \leq t \leq 1}\left|u^{\prime}(t)\right| \leq\|u\| \leq \theta
$$

By the assumptions $\left(A_{1}\right),\left(A_{2}\right)$ and $\left(A_{4}\right)$, we have

$$
\begin{align*}
& 0 \leq f\left(t, x(t), x^{\prime}(t)\right)+\int_{t}^{(1+\eta) / 2} K(t, \zeta, x(\zeta)) d \zeta \\
& \leq f(t, \theta, \theta)+\int_{t}^{(1+\eta) / 2} K(t, \zeta, \theta) d \zeta \\
& \leq \max _{0 \leq t \leq 1}\left\{f(t, \theta, \theta)+\int_{t}^{(1+\eta) / 2} K(t, \zeta, \theta) d \zeta\right\} \leq \psi_{p}(\theta / \Theta), t \in[0,1] . \tag{2.1}
\end{align*}
$$

Clearly

$$
\begin{aligned}
\|\mathcal{G} x\| & =\max _{0 \leq t \leq 1}\left[(\mathcal{G} x)^{2}(t)+\left((\mathcal{G} x)^{\prime}\right)^{2}(t)\right]^{1 / 2} \\
& \leq \sqrt{2} \max _{0 \leq t \leq 1}\left\{|\mathcal{G} x(t)|,\left|(\mathcal{G} x)^{\prime}(t)\right|\right\}=\sqrt{2} \max \left\{(\mathcal{G} x)((1+\eta) / 2), \max _{0 \leq t \leq 1}\left|(\mathcal{G} x)^{\prime}\right|(t)\right\} .
\end{aligned}
$$

By the definition of $\mathcal{G} x$ and (2.1), we obtain

$$
\begin{aligned}
& \mathcal{G} x((1+\eta) / 2) \\
= & \int_{0}^{(1+\eta) / 2} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right] d w \\
\leq & \int_{0}^{(1+\eta) / 2} \psi_{q}\left[\int_{w}^{(1+\eta) / 2} a(\nu) d \nu \psi_{p}(\theta / \Theta)\right] d w=\theta \Theta_{1} / \Theta \leq \theta / \sqrt{2}, \\
& \max _{0 \leq t \leq 1}\left|(\mathcal{G} x)^{\prime}(t)\right|=\max \left\{(\mathcal{G} x)^{\prime}(0),-(\mathcal{G} x)^{\prime}(1)\right\} \\
= & \max \left\{\psi_{q}\left[\int_{0}^{(1+\eta) / 2} a(\nu)\left(f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{\nu}^{(1+\eta) / 2} K(\nu, \zeta, x(\zeta)) d \zeta\right) d \nu\right]\right. \\
& \left.\psi_{q}\left[\int_{(1+\eta) / 2}^{1} a(\nu)\left\{f\left(\nu, x(\nu), x^{\prime}(\nu)\right)+\int_{(1+\eta) / 2}^{\nu} K(\nu, \zeta, x(\zeta)) d \zeta\right\} d \nu\right]\right\} \\
\leq & \max \left\{\psi_{q}\left[\int_{0}^{(1+\eta) / 2} a(\nu) d \nu \psi_{p}(\theta / \Theta)\right], \psi_{q}\left[\int_{(1+\eta) / 2}^{1} a(\nu) d \nu \psi_{p}(\theta / \Theta)\right]\right\} \\
= & \theta \Theta_{2} / \Theta \leq \theta / \sqrt{2} .
\end{aligned}
$$

Consequently, we have $\|\mathcal{G} x\| \leq \theta$. Hence we conclude that $\mathcal{G}: \bar{P}_{\theta} \rightarrow \bar{P}_{\theta}$.

3 Existence of extremal solutions

Theorem 3.1 Assume that $\left(A_{1}\right)-\left(A_{4}\right)$ hold. Then there exist extremal positive, concave and pseudo-symmetric solutions α^{*}, β^{*} of (1.1) and (1.2) with $0<\alpha^{*} \leq$ $\theta_{1} / \sqrt{2}, 0<\left|\left(\alpha^{*}\right)^{\prime}\right| \leq \theta_{1} / \sqrt{2}$ and $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \mathcal{G}^{n} \alpha_{0}=\alpha^{*}, \lim _{n \rightarrow \infty}\left(\alpha_{n}\right)^{\prime}=$ $\lim _{n \rightarrow \infty}\left(\mathcal{G}^{n} \alpha_{0}\right)^{\prime}=\left(\alpha^{*}\right)^{\prime}$, where

$$
\alpha_{0}(t)=\left\{\begin{array}{cl}
\theta_{1} t / \sqrt{2}, & \text { if } 0 \leq t \leq(1+\eta) / 2, \\
\theta_{1}|1-(t-\eta)| / \sqrt{2}, & \text { if }(1+\eta) / 2 \leq t \leq 1,
\end{array}\right.
$$

and $0<\beta^{*} \leq \theta_{1}, 0<\left|\left(\beta^{*}\right)^{\prime}\right| \leq \theta_{1}$ with $\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty} \mathcal{G}^{n} \beta_{0}=$ $\beta^{*}, \lim _{n \rightarrow \infty}\left(\beta_{n}\right)^{\prime}=\lim _{n \rightarrow \infty}\left(\mathcal{G}^{n} \beta_{0}\right)^{\prime}=\left(\beta^{*}\right)^{\prime}$, where $\beta_{0}(t)=0, t \in[0,1]$.

Proof. We define the iterative schemes

$$
\begin{gathered}
\alpha_{1}=\mathcal{G} \alpha_{0}, \alpha_{n+1}=\mathcal{G} \alpha_{n}=\mathcal{G}^{n+1} \alpha_{0}, \quad n=1,2, \ldots \\
\beta_{1}=\mathcal{G} \beta_{0}=\mathcal{G} 0, \beta_{n+1}=\mathcal{G} \beta_{n}=\mathcal{G}^{n+1} \beta_{0}, n=1,2, \ldots
\end{gathered}
$$

In view of the fact that $\mathcal{G}: \bar{P}_{\theta} \rightarrow \bar{P}_{\theta}$, it follows that $\alpha_{n} \in \mathcal{G} \bar{P}_{\theta} \subseteq \bar{P}_{\theta}$ for $n=1,2, \ldots$. As \mathcal{G} is completely continuous, therefore $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is sequentially compact. By the assumption $\left(A_{3}\right)$, it easily follows that $\alpha_{1}(t)=\mathcal{G} \alpha_{0}(t) \leq \alpha_{0}(t), t \in[0,1]$. Also

$$
\begin{aligned}
\left|\alpha_{1}^{\prime}(t)\right| & =\left|\left(\mathcal{G} \alpha_{0}\right)^{\prime}(t)\right| \leq \max \left\{\left(\mathcal{G}\left(\theta_{1} t / \sqrt{2}\right)\right)^{\prime}(0),-\left(\mathcal{G}\left(\theta_{1}(1-(t-\eta)) / \sqrt{2}\right)\right)^{\prime}(1)\right\} \\
& \leq \theta_{1} / \sqrt{2}=\left|\alpha_{0}^{\prime}(t)\right|, \quad t \in[0,1]
\end{aligned}
$$

Now, by the nondecreasing nature of $(\mathcal{G} x)$, we obtain

$$
\alpha_{2}(t)=\mathcal{G} \alpha_{1}(t) \leq \mathcal{G} \alpha_{0}(t)=\alpha_{1}(t), \quad\left|\alpha_{2}^{\prime}(t)\right|=\left|\left(\mathcal{G} \alpha_{1}\right)^{\prime}(t)\right| \leq\left|\left(\mathcal{G} \alpha_{0}\right)^{\prime}(t)\right|=\left|\alpha_{1}^{\prime}(t)\right|
$$

for $t \in[0,1]$. Thus, by induction, we have

$$
\alpha_{n+1}(t) \leq \alpha_{n}(t), \quad\left|\alpha_{n+1}^{\prime}(t)\right| \leq\left|\alpha_{n}^{\prime}(t)\right|, \quad n=1,2, \ldots ., \quad t \in[0,1] .
$$

Hence there exists $\alpha^{*} \in \bar{P}_{\theta}$ such that $\alpha_{n} \rightarrow \alpha^{*}$. Applying the continuity of \mathcal{G} and $\alpha_{n+1}=\mathcal{G} \alpha_{n}$, we get $\mathcal{G} \alpha^{*}=\alpha^{*}[18]$. In view of the fact that $f(t, 0,0)$ and $K(t, \zeta, 0)$ are not identically equal to zero for $0 \leq t, \zeta \leq 1$, we find that the zero function is not the solution of (1.1) and (1.2). Thus, $\left\|\alpha^{*}\right\|>0$ and hence $\alpha^{*}>0, t \in(0,1)$. Now, let $\beta_{1}=\mathcal{G} \beta_{0}=\mathcal{G} 0, \beta_{2}=\mathcal{G}^{2} \beta_{0}=\mathcal{G}^{2} 0=\mathcal{G} \beta_{1}$. Since $\mathcal{G}: \bar{P}_{\theta} \rightarrow \bar{P}_{\theta}$, it follows that $\beta_{n} \in \mathcal{G} \bar{P}_{\theta} \subseteq \bar{P}_{\theta}$ for $\mathrm{n}=1,2, \ldots$. As \mathcal{G} is completely continuous, therefore $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is sequentially compact. Since $\beta_{1}=\mathcal{G} \beta_{0}=\mathcal{G} 0 \in \mathcal{G} \bar{P}_{\theta}$, we have $\beta_{1}(t)=\mathcal{G} \beta_{0}(t)=$ $(\mathcal{G} 0)(t) \geq 0$ and $\left|\beta_{1}^{\prime}(t)\right|=\left|\left(\mathcal{G} \beta_{0}\right)^{\prime}(t)=\left|(\mathcal{G} 0)^{\prime}(t)\right| \geq 0, \quad t \in[0,1]\right.$. Thus, $\beta_{2}(t)=$ $\mathcal{G} \beta_{1}(t) \geq(\mathcal{G} 0)(t)=\beta_{1}(t)$ and $\left|\beta_{2}^{\prime}(t)\right|=\left|\left(\mathcal{G} \beta_{1}\right)^{\prime}(t)\right|=\left|(\mathcal{G} 0)^{\prime}(t)\right|=\left|\beta_{1}^{\prime}(t)\right|, \quad t \in[0,1]$. As before, by induction, it follows that

$$
\beta_{n+1}(t) \geq \beta_{n}(t), \quad\left|\beta_{n+1}^{\prime}(t)\right| \geq\left|\beta_{n}^{\prime}(t)\right|, \quad n=1,2, \ldots ., \quad t \in[0,1] .
$$

Hence there exists $\beta^{*} \in \bar{P}_{\theta}$ such that $\beta_{n} \rightarrow \beta^{*}$ and $\mathcal{G} \beta^{*}=\beta^{*}$ with $\beta^{*}(t)>0, t \in(0,1)$.
Now, using the well known fact that a fixed point of the operator \mathcal{G} in P must be a solution of (1.1) and (1.2) in P, it follows from the monotone iterative technique [11] that α^{*} and β^{*} are the extremal positive, concave and pseudo-symmetric solutions of (1.1) and (1.2). This completes the proof.

Example. Consider the boundary value problem

$$
\begin{gather*}
x^{\prime \prime}(t)+f\left(t, x(t), x^{\prime}(t)\right)+\int_{t}^{\frac{3}{4}} K(t, \zeta, x(\zeta)) d \zeta=0, t \in(0,1), \tag{3.1}\\
x(0)=0, \quad x\left(\frac{1}{2}\right)=x(1), \tag{3.2}
\end{gather*}
$$

where $a(t)=1, f\left(t, x, x^{\prime}\right)=-\frac{16}{3} t^{2}+8 t+\frac{1}{2 \sqrt{2}} x+\frac{1}{36}\left(x^{\prime}\right)^{2}, K(t, \zeta, x)=-\frac{4}{3} t^{2}+2 t+x$. Clearly the functions $f\left(t, x, x^{\prime}\right)$ and $K(t, \zeta, x)$ satisfy the assumptions $\left(A_{1}\right)$ and $\left(A_{2}\right)$. In relation to $\left(A_{3}\right)$, we choose $\theta=6 \sqrt{2}$ so that $\Theta=3 /(2 \sqrt{2})$ and $\max _{0 \leq t \leq 1}\left\{f(t, \theta, \theta)+\int_{t}^{(1+\eta) / 2} K(t, \zeta, \theta) d \zeta\right\}=8=\psi_{2}(\theta / \Theta)$. Hence the conclusion of Theorem 3.1 applies to the problem (3.1)-(3.2).

4 Conclusions

The extremal positive, concave and pseudo-symmetric solutions for a nonlocal three-point p-Laplacian integro-differential boundary value problem are obtained by applying an abstract monotone iterative technique. The consideration of p-Laplacian boundary value problems is quite interesting and important as it covers a wide range of problems for various values of p occurring in applied sciences (as indicated in the introduction). The nonlocal three-point boundary conditions further enhance the scope of p-Laplacian boundary value problems as such boundary conditions appear in certain problems of thermodynamics and wave propagation where the controller at the end $t=1$ dissipates or adds energy according to a censor located at a position $t=\eta(0<\eta<1)$ where as the other end $t=0$ is maintained at a constant level of energy. The results presented in this paper are new and extend some earlier results. For $p=2$, our results correspond to a three-point second order quasilinear integro-differential boundary value problem. The results of $[1]$ are improved as the nonlinear function f is allowed to depend on x^{\prime} together with x in this paper whereas it only depends on x in [1].

Acknowledgement. The authors are grateful to the anonymous referee for his/her valuable comments.

References

[1] B. Ahmad, J. J. Nieto, The monotone iterative technique for three-point secondorder integrodifferential boundary value poblems with p-Laplacian, Bound. Value Probl. 2007, Art. ID 57481, 9 pp.
[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in order Banach spaces, SIAM Rev. 18(1976), 620-709.
[3] R. I. Avery, J. Henderson, Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian, J. Math. Anal. Appl. 277(2003), 395-404.
[4] A. Cabada, L. R. Pouso, Existence result for the problem $\left(\phi\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right)$ with periodic and Neumann boundary conditions, Proceedings of the Second World Congress of Nonlinear Analysts, Part 3(Athens, 1996), Nonlinear Anal. 30(1997), 1733-1742.
[5] M. Cherpion, C. De Coster, P. Habets, Monotone iterative methods for boundary value problems, Differential Integral Equations 12(1999), 309-338.
[6] P. W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett. 18(2005), 521-527.
[7] G. P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168(1992), 540-551.
[8] X. He, W. Ge, Twin positive solutions for the one dimensional p-Laplacian boundary value problems, Nonlinear Anal. 56(2004), 975-984.
[9] V. A. Il'in, E. I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Diff. Eqs. 23(1987), 803-810.
[10] V. A. Il'in, E. I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Diff. Eqs. 23(1987), 979-987.
[11] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Pitman, Boston, 1985.
[12] J. Li, J. Shen, Existence of three positive solutions for boundary value problems with one dimensional p-Laplacian, J. Math. Anal. Appl. 311(2005), 457-465.
[13] W.C. Lian, F.H. Wong, C. C. Yeh, On existence of positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc. 124(1996), 1111-1126.
[14] D. Ma, Z. Du, W. Ge, Existence and iteration of monotone positive solutions for multipoint boundary value problems with p-Laplacian operator, Comput. Math. Appl. 50(2005), 729-739.
[15] D. Ma, W. Ge, Existence and iteration of positive pseudo-symmetric solutions for a three-point second order p-Laplacian BVP, Appl. Math. Lett. 20(2007), 1244-1249.
[16] R. Ma, Positive solutions for a nonlinear three-point boundary value problem, Electronic J. Differential Equations 34(1999), 8 pp.
[17] R. Ma, N. Castaneda, Existence of solutions for nonlinear m-point boundary value problem, J. Math. Anal. Appl. 256(2001), 556-567.
[18] B. Sun, W. Ge, Successive iteration and positive pseudo-symmetric solutions for a three-point second order p-Laplacian boundary value problem Appl. Math. Comput. 188(2007), 1772-1779.
[19] Z. Wang, J. Zhang, Positive solutions for one dimensional p-Laplacian boundary value problems with dependence on the first order derivative, J. Math. Anal. Appl. 314(2006), 618-630.
(Received July 20, 2009)

[^0]: ${ }^{1}$ Corresponding author
 This research was supported by Deanship of Scientific Research, King Abdulaziz University (Project No. 427/176).

