EXISTENCE OF GLOBAL SOLUTIONS FOR A SYSTEM OF REACTION-DIFFUSION EQUATIONS WITH EXPONENTIAL NONLINEARITY

EL HACHEMI DADDIOUAISSA

Abstract

We consider the question of global existence and uniform boundedness of nonnegative solutions of a system of reaction-diffusion equations with exponential nonlinearity using Lyapunov function techniques.

1. Introduction

In this paper we consider the following reaction-diffusion system

$$
\begin{array}{cc}
\frac{\partial u}{\partial t}-a \Delta u=\Pi-f(u, v)-\alpha u & (x, t) \in \Omega \times R_{+} \\
\frac{\partial v}{\partial t}-b \Delta v=f(u, v)-\sigma \kappa(v) & (x, t) \in \Omega \times R_{+} \tag{1.2}
\end{array}
$$

with the boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta}=0 \quad \text { on } \partial \Omega \times R_{+} \tag{1.3}
\end{equation*}
$$

and the initial data

$$
\begin{equation*}
u(0, x)=u_{0}(x) \geq 0 ; \quad v(0, x)=v_{0}(x) \geq 0 \quad \text { in } \Omega \tag{1.4}
\end{equation*}
$$

where Ω is a smooth open bounded domain in R^{n}, with boundary $\partial \Omega$ of class C^{1} and η is the outer normal to $\partial \Omega$. The constants of diffusion a, b are positive and such that $a \neq b$ and Π, α, σ are positive constants, κ and f are nonnegative functions of class $C^{1}\left(R_{+}\right)$and $C^{1}\left(R_{+} \times R_{+}\right)$respectively.

The reaction-diffusion system (1.1) - (1.4) arises in the study of physical, chemical, and various biological processes including population dynamics (especially AIDS, see C. Castillo-Chavez et al. [3], for further details see [5, 7, 12, 16, 17]).

The case $\Pi=0, \alpha=0, \sigma=0$ and $f(u, v)=h(u) T(v)$, with $h(u)=u$ (for simplicity), has been studied by many authors. Alikakos [1] established the existence of global solutions when $T(v) \leq C\left(1+|v|^{(n+2) / n}\right)$. Then Massuda [13] obtained a positive result for the case $T(v) \leq C\left(1+|v|^{\alpha}\right)$ with arbitrary $\alpha>0$. The question when $T(v)=e^{\alpha v^{\beta}}, 0<\beta<1, \alpha>0$ was positively answered by Haraux and Youkana [9], using Lyapunov function techniques, see also Barabanova [2] for $\beta=1$, with some conditions and later on by Kanel and Kirane [11], using useful properties inherent to the Green function. The idea behind the Lyapunov functional stems from Zelenyak's article [18], which has also been used by Crandall et al. [4] for other purposes.
The goal of this work is to generalize the existing results of L. Melkemi et al. [14],

[^0]where they established the existence of global solutions, when $f(\xi, \tau) \leq \psi(\xi) \varphi(\tau)$ such that
$$
\lim _{\tau \rightarrow+\infty} \frac{\ln (1+\varphi(\tau))}{\tau}=0
$$

Hence, the main purpose of this paper is to give a positive answer, concerning the global existence and the uniform boundedness in time, of solutions of system (1.1) - (1.4), with exponential nonlinearity, such that f satisfies
(A1) $\forall \tau \geq 0, f(0, \tau)=0$,
(A2) $\forall \xi \geq 0, \forall \tau \geq 0,0 \leq f(\xi, \tau) \leq \varphi(\xi)(\tau+1)^{\lambda} e^{r \tau}$,
(A3) $\kappa(\tau)=\tau^{\mu}, \mu \geq 1$,
where r, λ are positive constants, such that $\lambda \geq 1, \varphi$ is a nonnegative function of class $C\left(R^{+}\right)$.
Our aim in this work, is to establish the global existence of solutions of (1.1) - (1.4), with exponential nonlinearity expressed by the condition (A2), for arbitrary v_{0} and u_{0} satisfying

$$
\begin{equation*}
\max \left(\left\|u_{0}\right\|_{\infty}, \frac{\Pi}{\alpha}\right)<\frac{\theta^{2}}{2-\theta} \quad \frac{8 a b}{r n(a-b)^{2}} \tag{1.5}
\end{equation*}
$$

where $\theta<1$ is a positive real number very close to 1 .
For this end we use comparison principle and Lyapunov function techniques.

2. Existence of local solutions

The usual norms in spaces $L^{p}(\Omega), L^{\infty}(\Omega)$ and $C(\bar{\Omega})$ are respectively denoted by

$$
\|u\|_{p}^{p}=\frac{1}{|\Omega|} \int_{\Omega}|u(x)|^{p} d x, \quad\|u\|_{\infty}=\max _{x \in \Omega}|u(x)| .
$$

Concerning a local existence, we can conclude directly from the theory of abstract semilinear equations (see A. Friedman [6], D. Henry [10], A. Pazy [15]), that for nonnegative functions u_{0} and v_{0} in $L^{\infty}(\Omega)$, there exists a unique local nonnegative solution (u, v) of system (1.1) - (1.4) in $C(\bar{\Omega})$ on $] 0, T^{*}\left[\right.$, where T^{*} is the eventual blowing-up time.

3. Existence of global solutions

Using the comparison principle, one obtains

$$
\begin{equation*}
0 \leq u(t, x) \leq \max \left(\left\|u_{0}\right\|_{\infty}, \frac{\Pi}{\alpha}\right) \tag{3.1}
\end{equation*}
$$

from which it remains to establish the uniform boundedness of v.
According to the results of [8], it is enough to show that

$$
\begin{equation*}
\|f(u, v)-\sigma \kappa(v)\|_{p} \leq C \tag{3.2}
\end{equation*}
$$

(where C is a nonnegative constant independent of t) for some $p>\frac{n}{2}$.
The main result of this paper is
Theorem 3.1. Under the assumptions (A1) - (A3) and (1.5), the solutions of (1.1) - (1.4) are global and uniformly bounded on $[0,+\infty[$.

EJQTDE, 2009 No. 73, p. 2

Let be ω, β, γ and M positive constants such that $\omega \geq 1$,

$$
\begin{equation*}
\beta=\theta \frac{4 a b}{(a-b)^{2}}, \quad \gamma=\max \left(\lambda, \mu, \frac{(\beta+1)(2-\theta) M r}{\beta \theta(1-\theta)}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\max \left(\left\|u_{0}\right\|_{\infty}, \frac{\Pi}{\alpha}\right)<\frac{\theta^{2}}{2-\theta} \quad \frac{8 a b}{r n(a-b)^{2}} . \tag{3.4}
\end{equation*}
$$

We can choose

$$
\begin{equation*}
p=\frac{\theta^{2}}{2-\theta} \frac{4 a b}{(a-b)^{2} M r} \tag{3.5}
\end{equation*}
$$

as consequence of (3.4), we observe that $p>\frac{n}{2}$.
The key result needed to prove the theorem 3.1 is the following
Proposition 3.2. Assume that $(A 1)-(A 3)$ hold and let (u, v) be a solution of (1.1) - (1.4) on $] 0, T^{*}\left[\right.$, with arbitrary v_{0} and u_{0} satisfying (1.5). Let

$$
\begin{equation*}
R_{\rho}(t)=\rho \int_{\Omega} u d x+\int_{\Omega}\left(\frac{M}{(2-\theta) M-u}\right)^{\beta}(v+\omega)^{\gamma p} e^{p r v} d x . \tag{3.6}
\end{equation*}
$$

Then, there exist $p>n / 2$ and positive constants s and Γ such that

$$
\begin{equation*}
\frac{d R_{\rho}}{d t} \leq-s R_{\rho}+\Gamma \tag{3.7}
\end{equation*}
$$

It's very important to state a number of lemmas, before proving this proposition.
Lemma 3.3. If (u, v) is a solution of (1.1) - (1.4) then

$$
\begin{equation*}
\int_{\Omega} f(u, v) d x \leq \Pi|\Omega|-\frac{d}{d t} \int_{\Omega} u(t, x) d x . \tag{3.8}
\end{equation*}
$$

Proof. We integrate both sides of (1.1),

$$
f(u, v)=\Pi-\alpha u-\frac{d}{d t} u(t, x)-a \Delta u
$$

satisfied by u, which is positive and then we find (3.8).
Lemma 3.4. Let be ψ a nonnegative function of class $C\left(R^{+}\right)$, such that

$$
\lim _{\tau \rightarrow+\infty} \frac{\psi(\tau)}{\tau+\omega}=0
$$

and let A be positive constant. Then there exists $N_{1}>0$, such that

$$
\begin{equation*}
\left[\frac{\psi(\tau)}{\tau+\omega}-A\right](\tau+\omega)^{\gamma p} e^{p r \tau} f(\xi, \tau) \leq N_{1} f(\xi, \tau) \tag{3.9}
\end{equation*}
$$

for all $0 \leq \xi \leq M$ and $\tau \geq 0$.
Proof. Since

$$
\lim _{\tau \rightarrow+\infty} \frac{\psi(\tau)}{\tau+\omega}=0
$$

there exists $\tau_{0}>0$, such that for all $0 \leq \xi \leq K, \tau>\tau_{0}$, we have

$$
\left[\frac{\psi(\tau)}{\tau+\omega}-A\right](\tau+\omega)^{\gamma p} e^{p r \tau} f(\xi, \tau) \leq 0
$$

EJQTDE, 2009 No. 73, p. 3

Now if τ is in the compact interval $\left[0, \tau_{0}\right]$, then the continuous function

$$
\chi(\xi, \tau)=\left[\psi(\tau)(\tau+\omega)^{\gamma p-1}-A(\tau+\omega)^{\gamma p}\right] e^{p r \tau}
$$

is bounded.
Lemma 3.5. For all $\tau \geq 0$ we have

$$
\begin{equation*}
\left[\frac{\Pi \beta}{(1-\theta) M}-\sigma p \kappa(\tau)\left(\frac{\gamma}{\tau+\omega}+r\right)\right](\tau+\omega)^{\gamma p} e^{p r \tau} \leq-s(\tau+\omega)^{\gamma p} e^{p r \tau}+B_{1} \tag{3.10}
\end{equation*}
$$

where B_{1} and s are positive constants.
Proof. Let us put

$$
\begin{gathered}
\xi=\frac{\Pi \beta}{(1-\theta) M}+s \\
\frac{\Pi \beta}{(1-\theta) M}(\tau+\omega)^{p \gamma} e^{p r \tau}-\sigma p \kappa(\tau)\left[\gamma(\tau+\omega)^{\gamma p-1}+r(\tau+\omega)^{\gamma p}\right] e^{p r \tau}= \\
\left(\frac{\Pi \beta}{(1-\theta) M}-\xi\right)(\tau+\omega)^{p \gamma} e^{p r \tau}+\left(\frac{\xi}{\kappa(\tau)}-\sigma r p\right) \kappa(\tau)(\tau+\omega)^{\gamma p} e^{p r \tau}
\end{gathered}
$$

then, using Lemma 3.4 we can conclude the result.
Proof. (of Proposition 3.2)
Let

$$
g(u)=\left(\frac{M}{(2-\theta) M-u}\right)^{\beta}
$$

so that

$$
R_{\rho}(t)=\rho \int_{\Omega} u d x+G(t)
$$

where

$$
G(t)=\int_{\Omega} g(u)(v+\omega)^{\gamma p} e^{p r v} d x .
$$

Differentiating G with respect to t and a simple use of Green's formula gives

$$
G^{\prime}(t)=I+J,
$$

where

$$
\begin{aligned}
I= & -a \int_{\Omega} g^{\prime \prime}(u)(v+\omega)^{\gamma p} e^{p r v}|\nabla u|^{2} d x \\
& -(a+b) \int_{\Omega} g^{\prime}(u)\left[\gamma p(v+\omega)^{\gamma p-1}+p r(v+\omega)^{\gamma p}\right] e^{p r v} \nabla u \nabla v d x \\
& -b \int_{\Omega} g(u)\left[\gamma p(\gamma p-1)(v+\omega)^{\gamma p-2}+2 \gamma p^{2} r(v+\omega)^{\gamma p-1}+p^{2} r^{2}(v+\omega)^{\gamma p}\right] e^{p r v}|\nabla v|^{2} d x, \\
J= & \int_{\Omega} \Pi g^{\prime}(u)(v+\omega)^{\gamma p} e^{p r v} d x-\int_{\Omega} \alpha g^{\prime}(u) u(v+\omega)^{\gamma p} e^{p r v} d x \\
& +\int_{\Omega}\left(g(u)\left[\gamma p(v+\omega)^{\gamma p-1}+r p(v+\omega)^{\gamma p}\right]-g^{\prime}(u)(v+\omega)^{\gamma p}\right) f(u, v) e^{p r v} d x \\
& -\int_{\Omega} \sigma\left[\gamma p(v+\omega)^{\gamma p-1}+r p(v+\omega)^{\gamma p}\right] \kappa(v) g(u) e^{p r v} d x .
\end{aligned}
$$

We can see that I involves a quadratic form with respect to ∇u and ∇v, which is nonnegative if

$$
\begin{aligned}
\delta= & \left(p(a+b) g^{\prime}(u)\left[\gamma(v+\omega)^{\gamma p-1}+r(v+\omega)^{\gamma p}\right]\right)^{2} \\
& -4 a b \gamma p(\gamma p-1) g^{\prime \prime}(u) g(u)(v+\omega)^{2 \gamma p-2} \\
& -4 a b g^{\prime \prime}(u) g(u)(v+\omega)^{\gamma p}\left[2 \gamma p^{2} r(v+\omega)^{\gamma p-1}+p^{2} r^{2}(v+\omega)^{\gamma p}\right] \leq 0 .
\end{aligned}
$$

Indeed

$$
\begin{aligned}
\delta= & {\left[(p \gamma)^{2}(a+b)^{2} \beta^{2}-4 a b \beta(\beta+1) p \gamma(p \gamma-1)\right] \frac{g(u)^{2}(v+\omega)^{2 p \gamma-2}}{((2-\theta) M-u)^{2}} } \\
& +\left[(a+b)^{2} \beta^{2}-4 a b \beta(\beta+1)\right] \frac{r p^{2} g(u)^{2}(v+\omega)^{2 p \gamma-1}}{((2-\theta) M-u)^{2}}[2 \gamma+r(v+\omega)],
\end{aligned}
$$

the choice of β and γ gives

$$
\begin{aligned}
\delta \leq & {[\beta+1-p \gamma(1-\theta)] \frac{4 a b \beta p \gamma g(u)^{2}(v+\omega)^{2 p \gamma-2}}{((2-\theta) M-u)^{2}} } \\
& +4 a b(\theta-1) \frac{r p \beta g(u)^{2}(v+\omega)^{2 p \gamma-1}}{((2-\theta) M-u)^{2}}[2+(r p)(v+\omega)] \leq 0
\end{aligned}
$$

it follows that

$$
I \leq 0
$$

Concerning the second term J, we can observe that

$$
\begin{aligned}
J \leq & \int_{\Omega}\left(\frac{\Pi \beta}{(1-\theta) M}-\sigma p \kappa(v)\left[\frac{\gamma}{v+\omega}+r\right]\right) g(u)(v+\omega)^{p \gamma} e^{p r v} d x \\
& +\int_{\Omega}\left(p\left[\frac{\gamma}{v+\omega}+r\right]-\frac{\beta}{(2-\theta) M-u}\right) f(u, v) g(u)(v+\omega)^{\gamma p} e^{p r v} d x
\end{aligned}
$$

Using Lemma 3.5, we get

$$
\begin{aligned}
J \leq & \int_{\Omega}\left[-s(v+\omega)^{p \gamma} e^{p r v}+B_{1}\right] g(u) d x \\
& +\int_{\Omega}\left(p\left[\frac{\gamma}{v+\omega}+r\right]-\frac{\theta}{2-\theta} \frac{4 a b}{(a-b)^{2} M}\right) f(u, v) g(u)(v+\omega)^{\gamma p} e^{p r v} d x
\end{aligned}
$$

or

$$
\begin{aligned}
J \leq & \int_{\Omega}\left[-s(v+\omega)^{p \gamma} e^{p r v}+B_{1}\right] g(u) d x \\
& +\int_{\Omega}\left(\frac{p \gamma}{v+\omega}-\frac{\theta(1-\theta)}{2-\theta} \frac{4 a b}{(a-b)^{2} M}\right) f(u, v) g(u)(v+\omega)^{\gamma p} e^{p r v} d x \\
& +\int_{\Omega}\left(p r-\frac{\theta^{2}}{2-\theta} \frac{4 a b}{(a-b)^{2} M}\right) f(u, v) g(u)(v+\omega)^{\gamma p} e^{p r v} d x .
\end{aligned}
$$

From Lemma 3.4 and formula (3.5), it follows

$$
\begin{aligned}
J & \leq \int_{\Omega}\left[-s(v+\omega)^{p \gamma} e^{p r v}+B_{1}\right] g(u) d x \\
& +N_{1} \int_{\Omega} f(u, v) g(u) d x
\end{aligned}
$$

In addition

$$
g(u) \leq\left(\frac{1}{1-\theta}\right)^{\beta}
$$

then

$$
J \leq-s G(t)+|\Omega| B_{1}\left(\frac{1}{1-\theta}\right)^{\beta}+N_{1}\left(\frac{1}{1-\theta}\right)^{\beta} \int_{\Omega} f(u, v) d x
$$

Then if we put

$$
B=B_{1}|\Omega|\left(\frac{1}{1-\theta}\right)^{\beta}
$$

and

$$
\rho=N_{1}\left(\frac{1}{1-\theta}\right)^{\beta}
$$

Then, if we use Lemma 3.3,

$$
\begin{aligned}
J & \leq-s R_{\rho}(t)+s \rho \int_{\Omega} u(t, x) d x+B+\rho \Pi|\Omega|-\rho \frac{d}{d t} \int_{\Omega} u(t, x) d x \\
& \leq-s R_{\rho}(t)+[s M+\Pi] \rho|\Omega|+B-\rho \frac{d}{d t} \int_{\Omega} u(t, x) d x
\end{aligned}
$$

it follows that

$$
\frac{d R_{\rho}}{d t} \leq-s R_{\rho}+\Gamma
$$

where $\Gamma=[s M+\Pi] \rho|\Omega|+B$.
Proof. (of Theorem 3.1)
Multiplying (3.7) by $e^{s t}$ and integrating the inequality, it implies the existence of a positive constant $C>0$ independent of t such that

$$
R_{\rho}(t) \leq C
$$

Since

$$
\begin{aligned}
& g(u) \geq\left(\frac{1}{2-\theta}\right)^{\beta} \\
& \int_{\Omega}(v+\omega)^{\gamma p} e^{p r v} d x \leq(2-\theta)^{\beta} R_{\rho}(t) \\
& \leq C(2-\theta)^{\beta}
\end{aligned}
$$

Since $\omega \geq 1$ and (3.3) we have also,

$$
\begin{gathered}
\int_{\Omega}(v+1)^{\lambda p} e^{p r v} d x \leq \int_{\Omega}(v+\omega)^{\gamma p} e^{p r v} d x \leq C(2-\theta)^{\beta} \\
\int_{\Omega} v^{\mu p} d x \leq \int_{\Omega}(v+\omega)^{\gamma p} d x \leq C(2-\theta)^{\beta}
\end{gathered}
$$

We put

$$
A=\max _{0 \leq \xi \leq M} \varphi(\xi)
$$

according to $(A 1)-(A 3)$, we have

$$
\int_{\Omega} f(u, v)^{p} d x \leq \int_{\Omega} A^{p}(v+1)^{\lambda p} e^{p r v} d x \leq A^{p} C(2-\theta)^{\beta}=A^{p} H^{p}
$$

we conclude

$$
\|f(u, v)-\sigma \kappa(v)\|_{p} \leq\|f(u, v)\|_{p}+\|\sigma \kappa(v)\|_{p} \leq H(A+\sigma)
$$

By the preliminary remarks (introduction of section 3), we conclude that the solution of (1.1) - (1.4) is global and uniformly bounded on $[0,+\infty[\times \Omega$.

Acknowledgments. I want to thank the anonymous referee for his/her fruitful comments that improved the final version of this article.

References

[1] N. Alikakos, L^{p} - Bounds of solutions of reaction-diffusion equations, comm. Partial Differential Equations. 4 (1979), 827-868.
[2] A. Barabanova, On the global existence of solutions of reaction-diffusion equation with exponential nonlinearity, Proc. Amer. Math. Soc. 122 (1994), 827-831.
[3] C. Castillo-Chavez, K. Cooke, W. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquires immunodeficiency syndrome, AIDS, J. Math. Biol. 27(1989) 373-398.
[4] M. Crandall, A. Pazy, and L. Tartar, Global existence and boundedness in reaction-diffusion systems. SIAM J. Math. Anal. 18 (1987), 744-761.
[5] E. L. Cussler, Diffusion, Cambridge University Press, second edition, 1997.
[6] A. Friedman, Partial differential equation of parabolic type, Prentice Hall, 1964.
[7] Y. Hamaya, On the asymptotic behavior of a diffusive epidemic model (AIDS), Nonlinear Analysis, 36 (1999), 685-696.
[8] A. Haraux and M. Kirane, Estimation C^{1} pour des problemes paraboliques semi-lineaires. Ann. Fac Sci. Toulouse Math. 5 (1983), 265-280.
[9] A. Haraux and A. Youkana, On a result of K. Masuda concerning reaction-diffusion equations. Tohoku Math. J. 40 (1988), 159-163.
[10] D. Henry, Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics 840, Springer-Verlag, New york, 1981.
[11] J. I. Kanel and M. Kirane, Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth. Journal of Differential Equations, 165, 24-41 (2000).
[12] M. Kirane, Global bounds and asymptotics for a system of reaction-diffusion equations. J. Math Anal. Appl. 138 (1989), 1172-1189.
[13] K. Masuda, On the global existence and asymptotic behaviour of reaction-diffusion Equations. Hokkaido Math. J. 12 (1983), 360-370.
[14] L. Melkemi, A. Z. Mokrane, and A. Youkana, Boundedness and large-time behavior results for a diffusive epedimic model. J. Applied Math, volume 2007, 1-15.
[15] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer Verlag, New York, 1983.
[16] G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math anal. Appl. 84 (1981), 150-161.
[17] E. Zeidler, Nonlinear functional analysis and its applications, Tome II/b, Springer Verlag, 1990.
[18] T. I. Zelenyak, Stabilization of solutions to boundary value problems for second order parabolic equations in one space variable, Differentsial'nye Uravneniya 4 (1968), 34-45.
(Received August 31, 2009)
El Hachemi Daddiouaissa
Department of Mathematics University Kasdi Merbah, UKM Ouargla 30000, Algeria.
E-mail address: dmhbsdj@gmail.com

[^0]: 2000 Mathematics Subject Classification. 35K57, 35K45.
 Key words and phrases. Reaction-diffusion systems; Lyapunov functional; Global solution.
 EJQTDE, 2009 No. 73, p. 1

