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Abstract. This paper describes a representation of solutions of the system of nonautonomous

functional equations x(t) = A(t)x(t − 1) + B(t)x(p(t)), in form of series, using the Cauchy

matrix of the linear system y(t) = A(t)y(t − 1). A representation of analitical solutions of the

equation x(t) = ax(t − 1) + bx(pt) with constant coefficients is also investigated.
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1. Introduction

Consider the system of difference equations with continuous time

x(t) = A(t)x(t − 1) + B(t)x(p(t)), (1)

where x(t) is an n-dimensional column vector, A(t) = (aij(t)) and B(t) = (bij(t)) are n×n

real matrix functions and p(t) is a nonnegative real function, such that limt→∞ p(t) = ∞
and for every T > t0 there exists a δ > 0 such that p(t) ≤ t − δ for every t ∈ [t0, T ].

The purpose of this paper is to obtain a series representation for the solutions of system
(1), which can be applied to study the asymptotic behaviour of solutions. The equation
with constant coefficients is also investigated because it is important in its own right.

Similar problems were studied for the pantograph differential equation of the form

ẋ(t) = A(t)x(t) + B(t)x(p(t)).

For the differential equation with constant coefficients the well-known Dirichlet series so-
lution is given. The reader interested in this topic can consult Carr and Dyson [2], Fox,
Mayers, Ockendon and Taylor [3], Kato and McLeod [4] and Terjéki [7].

† This paper is in final form and no version of it will be submitted for publication elsewhere.
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Let t0 be a positive real number and set

t−1 = min {inf{p(s) : s ≥ t0}, t0 − 1} .

By a solution of (1) we mean an n-dimensional column vector function x where the com-
ponents xi(t), i = 1, ..., n, are defined for t ≥ t−1 and satisfy the system (1) for t ≥ t0.
For a given vector valued function φ(t), where the real components φi, i = 1, ..., n are given
on t−1 ≤ t < t0, the system (1) has a unique solution xφ satisfying the initial condition

xφ(t) = φ(t) for t−1 ≤ t < t0. (2)

Fix a point t such that t ≥ t0, and define natural number k0(t) such that

k0(t) := [t − t0].

Then,
t − k0(t) − 1 < t0 and t − k0(t) ≥ t0

and set
T0(t) := {t − k0(t) − 1, t − k0(t), ..., t− 1, t}.

For a given real number t and for a given positive integer n use the notation

t[n] = t(t − 1)(t − 2)...(t− n + 1).

The Cauchy matrix of the initial value problem

y(t) = A(t)y(t− 1), t ≥ t0, (3)

y(t) = φ(t), t0 − 1 ≤ t < t0 (4)

is W (τ ; t), where
W (τ ; t) = A(t)A(t − 1)...A(τ + 1)

for t ≥ t0, τ ∈ T0(t), with W (t; t) = E and the n-dimensional unite matrix E.

2. Main Results

First of all we prove a simple but fundamental result.

Theorem 1. Let y0(t) denote the solution of the initial value problem (3) and (4) with
φ(t) 6≡ 0 for t−1 ≤ t < t0, and the sequence {yn(t), n = 1, 2, ...} is defined by

yn(t) = A(t)yn(t − 1) + B(t)yn−1(p(t)), t ≥ t0,

yn(t) ≡ 0, t−1 ≤ t < t0, n = 1, 2, ...

Then

x(t) =

∞
∑

n=0

yn(t) (5)
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is a solution of the initial value problem (1) and (2). Moreover, this series is finite on every
finite subinterval of [t0, ∞).

Proof. First we show that the series (5) is absolutely convergent on [t0, ∞). Define

M(F, T ) := sup
t0≤t≤T

||F (t)||

for any matrix or vector function F for T > t0 and

M(W, T ) := sup
t0≤τ≤t≤T

||W (τ ; t)||

for the Cauchy matrix W (τ ; t). Since for t ≥ t0

yn(t) =
t
∑

τ=t−k0(t)

W (τ ; t)B(τ)yn−1(p(τ)), n = 1, 2, ...

hence, for T > t0 and t0 ≤ t ≤ T , the following inequality holds:

||yn(t)|| ≤

t
∑

τ=t−k0(t)

M(W, t)M(B, t)||yn−1(p(τ))||.

By using mathematical induction we will show that

yn(t) = 0 for t0 ≤ t < t0 + (n − 1)δ. (6)

For n = 2 we have

||y2(t)|| ≤ M(W, T )M(B, T )

t
∑

τ=t−k0(t)

||y1(p(τ))||.

For t0 ≤ t < t0 + δ we have p(t) < t0 and y1(p(t)) = 0. Therefore,

y2(t) = 0 for t0 ≤ t < t0 + δ.

Suppose that statement (6) is valid for n = k and prove it for n = k + 1. Then

||yk+1(t)|| ≤ M(W, T )M(B, T )
t
∑

τ=t−k0(t)

||yk(p(τ))||.

For t0 ≤ t < t0 + kδ we have p(t) ≤ t− δ < t0 +(k− 1)δ and by the inductional hypothesis
yk(p(t)) = 0, and so yk+1(t) = 0.
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Then, exists a natural number N such that

ym(t) = 0 for all m ≥ N and t0 ≤ t ≤ T.

Therefore,

x(t) =

N−1
∑

n=0

yn(t) for t0 ≤ t ≤ T

and the convergence is clear. Moreover,

x(t) =

∞
∑

n=0

yn(t) = y0(t) +

∞
∑

n=1

yn(t) =

= A(t)y0(t − 1) +

∞
∑

n=1

A(t)yn(t − 1) +

∞
∑

n=1

B(t)yn−1(p(t)) =

= A(t)
∞
∑

n=0

yn(t − 1) + B(t)
∞
∑

n=0

yn(p(t)) =

= A(t)x(t − 1) + B(t)x(p(t)),

and the proof is complete.

In the space of vector or matrix functions f(t) let the operators Sp and W ∗ be defined by

Spf(t) = f(p(t)), W ∗f(t) =

t
∑

τ=t−k0(t)

W (τ ; t)f(τ).

Then

yn = W ∗(BSpyn−1) = (W ∗BSp)
ny0, n = 1, 2, ...

Therefore Theorem 1 implies the next corollary.

Corollary 1. The unique solution of the initial value problem (1) and (2) is given by

x(t) =
∞
∑

n=0

(W ∗BSp)
nW (t − k0(t) − 1; t)φ(t − k0(t) − 1). (7)

In the next result we give conditions garanteeing that series (7) is absolutely and uniformly
convergent on the interval [t0,∞).
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Theorem 2. Suppose that there exist positive constants M , b and a such that 0 < a < 1
and there exists a positive scalar function f(t) such that

sup
t
−1≤θ≤t0

∞
∑

τ=θ

f(τ) = f0 < ∞,

||W (τ ; t)|| ≤ Mat, t0 − 1 ≤ τ ≤ t0 ≤ t, (8)

||W (τ ; t)|| ≤ Mat−τ , t0 ≤ τ ≤ t,

||B(t)|| ≤ b + f(t), t ≥ t0,

M

(

b

1 − a
+ f0

)

< 1. (9)

Then series (7) is absolutely and uniformly convergent for t ≥ t0. If, in addition, there
exists a positive constant p such that

0 < pt ≤ p(t) for t ≥ t0, (10)

then the solution of the initial value problem (1) and (2) tends to zero, as t → ∞.

Proof. Let p0 be a real number such that

0 ≤ p0 < 1 and p0t ≤ p(t).

Introduce the sequence {γn} as follows.

γ0 := 1, γn := Mγn−1

(

b

1 − a1−pn

0

+ f0

)

, n = 1, 2, ...

In virtue of (9) it is easy to see that the series

∞
∑

n=0

γn

is finite. Let
y0(t) = W (t − k0(t) − 1; t)φ(t − k0(t) − 1)

and let {yn(t)} be defined as in Theorem 1. We assert that

||yn(t)|| ≤ Mγnapn

0 t||φ||, n = 0, 1, 2, ... (11)

Inequality (8) implies assertion (11) for n = 0. Suppose that (11) is true for n − 1. Then

||yn(t)|| ≤

t
∑

τ=t−k0(t)

||W (τ ; t)||||B(τ)||||yn−1(p(τ))||
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≤
t
∑

τ=t−k0(t)

M2at−τ (b + f(τ))γn−1a
p

n−1

0
p(τ)||φ||

≤ M2atγn−1||φ||

t
∑

τ=t−k0(t)

a(pn

0 −1)τ (b + f(τ))

= M2atγn−1||φ||





t
∑

τ=t−k0(t)

ba(pn

0−1)τ +

t
∑

τ=t−k0(t)

a(pn

0−1)τf(τ)





≤ M2atγn−1||φ||





b

apn

0
−1 − 1

a(pn

0−1)τ

∣

∣

∣

∣

t+1

t−k0(t)

+ a(pn

0 −1)t
t
∑

τ=t−k0(t)

f(τ)





≤ M2atγn−1||φ||

(

b

apn

0
−1 − 1

a(pn

0 −1)(t+1) + a(pn

0 −1)tf0

)

= M2γn−1||φ||a
pn

0 t

(

bapn

0−1

apn

0
−1 − 1

+ f0

)

= M2γn−1||φ||a
pn

0 t

(

b

1 − a1−pn

0

+ f0

)

= Mγnapn

0 t||φ||,

and (11) is true for all positive integers n. It means that (7) is absolutely and uniformly
convergent on [t0,∞) and the first part of the theorem is proved.
If (10) is satisfied then we can choose p0 = p and for all ε > 0 we can find an integer N

such that

2M

∞
∑

n=N

γn < ε.

Then

||x(t)|| ≤
∞
∑

n=0

||yn(t)|| ≤
∞
∑

n=0

Mγnapnt||φ|| ≤

≤

(

M

∞
∑

n=N

γn + M

N−1
∑

n=0

apN−1tγn

)

||φ|| < ε||φ||,

if t is so large that

2MapN−1t

N−1
∑

n=0

γn < ε.

This proves the second part of the theorem.

If we apply the above results to the scalar equation with constant coefficients

x(t) = ax(t − 1) + bx(pt), (12)
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where a, b, p are real constants such that 0 < a < 1 and 0 < p < 1, the form of the
functions yn(t) will be too complicate, not suitable for further investigation. Therefore, to
solve Equation (12) by this method, we need a computer. But we can obtain a nice series
representation form for the analitical solutions of Equation (12). Of course, it is neccessary
for the initial function to be analitical.

Theorem 3. Let C0 6= 0 be a given real number. Let a, b, p be real numbers such that
0 < a < 1, 0 < p < 1 and |b| < 1 − a. Then

x(t) =
∞
∑

n=0

C0b
n

n
∏

`=1

(1 − a1−p`

)−1apnt

is a series solution of Equation (12) on [t0,∞).

Proof. Suppose that a solution of Equation (12) is the series of the form

x(t) =

∞
∑

n=0

Cnλpnt.

Replacing this form in Equation (12) we obtain that

∞
∑

n=0

Cnλpnt = a

∞
∑

n=0

Cnλpn(t−1) + b

∞
∑

n=0

Cnλpn+1t,

and therefore,

C0λ
t +

∞
∑

n=1

Cnλpnt =
a

λ
C0λ

t +
∞
∑

n=1

a

λpn
Cnλpnt +

∞
∑

n=1

bCn−1λ
pnt.

From the above equality follows that

C0

(

1 −
a

λ

)

= 0, so a = λ, C0 6= 0.

C1 = C1a
1−p + bC0,

C2 = C2a
1−p2

+ bC1,

...

Cn = Cna1−pn

+ bCn−1,

...

Using mathematical induction we obtain that

Cn =
bnC0

(1 − a1−p)(1 − a1−p2)...(1− a1−pn)
, n = 1, 2, ...
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Then the series solution of Equation (12) is of the form

x(t) =

∞
∑

n=0

C0b
n

n
∏

`=1

(1 − a1−p`

)−1apnt.

From the above argumentation follows that the necessary and sufficient condition for the
convergence is

|b| < 1 − a.
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