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Abstract. We generalize the Picard–Lindelöf theorem on the unique solvability of ini-
tial value problems ẋ = f (t, x), x(t0) = x0, by replacing the sufficient classical Lipschitz
condition of f with respect to x with a more general Lipschitz condition along hy-
perspaces of the (t, x)-space. A comparison with known results is provided and the
generality of the new criterion is shown by an example.
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1 Introduction

We consider the initial value problem

ẋ = f (t, x), x(t0) = x0, (1.1)

where f : D → Rn is defined on an open set D ⊆ R × Rn and (t0, x0) ∈ D. We assume
throughout the paper that f is continuous. Problem (1.1) is called locally uniquely solvable if
there exists an open interval I containing t0 such that (1.1) has exactly one solution on I.

The unique solvability problem of (1.1) is not fully solved up to now as simple examples
show (see [2] and the references therein, see also [1]). The classical Lipschitz condition mea-
sures the vector field differences with respect to the x variable and is assumed in the classical
Picard–Lindelöf theorem to prove unique solvability for (1.1). By introducing a Lipschitz con-
dition along a hyperspace of the extended state space R×Rn, we establish a new uniqueness
theorem which generalizes the classical Picard–Lindelöf theorem and Theorem 3.2 in the pa-
per by Cid [2]. It is also an n-dimensional generalization of the scalar criterion in [6] and of
the uniqueness theorem in [3] if the functions ϕ and ψ are constants. The advantage of our
result is shown by an example.
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Definition 1.1 (Lipschitz continuity along a hyperspace). Let D ⊆ R×Rn be open, f : D → Rn

be continuous and let V ⊂ R×Rn be a hyperspace, i.e. V is an n-dimensional linear subspace
of R1+n. We say that f is Lipschitz continuous along V on an open set U ⊆ D if there exists a
constant L ≥ 0 such that for all (t, x), (s, y) ∈ U

‖ f (t, x)− f (s, y)‖ ≤ L‖(t, x)− (s, y)‖ if (t, x)− (s, y) ∈ V .

2 Main result

In the following let F(t, x) = (1, f (t, x))T be the vector of the direction field of (1.1) determined
by f at the point (t, x) ∈ D.

Theorem 2.1 (Generalized Picard–Lindelöf theorem). Consider the initial value problem (1.1), let
V ⊂ R×Rn be a hyperspace and assume that the following two conditions hold:

(A1) Transversality condition: F(t0, x0) /∈ V ,

(A2) Generalized Lipschitz condition: f is Lipschitz continuous along V on an open neighborhood
U ⊆ D of (t0, x0).

Then (1.1) is locally uniquely solvable.

The proof of Theorem 2.1 uses only Peano’s theorem and the implicit function theorem.
Since the classical Picard–Lindelöf theorem is a special case of Theorem 2.1, the following
proof also offers an alternative proof of Picard–Lindelöf’s theorem.

Proof. Let ‖ · ‖ denote the Euclidean norm and its induced matrix norm, respectively. Since
V is a hyperspace in R1+n, there exist linearly independent vectors v(1), . . . , v(n) ∈ R1+n with
V = span{v(1), . . . , v(n)} ⊆ R1+n. Write

v(i) = (v(i)t , v(i)1 , . . . , v(i)n )T for i = 1, . . . , n,

and define vt := (v(1)t , . . . , v(n)t ) ∈ Rn, v(i)x := (v(i)1 , . . . , v(i)n )T ∈ Rn, Vx := (v(1)x | · · · |v(n)x ) ∈
Rn×n. Then for

V :=
(
v(1) | · · · | v(n)

)
=


v(1)t · · · v(n)t

v(1)1 · · · v(n)1
...

...
v(1)n · · · v(n)n

 =

v(1)t · · · v(n)t

v(1)x | · · · | v(n)x

 =

(
vt

Vx

)

we have V ∈ R(1+n)×n and rank V = n. Peano’s theorem guarantees that (1.1) has at least
one solution x : [t0 − α, t0 + α] → Rn for some α > 0. By shrinking α > 0 if necessary, we
can assume that graph x ⊂ U and, by assumption (A1) and continuity of f , F(t, x(t)) /∈ V
for all t ∈ I := (t0 − α, t0 + α). To prove that (1.1) is locally uniquely solvable with solution
x on I, assume to the contrary that there exists a solution y : I → Rn of (1.1) and x ≡/ y on
[t0, t0 + α) (the case x ≡/ y on (t0 − α, t0] is treated similarly). For t1 := sup{t ∈ [t0, t0 + α) :
x(s) = y(s) for s ∈ [t0, t]} we have t1 ∈ [t0, t0 + α), x(t1) = y(t1) =: x1 by continuity and
F(t1, x1) /∈ V .
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We show that the equation

y(t + vtk(t)) = x(t) + Vxk(t) (2.1)

is uniquely solvable with respect to k = k(t) = (k1(t), . . . , kn(t))T on a subinterval of I which
contains t1. The problem suggests to apply the implicit function theorem. Choose ε > 0 such
that

H(t, k) := y(t + vtk)− x(t)−Vxk

is well-defined on [t1 − ε, t1 + ε]× [−ε, ε]n. Then H(t1, 0) = 0,

∂H
∂k

(t, k) =
(

fi(t + vtk, y(t + vtk))v
(j)
t − v(j)

i

)
i,j=1,...,n

and therefore ∂H(t1, 0)/∂k = WV with

W :=

 f (t1, x1)

∣∣∣∣∣∣∣
−1

. . .
−1

 ∈ Rn×(1+n).

By the rank-nullity theorem (see e.g. [4, p. 199]) dim im(V) + dim ker(V) = n and, using
the fact that dim im(V) = rank V = n, we get ker V = {0}. Assume that WV is not invertible.
Then there exists v ∈ Rn \ {0} such that WVv = 0. Hence w := Vv 6= 0 and w ∈ V , as well
as w ∈ ker W = span{F(t1, x1)}. Therefore F(t1, x1) ∈ V leads to a contradiction, proving that
WV is invertible.

The implicit function theorem (cf. e.g. [5, Theorem 9.28]) yields a unique C1 function k : J →
[−ε, ε]n on an open interval J ⊆ I containing t1 such that k(t1) = 0 and H(t, k(t)) = 0 for all
t ∈ J. Using the fact that ∂H(t1, 0)/∂k is invertible, we get by shrinking J if necessary, that
(∂H(t, k(t))/∂k)−1 exists and is bounded for t in J, i.e. there exists η ≥ 0 such that∥∥∥∥∂H

∂k
(t, k(t))−1

∥∥∥∥ ≤ η for t ∈ J.

Since ∂H(t, k)/∂t = f (t + vtk, y(t + vtk)) − f (t, x(t)), (A2) implies, together with (2.1) and
Vk(t) ∈ V , that ∥∥∥∥∂H

∂t
(t, k(t))

∥∥∥∥ ≤ L‖Vk(t)‖.

Now we consider u(t) := ‖k(t)‖2 = 〈k(t), k(t)〉. We get

u̇(t) =
d
dt
〈k(t), k(t)〉 = 2〈k(t), k̇(t)〉 .

Using the fact that

k̇(t) = −∂H
∂k

(t, k(t))−1 ∂H
∂t

(t, k(t)),

we conclude that

u̇(t) ≤
∥∥∥∥2k(t)T ∂H

∂k
(t, k(t))−1 ∂H

∂t
(t, k(t))

∥∥∥∥ ≤ 2‖k(t)‖ηL‖V‖‖k(t)‖

and hence
u̇(t) ≤ 2ηL‖V‖u(t)
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which is equivalent to
d
dt

[
e−2ηL‖V‖(t−t1)u(t)

]
≤ 0.

Since u(t1) = ‖k(t1)‖2 = 0, we get u(t) = ‖k(t)‖2 ≡ 0, and hence from (2.1) we conclude
x(t) ≡ y(t) on J, which contradicts the definition of t1.

Remark 2.2. (a) The classical Picard–Lindelöf theorem which requires a Lipschitz condition
with respect to x is a special case of Theorem 2.1 with

V =

(
vt

Vx

)
, vt = 0 ∈ Rn and Vx = In, (2.2)

where In denotes the n × n identity matrix. Cid [2] introduces the notion of Lipschitz conti-
nuity when fixing component i0 ∈ {0, 1, . . . , n} where the component i0 = 0 corresponds to the
variable t, i.e. Lipschitz continuity when fixing i0 = 0 is equivalent to Lipschitz continuity
with respect to x. Lipschitz continuity when fixing another component is defined similarly.
Under the assumption that f is Lipschitz continuous when fixing a component i0, Cid can
show uniqueness provided that either i0 = 0 or fi0 6= 0. Thus Theorem 3.2 by Cid can be
interpreted as a special case of our Theorem 2.1 with matrices V of the form (2.2) where in
the case of i0 6= 0 the corresponding column of V is replaced by a vector v(i0) with v(i0)t = 1
and all other components equal 0. Note that [3, Theorem 1] is a special case of Theorem 2.1
for n = 1 if the functions ϕ and ψ are constants.

(b) Let V = span{v(1), . . . , v(n)} ⊂ R1+n and U ⊆ D be a convex open neighborhood of
(t0, x0) ∈ D ⊆ R×Rn. If the directional derivatives

∂ f
∂v

(t, x) = lim
h→0

f ((t, x) + hv)− f (t, x)
h‖v‖ , v ∈ V ,

exist and are continuous and bounded on U, then f is Lipschitz continuous along V on U.

Proof. With (t, x) = (s, y) + v, v ∈ V , and g(τ) := f ((s, y) + τv) we get

f (t, x)− f (s, y) = g(1)− g(0) =
∫ 1

0
g′(τ)dτ

=
∫ 1

0
lim
h→0

g(τ + h)− g(τ)
h

dτ

=
∫ 1

0
lim
h→0

f ((s, y) + (τ + h)v)− f ((s, y) + τv)
h

dτ

=
∫ 1

0

(
lim
h→0

f ((s, y) + (τ + h)v)− f ((s, y) + τv)
h‖v‖

)
‖v‖dτ

=
∫ 1

0

∂ f
∂v

((s, y) + τv)‖v‖dτ

and therefore

‖ f (t, x)− f (s, y)‖ ≤ L‖v‖, L := sup
τ∈[0,1]

∂ f
∂v

((s, y) + τv).

Example 2.3. Consider the 2-dimensional initial value problem

ẋ = f (t, x), x(0) = 0,
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where f (t, x) = ( f1(t, x1, x2), f2(t, x1, x2))T with

f1(t, x1, x2) =

{
x1 + g(x2), x1 < t,

x1 + g(x2) + 3
√

x1 − t, x1 ≥ t,

f2(t, x1, x2) = 1 + h(x1),

g(x2) and h(x1) are Lipschitz continuous functions and g(0) 6= 1. The classical Lipschitz
condition is not fulfilled, and we cannot show uniqueness with the hyperspace V being the
(t, x1)-plane or (t, x2)-plane. Therefore the result by Cid cannot be applied.

With the basis vectors v(1) = (1, 1, 0)T, v(2) = (0, 0, 1)T and V = span{v(1), v(2)} we can
show uniqueness of the given problem.

(A1) is satisfied, as (1, g(0), 1+ h(0))T /∈ V if g(0) 6= 1. The only numbers α, β, γ, satisfying
α(1, f (0, 0))T + βv(1) + γv(2) = 0 are α = β = γ = 0 if g(0) 6= 1.

Now (A2) is shown. With vt = (1, 0) and Vx =
(

1 0
0 1

)
we have to show that

‖ f (t + vtk, x + Vxk)− f (t, x)‖ = ‖ f (t + k1, x1 + k1, x2 + k2)− f (t, x1, x2)‖
≤ L‖(vtk, Vxk)T‖

with k = (k1, k2)T. For x1 < t we get∥∥∥∥( x1 + k1 + g(x2 + k2)− x1 − g(x2)

1 + h(x1 + k1)− 1− h(x1)

)∥∥∥∥
which can be estimated by L‖(k1, k1, k2)T‖ with L ≥ 0. For x1 ≥ t we get∥∥∥∥( x1 + k1 + g(x2 + k2) +

3
√

x1 + k1 − t− k1 − x1 − g(x2)− 3
√

x1 − t
1 + h(x1 + k1)− 1− h(x1)

)∥∥∥∥
which can also be estimated by L‖(k1, k1, k2)T‖ with L ≥ 0.

3 Alternative proof

We provide an alternative proof for Theorem 2.1 by transforming (1.1) into a system to which
the classical Picard–Lindelöf theorem can be applied.

Alternative proof of Theorem 2.1. Choose a unit vector a0 ∈ R1+n such that V = a⊥0 and also
〈a0, F(t0, x0)〉 > 0, which is possible due to assumption (A1). Since R1+n = 〈a0〉 ⊕ V is the
direct sum of 〈a0〉 = {sa0 ∈ R1+n : s ∈ R} and V , there exist unique s0 ∈ R and v0 ∈ V with
(t0, x0) = s0a0 + v0. We divide the proof into three steps.

Step 1: We show that the nonautonomous initial value problem on V

dv
ds

= g(s, v) :=
F(sa0 + v)− σ(s, v)a0

σ(s, v)
, v(s0) = v0, (3.1)

with σ(s, v) := 〈a0, F(sa0 + v)〉 is well-posed and locally uniquely solvable.
The function

σ : R× V → R, (s, v) 7→ σ(s, v) = 〈a0, F(sa0 + v)〉
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is continuous and satisfies σ(s0, v0) = 〈a0, F(s0a0 + v0)〉 = 〈a0, F(t0, x0)〉 > 0. As a consequence
there exists an η > 0 and a bounded open neighborhood U ⊆ R× V of (s0, v0) such that
σ(s, v) ≥ η for all (s, v) ∈ U.

Using assumption (A2) and by shrinking U if necessary, we can w.l.o.g. assume that f is
Lipschitz continuous along V on the open neighborhood {sa0 + v ∈ R1+n : (s, v) ∈ U} of
(t0, x0). Using this fact, we get for (s, v), (s, v̄) ∈ U

|σ(s, v)− σ(s, v̄)| = |〈a0, F(sa0 + v)〉 − 〈a0, F(sa0 + v̄)〉|
= |〈a0, F(sa0 + v)− F(sa0 + v̄)〉| ≤ ‖a0‖ · ‖F(sa0 + v)− F(sa0 + v̄)‖
= ‖F(sa0 + v)− F(sa0 + v̄)‖ = ‖ f (sa0 + v)− f (sa0 + v̄)‖
≤ L‖v− v̄‖,

proving that σ is Lipschitz continuous on U. With σ also the quotient 1/σ is Lipschitz contin-
uous with respect to v. Thus we get

‖g(s, v)− g(s, v̄)‖ =
∥∥∥∥F(sa0 + v)

σ(s, v)
− F(sa0 + v̄)

σ(s, v̄)

∥∥∥∥
≤
∣∣∣∣ 1
σ(s, v)

∣∣∣∣ · ‖F(sa0 + v)− F(sa0 + v̄)‖

+

∣∣∣∣ 1
σ(s, v)

− 1
σ(s, v̄)

∣∣∣∣ · ‖F(sa0 + v̄)‖ .

By shrinking U again if necessary, we can assume w.l.o.g. that Ū ⊆ D. Then boundedness of
F and of 1/σ on Ū imply Lipschitz continuity of g with respect to v on the neighborhood U
of (s0, v0). Since V is isomorphic to Rn, the classical Picard–Lindelöf theorem can be applied
to (3.1) to prove local unique solvability.

Step 2: We show that the autonomous initial value problem on R× V

ṡ = σ(s, v), s(t0) = s0,

v̇ = F(sa0 + v)− σ(s, v)a0, v(t0) = v0,
(3.2)

is locally uniquely solvable.
By Peano’s theorem (3.2) admits a solution. Assume that (ŝ1, v̂1), (ŝ2, v̂2) : J → R× V , are

two solutions of (3.2) on an open interval J containing t0. Then the solution identities

˙̂si(t) = σ(ŝi(t), v̂i(t)),
˙̂vi(t) = F(ŝi(t)a0 + v̂i(t))− σ(ŝi(t), v̂i(t))a0

(3.3)

for t ∈ J and the initial conditions

ŝi(t0) = s0, v̂i(t0) = v0 (3.4)

are fulfilled for i=1, 2. By shrinking J if necessary, we can w.l.o.g. assume that (ŝi(t), v̂i(t))∈U
and therefore ˙̂si(t) = σ(ŝi(t), v̂i(t)) ≥ η for t ∈ J. As a consequence the functions ŝi : J → R

are strictly monotonically increasing, and hence the inverse functions ŝ−1
i : ŝi(J)→ J exist and

satisfy
ŝ−1

i (s0) = t0 (3.5)
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for i = 1, 2. With the bijection t = ŝ−1
i (s) both solution curves through (s0, v0) can be repara-

metrized in the form{(
ŝi(t), v̂i(t)

)
: t ∈ J

}
=
{(

ŝi(ŝ−1
i (s)), v̂i(ŝ−1

i (s)
)

: s ∈ ŝi(J)
}

=
{(

s, v̂i(ŝ−1
i (s)

)
: s ∈ ŝi(J)

}
for i = 1, 2. Then

vi : ŝi(J)→ V , vi(s) := v̂i(ŝ−1
i (s)),

solve (3.1) for i = 1, 2, since

dvi

ds
(s) =

˙̂vi(ŝ−1
i (s))

˙̂si(ŝ−1
i (s))

(3.3)
=

F(sa0 + vi)− σ(s, vi)a0

σ(s, vi)

and
vi(s0) = v̂i(ŝ−1

i (s0))
(3.5)
= v̂i(t0)

(3.4)
= v0.

By shrinking J if necessary, we can apply Step 1 to conclude that v1 = v2 on J and hence
v̂1(ŝ−1

1 (s)) = v̂2(ŝ−1
2 (s)) for all s ∈ ŝ1(J) ∩ ŝ2(J), proving that ŝ1 = ŝ2 and v̂1 = v̂1 on J.

Step 3: We show that (1.1) is locally uniquely solvable.
By Peano’s theorem (1.1) admits a solution. Assume that x1, x2 : I → Rn are two solutions

of (1.1). For t ∈ I we have Xi(t) := (1, xi(t)) ∈ R1+n = 〈a0〉 ⊕ V and therefore there exist
unique functions si : I → R and vi : I → V such that

Xi(t) = si(t)a0 + vi(t).

Moreover, (si(t0), vi(t0)) = (s0, v0), and using the fact that ‖a0‖ = 1 and a⊥0 = V , si(t) =

〈a0, Xi(t)〉 and vi(t) = Xi(t)− si(t)a0 for t ∈ I and i = 1, 2. Now (si, vi) : I → R×V solve (3.2),
since

ṡi(t) = 〈a0, Ẋi(t)〉 = 〈a0, F(t, xi(t))〉 = 〈a0, F(si(t)a0 + vi(t))〉
= σ(si(t), vi(t)),

v̇i(t) = Ẋi(t)− 〈a0, Ẋi(t)〉a0 = F(t, xi(t))− 〈a0, F(t, xi(t))〉a0

= F(si(t)a0 + vi(t))− 〈a0, F(si(t)a0 + vi(t))〉a0

= F(si(t)a0 + vi(t))− σ(si(t), vi(t))a0

for t ∈ I and i = 1, 2. By shrinking I if necessary, we can apply Step 2 to conclude that s1 = s2

and v1 = v2 on I, proving that x1 = x2.
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