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Abstract

We consider the Cauchy problem on the positive half-line for the differential-delay
equation

ü(t) + 2c0(t)u̇(t) + c1(t)u̇(t − h) + d0(t)u(t) + d1(t)u(t − h) + d2(t)u(t − 2h) = 0

where ck(t), dj(t) (t ≥ 0; k = 0, 1; j = 0, 1, 2) are continuous functions. Conditions
providing the positivity of the Green function and a lower bound for that function are de-
rived. Our results are new even in the case of ordinary differential equations. Applications
of the obtained results to equations with nonlinear causal mappings are also discussed.
Equations with causal mappings include ordinary differential and integro-differential equa-
tions. In addition, we establish positivity conditions for solutions of functional differential
equations with variable and distributed delays.
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1 Introduction and statement of the main result

The theory of nonoscillations of solutions to functional differential equations was extensively
developed. Mainly the first order equations were considered, see the well-known publications
[1, 2, 12, 21, 23, 28], and references therein. Higher order equations were investigated in the
very interesting papers [3, 4, 5, 22, 25].

It should be noted that the existence of nonoscillating solutions does not provide the pos-
itivity of the Green functions. Obtaining the positivity conditions for the Green functions
requires additional efforts, but the positivity is very important for various applications. For
instance, the positivity of Green’s function provides the existence of non-negative solutions to
equations with various nonlinearities, in particular, with nonlinear causal mappings, cf. [17, 18].
Moreover, positive Green’s functions play an essential role in the stability theory, see [15, 16].

In this paper we consider the Cauchy problem for a nonautonomous second order differential-
delay equation and derive conditions that provide the positivity of the Green function. In ad-
dition, a lower bound for that function is established. Applications to equations with nonlinear
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causal mappings are also discussed. It should be noted that equations with causal mappings
include such traditional equations as ordinary differential and integro-differential equations,
cf. [7, 27]. Moreover, we establish positivity conditions for solutions of functional differential
equations with variable and distributed delays.

Denote R+ = [0,∞), C(ω) is the space of continuous scalar-valued functions defined on a
real segment ω with the sup-norm. For t > 0, let us consider the equation

(1.1) ü(t) + 2c0(t)u̇(t) + c1(t)u̇(t− h) + d0(t)u(t) + d1(t)u(t− h) + d2(t)u(t− 2h) = 0

where u̇(t) = du(t)/dt, ü(t) = d2u(t)/dt2, ck(.), dj(.) ∈ C(R+) (k = 0, 1; j = 0, 1, 2) and
ċ0(.) ∈ C(R+).

The Green function G(t, s) to equation (1.1) is a function defined for t ≥ s − 2h (s ≥ 0),
having the continuous first and second derivatives in t for t > s, satisfying that equation for all
t > s ≥ 0 and the conditions

(1.2) G(t, s) = 0 (s− 2h ≤ t ≤ s),
∂G(t, s)

∂t
= 0 (s− 2h ≤ t < s), lim

t↓s

∂G(t, s)

∂t
= 1.

Furthermore, put c0(t) ≡ c0(0) for −2h ≤ t ≤ 0 and

(1.3) a1(t) = c1(t)e
R t

t−h
c0(s)ds, a2(t) = d2(t)e

R t

t−2h
c0(s)ds (t ≥ 0).

We need the following preliminary result.

Lemma 1.1 Let the conditions

(1.4) −ċ0(t) + c20(t) + d0(t) ≤ 0 and − c1(t)c0(t− h) + d1(t) ≤ 0 (t ≥ 0)

hold and the Green function G0(t, s) to the equation

(1.5) ü(t) + a1(t)u̇(t− h) + a2(t)u(t− 2h) = 0 (t > 0)

be nonnegative. Then the Green function G(t, s) to equation (1.1) is also nonnegative. More-
over,

(1.6) G(t, s) ≥ G0(t, s) (t > s ≥ 0).

Proof: Substitute the equality

u(t) = w(t)e−
R t

0
c0(s)ds

into (1.1). Then, taking into account that

d

dt

∫ t−h

0

c0(s)ds =
d

dt

∫ t

h

c0(s1 − h)ds1 = c0(t− h),

we have
e−

R t

0 c0(s)ds[ẅ(t) − 2c0(t)ẇ(t) + w(t)(−ċ0(t) + c20(t) + d0(t))+

2(c0(t)ẇ(t) − c20(t)w(t))] + c1(t)e
−

R t−h

0 c0(s)ds[−c0(t− h)w(t− h) + ẇ(t− h)]+
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d1(t)e
−

R t−h

0
c0(s)dsw(t− h) + d2(t)e

−
R t−2h

0
c0(s)dsw(t− 2h) = 0.

Or

(1.7) ẅ(t) + a1(t)ẇ(t− h) +m0(t)w(t) +m1(t)w(t− h) + a2(t)w(t− 2h) = 0,

where

m0(t) := −ċ0(t) + c20(t) + d0(t); m1(t) := e
R t

t−h
c0(s)ds[−c1(t)c0(t− h) + d1(t)].

According to (1.4), m0(t) ≤ 0, m1(t) ≤ 0. Hence, by the comparison principle, cf. [8, Chapter
2, Section 2], it easily follows that if the Green function to equation (1.5) is nonnegative, then
the Green function to equation (1.7) is also nonnegative and (1.6) holds. But (1.7) and (1.1)
are equivalent. This proves the lemma. �

2 The main result

In the sequel it is assumed that c1(t), c2(t) are positive for all t ≥ 0. Therefore the functions
a1(t), a2(t) defined by (1.3) are positive. Put

(2.1) b1 := sup
t≥0

a1(t) and b2 := sup
t≥0

a2(t) +
b1
2

(b1 − inf
t≥0

a1(t)),

and consider the equation

(2.2) ü(t) + b1u̇(t− h) + b2u(t− 2h) = 0.

Denote by H(t) the Green function to equation (2.2). By the Laplace transform we easily have

H(t) =
1

2πi

∫ ν+i∞

ν−i∞

eλtdλ

λ2 + b1λe−λh + b2e−2λh

where ν is a real constant. It is assumed that

(2.3) inf
t≥0

a1(t) >
b1
2

+
2

b1
sup
t≥0

a2(t).

Then

b2 < sup
t≥0

a2(t) +
b1
2

(b1 −
b1
2
−

2

b1
sup
t≥0

a2(t)) =
b21
4
.

That is,
b21 > 4b2.

So the polynomial z2 + b1z + b2 has the real roots

r1 := −b1/2 −
√

b21/4 − b2, r2 := −b1/2 +
√

b21/4 − b2.

Now we are in a position to formulate our main result.
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Theorem 2.1 Let the conditions (1.4), (2.3) and

(2.4) −ehrk < 1 (k = 1, 2)

hold. Then the Green function G(t, s) to equation (1.1) is nonnegative and

(2.5) G(t, s) ≥ H(t− s) (t > s ≥ 0).

This theorem is proved below. To the best of our knowledge, Theorem 2.1 is new even in the
case of ordinary differential equations, cf. [9, 10, 24].

To prove Theorem 2.1 we need the following result.

Lemma 2.2 Let conditions (2.3) and (2.4) hold. Then the Green function G0(t, s) to equation
(1.5) is nonnegative and

(2.6) G0(t, s) ≥ H(t− s) (t > s ≥ 0).

Proof: With a real number b, let us consider the equation

(2.7) u̇(t) − bu(t− h) = 0 (h = const > 0; u̇ = du/dt, t ≥ 0).

The Green function H1(b, t) to this equation is a solution of (2.7) with the initial conditions

(2.8) u(0) = 1; u(t) = 0 (t < 0).

We need the following result: let the condition

(2.9) −ehb < 1

hold. Then the Green function to equation (1.1) is positive. For the proof see for instance [16].
Clearly, for any b ≥ 0, condition (2.9) holds.

According to this result, under condition (2.4) with b = rk we have H1(rk, t) ≥ 0 and thanks
to the convolution property,

H(t) =
1

2πi

∫ ν+i∞

ν−i∞

eλtdλ

(λ− r1e−λh)(λ− r2e−λh)
=

∫ t

0

H1(r1, t− s)H1(r2, s)ds ≥ 0.

Hence,

(2.10) Ḣ(t) =
1

2πi

∫ ν+i∞

ν−i∞

λeλtdλ

(λ− r1e−λh)(λ− r2e−λh)
.

But
2λ

(λ− e−λr1)(λ− r2e−λ)
=

1

λ− r1e−λ
+

1

λ− r2e−λ
+

(r1 + r2)e
−λ

(λ− rke−λ)(λ− rke−λ)

Since r1 + r2 = −b1, and H(t) ≥ 0, we have

Ḣ(t) =
1

2
[H1(r1, t) +H1(r2, t) − b1H(t− h)] ≥ −

b1
2
H(t− h).
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Consequently

(2.11) Ḣ(t− h) ≥ −
b1
2
H(t− 2h).

Now consider the equation

(2.12) Eu(t) := ü(t) + a1(t)u̇(t− h) + a2(t)u(t− 2h) = f(t) (t > 0; f ∈ C(R+), f(t) ≥ 0)

with the zero initial condition

(2.13) u(t) = 0 (−2h ≤ t ≤ 0).

The derivatives at zero are understood as the right derivatives. Simultaneously, with the same
zero initial condition, consider the equation

(2.14) E0v(t) := v̈(t) + b1v̇(t− h) + b2v(t− 2h) = f(t) (t > 0).

Then

v(t) := E−1
0 f(t) =

∫ t

0

H(t− s)f(s)ds.

Put W = E0 − E. With the notation ∆k(t) = bk − ak(t) (k = 1, 2), according to (2.11) and
(2.1) we have

WH(t− s) = ∆1(t)Ḣ(t− s− h) + ∆2(t)H(t− t− 2h) ≥

(2.15) H(t− s− 2h)(−b1∆1(t)/2 + ∆2(t)) ≥ 0.

Rewrite (2.12) as E0u−Wu = f . With u = E−1
0 y we obtain

(2.16) y −WE−1
0 y = f.

But

WE−1
0 f(t) = (b1 − a1(t))

d

dt

∫ t

0

H(t− s− h)f(s)ds+ (b2 − a2(t))

∫ t

0

H(t− s− 2h)f(s)ds =

∫ t

0

[∆1(t)Ḣ(t− s− h) + ∆2(t)H(t− s− 2h)]f(s)ds,

since H(t) = 0, t ≤ 0. So thanks to (2.15), WE−1
0 is a positive Volterra operator. Consequently,

for each positive T <∞, the spectral radius of WE−1
0 in space C(0, T ) is equal to zero. Hence,

y =
∞

∑

k=0

(WE−1
0 )kf,

and therefore,
0 ≤ f ≤ y = (I −WE−1

0 )−1f (f ≥ 0).

Consequently
0 ≤ E−1

0 f ≤ x = E−1
0 y ≤ E−1

0 (I −WE−1
0 )−1f (f ≥ 0).

This proves the lemma. �

The assertion of Theorem 2.1 follows from Lemmas 1.1 and 2.2.
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3 Equations with nonlinear causal mappings

For a positive T < ∞, let E be a Banach space of functions defined on [0, T ] with the unit
operator I. For all τ ∈ [0, T ) and w ∈ E, let the projections Pτ be defined by

(Pτw)(t) =

{

w(t) if 0 ≤ t ≤ τ,
0 if τ < t ≤ T

.

In addition, PT = I. A mapping F : E → E satisfying the condition

PτFPτ = PτF (τ ∈ [0, T ])

will be called a causal mapping (operator). This definition is somewhat different from the
definition of the causal operator presented in [7]. In the linear case our definition coincides
with the one accepted in [13].

Denote by B(0, T ) the space of real bounded measurable functions defined on [0, T ] with
the sup-norm |.|B(0,T ). Let us point an example of a causal mapping. To this end consider in
B(0, T ) the mapping

(Fw)(t) = f(t, w(t)) +

∫ t

0

k(t, s, w(s))ds (w ∈ B(0, T ))

with a continuous kernel k, defined on [0, T ]2×R and a continuous function f : [0, T ]×R → R.
For each τ ∈ [0, T ), we have

(PτFw)(t) = fτ (t, w(t)) +

∫ τ

0

kτ (t, s, w(s))ds

where

kτ (t, s, w(s)) =

{

k(t, s, w(s)) if 0 ≤ t ≤ τ,
0 if τ < t ≤ T

(0 ≤ s ≤ t), and

fτ (t, w(t)) =

{

f(t, w(t)) if 0 ≤ t ≤ τ,
0 if τ < t ≤ T

.

Thus the considered mapping is causal. Note that, the integral operator
∫ c

0

k(t, s, w(s))ds

with a fixed positive c ≤ T is not causal.
Denote by K+ the cone of nonnegative functions from B(0, T ). For a positive number

R ≤ ∞, put
KR := {w ∈ K+ : 0 ≤ w(t) ≤ R, 0 ≤ t ≤ T}.

Everywhere below F is a continuous causal operator mapping KR into K+. Consider the equa-
tion

(3.1) x(t) = f(t) +

∫ t

0

Q(t, t1)(Fx)(t1)dt1 (0 < t ≤ T <∞),
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where Q : [0 ≤ s ≤ t ≤ T ] → [0,∞) is a nonnegative measurable kernel and f ∈ K+ is given.
A solution of (3.1) is a function x ∈ B(0, T ) which satisfies (3.1) for all t ∈ [0, T ].

It is assumed that there is a linear positive causal operators A in B(0, T ), such that

(3.2) Fv ≤ Av (v ∈ KR).

That is, the operator V defined on B(0, T ) by

v → (V v)(t) :=

∫ t

0

Q(t, t1)(Av)(t1)dt1

is a majorant for the mapping

∫ t

0

Q(t, t1)(Fv)(t1)dt1 (0 < t ≤ T ).

Assume that V is compact and

(3.3) b(s) := sup
s≤t≤T

Q(t, s) ∈ L1(0, T )

where L1(0, T ) is the space of scalar integrable functions defined on [0, T ]. We need the following
result proved in [18].

Theorem 3.1 Let V be compact and the conditions (3.2), (3.3) and

(3.4) e|A|B(0,T )

R T

0 b(s)ds|f |B(0,T ) ≤ R

hold. Then (3.1) has a solution x ∈ KR, satisfying the inequality

|x|B(0,T ) ≤ e|A|B(0,T )

R T

0
b(s)ds|f |B(0,T ).

Now let us consider the equation

(3.5) (Eu)(t) = (Fu)(t)

(0 < t ≤ T <∞) where E is the linear operator defined by (2.12). Take the initial conditions

(3.6) u(t) = φ0(t) (−2h ≤ t ≤ 0); u̇(t) = φ1(t) (−h ≤ t ≤ 0)

with given continuous functions φ0, φ1. Equation (3.5) is equivalent to the equation

(3.7) x(t) = y(t) +

∫ t

0

G(t, t1)(Fx)(t1)dt1 (t ∈ (0, T )),

where G is the Green function to equation (1.1) and y(t) is a solution of problem (1.1),(3.6).
A continuous solution of (3.7) will be called a mild solution of problem (3.5), (3.6). Now
Theorems 2.1 and 3.1 imply

Corollary 3.2 Under the hypothesis of Theorem 2.1, let condition (3.2) hold for R = ∞. Then
equation (3.5) has a nonnegative mild solution.
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4 Functional differential equations with variable and dis-

tributed delays

Consider the equation

(4.1) u(t) = f(t) +

∫ t

0

K(t, s)

∫ 2h

0

u(s− τ)R(s, τ)dr(τ)ds

where f(t) and R(t, τ) are continuous functions, and r(τ) (t ≥ 0; 0 ≤ τ ≤ 2h) is nondecreasing.
Take the zero initial conditions

(4.2) u(t) = u̇(t) = 0 (t ≤ 0).

Lemma 4.1 Let K(t, s), f(t) and R(s, τ) be non-negative functions. Then a solution of the
problem (4.1), (4.2) is non-negative. Moreover,

(4.3) u(t) ≥ f(t), t > 0.

Proof: Put

V u(t) :=

∫ t

0

K(t, s)

∫ 2h

0

u(s− τ)R(s, τ)dr(τ) ds.

We have

V u(t) =

∫ 2h

0

∫ t

0

K(t, τ)u(s− τ)R(s, τ)ds dr(τ) =

∫ 2h

0

∫ t−τ

0

K(t, s1 + τ)u(s1)R(s1 + τ, τ)ds1dr(τ).

V is a nonnegative operator in C(R+). Moreover, for any finite T ,

|V u(t)| ≤ MT

∫ t

0

|u(s1)|ds1 (0 ≤ t ≤ T ),

where

MT := sup
0≤t,s1≤T

∫ 2h

0

K(t, s1 + τ)R(s1 + τ, τ)dr(τ).

Hence it easily follows that V is a Volterra operator and its spectral radius is equal to zero. By
the above mentioned comparison principle, inequality (4.3) holds, as claimed. �

Now let us consider the equation

ü(t) + 2c0(t)u̇(t) + c1(t)u̇(t− h) + d0(t)u(t) + d1(t)u(t− h) + d2(t)u(t− 2h) =

(4.4) f0(t) +

∫ 2h

0

u(t− τ)R(t, τ)dr(τ) (f0 ∈ C(R+); t > 0).

This equation under condition (4.2) is equivalent to (4.1) with

(4.5) K(t, s) = G(t, s), f(t) =

∫ t

0

G(t, s)f0(s)ds.

Now the previous lemma and Theorem 2.1 imply
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Corollary 4.2 Under the hypothesis of Theorem 2.1, let f0 and R(t, τ) be non-negative. Then
a solution u(t) of problem (4.4), (4.2) is non-negative and (4.3) holds with f defined by (4.5).

Furthermore, consider the equation

(4.6) u(t) = f(t) +

∫ t

0

K(t, s)m(s)u(s− v(s))ds

where m(t) ∈ C(R+); v(t) is non-negative, continuously differentiable, v(t) ≤ 2h, and

(4.7) 0 ≤ β := inf
t≥0

v̇(t) < 1.

Lemma 4.3 Let K(t, s), m(t) and f(t) be non-negative functions and condition (4.7) holds.
Then a solution of problem (4.6), (4.2) is non-negative. Moreover, inequality (4.3) holds.

Proof: Put

V0u(t) :=

∫ t

0

K(t, s)u(s− v(s))ds.

Let w(t) ≥ 0. Then

V0w(t) ≥
1

1 − β

∫ t

0

K(t, s)w(s− v(s))(1 − v̇(s))ds =
1

1 − β

∫ t−v(t)

0

K(t, ψ(s1))w(s1)ds1

where ψ(s) is inverse to the function s → s − v(s). Clearly, V0 is a nonnegative operator in
C(R+). Moreover, for any finite T ,

|V0u(t)| ≤ NT

∫ t

0

|u(s1)|ds1 (0 ≤ t ≤ T ),

where

NT :=
1

1 − β
sup

0≤t,s1≤T

K(t, ψ(s1)).

Hence it easily follows that V0 is a Volterra operator and its spectral radius is equal to zero.
By the above mentioned comparison principle, inequality (4.3) holds, as claimed. �

Now let us consider the equation

ü(t) + 2c0(t)u̇(t) + c1(t)u̇(t− h) + d0(t)u(t) + d1(t)u(t− h) + d2(t)u(t− 2h) =

(4.8) f0(t) +m(t)u(t− v(t)) (m(t) ∈ C(R+), t ≥ 0).

This equation under condition (4.2) is equivalent to (4.6) with (4.5) taken into account. Now
the previous lemma and Theorem 2.1 imply

Corollary 4.4 Under the hypothesis of Theorem 2.1, let f0(t) and m(t) be non-negative. Then
a solution u(t) of problem (4.8), (4.2) is non-negative and (4.3) holds with f defined by (4.5).
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