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Abstract. We obtain a characterization of two classes of dynamics with nonuniformly
hyperbolic behavior in terms of an admissibility property. Namely, we consider expo-
nential dichotomies with respect to a sequence of norms and nonuniformly hyperbolic
sets. We note that the approach to establishing exponential bounds along the stable
and the unstable directions differs from the standard technique of substituting test se-
quences. Moreover, we obtain the bounds in a single step.
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1 Introduction

Our main objective is to obtain a characterization of two classes of dynamics with nonuni-
formly hyperbolic behavior in terms of an admissibility property. Namely, we consider the
class of exponential dichotomies with respect to a sequence of norms and the class of nonuni-
formly hyperbolic sets.

In the first part of the paper we consider a nonautonomous dynamics with discrete time
obtained from a sequence of linear operators on a Banach space and we characterize the notion
of an exponential dichotomy with respect to a sequence of norms. The principal motivation
for considering this notion is that includes both the notions of a uniform and of a nonuniform
exponential dichotomy as special cases. We refer the reader to the books [3,6,7,12] for details
and further references on the uniform theory. On the other hand, the requirement of unifor-
mity for the asymptotic behavior is often too stringent for the dynamics and it turns out that
the notion of a nonuniform exponential dichotomy is much more typical. We refer the reader
to [2] for an account of a substantial part of the theory. Most of the work in the literature
related to admissibility has been devoted to the study of uniform exponential dichotomies.
For some of the most relevant early contributions in the area we refer to the books by Massera
and Schäffer [10] and by Dalec′kiı̆ and Kreı̆n [4]. We also refer to [9] for some early results in
infinite-dimensional spaces. For a detailed list of references, we refer the reader to [3] and for
more recent work to Huy [8].
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We emphasize that we consider the general case of a noninvertible dynamics which means
that we assume only the invertibility along the unstable direction. Moreover, we characterize
exponential dichotomies with respect to a sequence of norms in terms of the admissibility of a
large family of Banach spaces (the particular case of lp spaces was considered in [1]). We note
that the approach to establishing exponential bounds along the stable and the unstable direc-
tions differs from the standard technique of substituting test sequences (see for example [6,8]).
Moreover, in contrast to the existing approaches, we are able to obtain bounds along the stable
and unstable directions in a single step.

In the second part of the paper we obtain an analogous characterization of nonuniformly
hyperbolic sets. The notion of a nonuniformly hyperbolic set arises naturally in the context of
smooth ergodic theory. Indeed, if f is a C1 diffeomorphism of a finite-dimensional compact
manifold preserving a finite measure µ with nonzero Lyapunov exponents, then there exists
a nonuniformly hyperbolic set of full µ-measure. We refer the reader to [2] for details. Our
work is close in spirit to that of Mather [11], who obtained a similar characterization of uni-
formly hyperbolic sets, as well as that of Dragičević and Slijepčević [5], where the problem of
extending Mather’s result to nonuniformly hyperbolic dynamics was first considered. How-
ever, there are substantial differences between our approach and that in [5], which provides a
characterization of ergodic invariant measures with nonzero Lyapunov exponents and not of
nonuniformly hyperbolic sets.

2 Preliminaries

In this section we introduce a few basic notions. Let S be the set of all sequences s = (sn)n∈Z

of real numbers. We say that a linear subspace B ⊂ S is a normed sequence space if there exists a
norm ‖·‖B : B→ R+

0 such that if s′ ∈ B and |sn| ≤ |s′n| for n ∈ Z, then s ∈ B and ‖s‖B ≤ ‖s′‖B.
If in addition (B, ‖·‖B) is complete, we say that B is a Banach sequence space.

Let B be a Banach sequence space. We say that B is admissible if:

1. χ{n} ∈ B and ‖χ{n}‖B > 0 for n ∈ Z, where χA denotes the characteristic function of the
set A ⊂ Z;

2. for each s = (sn)n∈Z ∈ B and m ∈ Z, the sequence sm = (sm
n )n∈Z defined by sm

n = sn+m

belongs to B and there exists N > 0 such that ‖sm‖B ≤ N‖s‖B for s ∈ B and m ∈ Z.

We present some examples of Banach sequence spaces.

Example 2.1. The set l∞ = {s ∈ S : supn∈Z|sn| < +∞} is a Banach sequence space when
equipped with the norm ‖s‖ = supn∈Z|sn|.

Example 2.2. For each p ∈ [1, ∞), the set lp = {s ∈ S : ∑n∈Z|sn|p < +∞} is a Banach sequence
space when equipped with the norm ‖s‖ = (∑n∈Z|sn|p)1/p.

Example 2.3. Let φ : (0,+∞)→ (0,+∞] be a nondecreasing nonconstant left-continuous func-
tion. We set ψ(t) =

∫ t
0 φ(s) ds for t ≥ 0. Moreover, for each s ∈ S , let Mφ(s) = ∑n∈Z ψ(|sn|).

Then
B =

{
s ∈ S : Mφ(cs) < +∞ for some c > 0

}
is a Banach sequence space when equipped with the norm

‖s‖ = inf
{

c > 0 : Mφ(s/c) ≤ 1
}

.
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We need the following auxiliary results.

Proposition 2.4. Let B be an admissible Banach sequence space.

1. If s1 = (s1
n)n∈Z and s2 = (s2

n)n∈Z are sequences in S and s1
n = s2

n for all but finitely many
n ∈ Z, then s1 ∈ B if and only if s2 ∈ B.

2. If sn → s in B when n→ ∞, then sn
m → sm when n→ ∞, for m ∈ Z.

3. For each s ∈ B and λ ∈ (0, 1), the sequences s1 and s2 defined by

s1
n = ∑

m≥0
λmsn−m and s2

n = ∑
m≥1

λmsn+m

are in B, and

‖s1‖B ≤
N

1− λ
‖s‖B and ‖s2‖B ≤

Nλ

1− λ
‖s‖B. (2.1)

Proof. 1. Assume that s1 ∈ B and let I ⊂ Z be the finite set of all integers n ∈ Z such that
s1

n 6= s2
n. We define v = (vn)n∈Z by vn = 0 if n /∈ I and vn = s2

n − s1
n if n ∈ I. Since B is an

admissible Banach sequence space, we have v ∈ B and thus s2 = s1 + v ∈ B.
2. We have

|sn
m − sm|χ{m}(k) ≤ |sn

k − sk|

for k ∈ Z and n ∈N. By the definition of a normed sequence space, we obtain

|sn
m − sm| ≤

N
‖χ{0}‖B

‖sn − s‖B

for n ∈ Z and the conclusion follows.
3. We define a sequence v = (vn)n∈Z by vn = |sn| for n ∈ Z. Clearly, v ∈ B and

‖v‖B = ‖s‖B. Moreover,

∑
m≥0

λm‖v−m‖B ≤ N ∑
m≥0

λm‖v‖B =
N

1− λ
‖s‖B < +∞.

Since B is complete, the series ∑m≥0 λmv−m converges to some sequence x = (xn)n∈Z ∈ B. It
follows from the second property that

xn = ∑
m≥0

λm|sn−m|

for n ∈ Z. Since |s1
n| ≤ |xn| for n ∈ Z, we conclude that s1 ∈ B and ‖s1‖B ≤ ‖x‖B, which

yields that the first inequality in (2.1) holds. One can show in a similar manner that s2 ∈ B
and that the second inequality in (2.1) holds.

Now let (X, ‖·‖) be a Banach space and let ‖·‖n, for n ∈ Z, be a sequence of norms on X
such that ‖·‖n is equivalent to ‖·‖ for each n ∈ Z. For an admissible space B, let

YB =
{

x = (xn)n∈Z ⊂ X : (‖xn‖n)n∈Z ∈ B
}

.

For x ∈ YB, we define
‖x‖YB = ‖(‖xn‖n)n∈Z‖B.

Proposition 2.5. (YB, ‖·‖YB) is a Banach space.
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Proof. Let (xk)k∈N be a Cauchy sequence in YB. Repeating arguments in the proof of Proposi-
tion 2.4, one can show that (xk

n)k∈N is a Cauchy sequence in X for each n ∈ Z. Let

xn = lim
k→∞

xk
n for n ∈ Z

and let sk = (‖xk
n‖n)n∈Z ∈ B for k ∈N. Since∣∣‖xk

n‖n − ‖xl
n‖n
∣∣ ≤ ‖xk

n − xl
n‖n for n ∈ Z,

we conclude that
‖sk − sl‖B ≤ ‖xk − xl‖YB for k, l ∈N.

Hence, (sk)k∈N is a Cauchy sequence in B. Since B is complete, it follows from property 2 in
Proposition 2.4 that sk → s in B when k → ∞, where sn = ‖xn‖n for n ∈ Z. In particular,
x = (xn)n∈Z ∈ YB. One can easily verify that the sequence (xk − x)k∈N converges to 0 in YB,
which implies that (xk)k∈N converges to x in YB.

3 Admissibility and exponential dichotomies

In this section we consider the notion of an exponential dichotomy with respect to a sequence
of norms and we characterize it in terms of the invertibility of a certain linear operator.

3.1 Basic notions

Let X be a Banach space and let L(X) be the set of all bounded linear operators from X to
itself. Given a sequence (Am)m∈Z in B(X), let

A(n, m) =

{
An−1 · · · Am if n > m,

Id if n = m.
(3.1)

Definition 3.1. We say that (Am)m∈Z admits an exponential dichotomy with respect to the se-
quence of norms ‖·‖m if:

1. there exist projections Pm : X → X for each m ∈ Z satisfying

AmPm = Pm+1Am for m ∈ Z (3.2)

such that each map Am| ker Pm : ker Pm → ker Pm+1 is invertible;

2. there exist constants D > 0 and 0 < λ < 1 < µ such that for each x ∈ X and n, m ∈ Z

we have
‖A(n, m)Pmx‖n ≤ Dλn−m‖x‖m for n ≥ m (3.3)

and
‖A(n, m)Qmx‖n ≤ Dµn−m‖x‖m for n ≤ m, (3.4)

where Qm = Id− Pm and

A(n, m) = (A(m, n)| ker Pn)
−1 : ker Pm → ker Pn

for n < m.
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More generally, one can consider the notion of an exponential dichotomy for sequences of
linear operators between different spaces. Namely, let Xn = (Xn, ‖·‖), for n ∈ Z, be pairwise
isomorphic Banach spaces. Given a sequence of bounded linear operators Am : Xm → Xm+1,
for m ∈ Z, one can define A(n, m) : Xm → Xn by (3.1) and introduce a corresponding notion of
an exponential dichotomy, with projections Pm : Xm → Xm for m ∈ Z. All the results obtained
in this section hold verbatim in this general setting, but we prefer avoiding the cumbersome
notation.

Now let B be a Banach sequence space. Our main aim is to characterize the notion of an
exponential dichotomy with respect to a sequence of norms in terms of the invertibility of the
operator TB : D(TB) ⊂ YB → YB defined by

(TBx)n = xn − An−1xn−1, n ∈ Z,

on the domain D(TB) formed by all vectors x ∈ YB such that TBx ∈ YB.

Proposition 3.2. The linear operator TB : D(TB) ⊂ YB → YB is closed.

Proof. Let (xk)k∈N be a sequence in D(TB) converging to x ∈ YB such that TBxk converges to
y ∈ YB. It follows from the definition of YB and property 2 in Proposition 2.4 that

xn − An−1xn−1 = lim
k→∞

(xk
n − An−1xk

n−1) = lim
k→∞

(TBxk)n = yn

for n ∈ Z, using the continuity of the linear operator An−1. Therefore, x ∈ D(TB) and TBx = y.
This shows that the operator TB is closed.

For x ∈ D(TB) we consider the graph norm

‖x‖′YB
= ‖x‖YB + ‖Tx‖YB .

Clearly, the operator
TB : (D(TB), ‖·‖′YB

)→ (Y, ‖·‖YB)

is bounded and from now on we denote it simply by TB. It follows from Proposition 3.2 that
(D(TB), ‖·‖′YB

) is a Banach space.

3.2 Characterization of exponential dichotomies

In this section we characterize the notion of an exponential dichotomy with respect to a se-
quence of norms in terms of the invertibility of the operator TB.

Theorem 3.3. If the sequence (Am)m∈Z admits an exponential dichotomy with respect to the sequence
of norms ‖·‖m, then the operator TB is invertible.

Proof. In order to establish the injectivity of the operator TB, assume that TBx = 0 for some
x ∈ YB. Then xn = An−1xn−1 for n ∈ Z. Let xs

n = Pnxn and xu
n = Qnxn. We have xn = xs

n + xu
n

and it follows from (3.2) that

xs
n = An−1xs

n−1 and xu
n = An−1xu

n−1
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for n ∈ Z. Moreover, xs
k = A(k, k−m)xs

k−m for m ≥ 0 and hence,

‖xs
k‖k = ‖A(k, k−m)xs

k−m‖k

= ‖A(k, k−m)Pk−mxk−m‖k

≤ Dλm‖xk−m‖k−m

≤ DN
αB

λm‖x‖YB ,

where αB = ‖χ{0}‖B. Letting m → ∞ in the last term yields that xs
k = 0 for k ∈ Z. Similarly,

xu
k = A(k, k + m)xu

k+m for m ≥ 0 and hence,

‖xu
k ‖k = ‖A(k, k + m)xu

k+m‖k

= ‖A(k, k + m)Qk+mxk+m‖k

≤ Dµ−m‖xk+m‖k+m

≤ DN
αB

µ−m‖x‖YB .

Therefore, xu
k = 0 for k ∈ Z and hence x = 0. This shows that the operator TB is injective.

Now we show that TB is onto. Take y = (yn)n∈Z ∈ YB. For each n ∈ Z, let

x1
n = ∑

m≥0
A(n, n−m)Pn−myn−m

and

x2
n = − ∑

m≥1
A(n, n + m)Qn+myn+m.

We have
‖x1

n‖n ≤ ∑
m≥0

Dλm‖yn−m‖n−m and ‖x2
n‖n ≤ ∑

m≥1
Dµ−m‖yn+m‖n+m.

It follows from property 3 in Proposition 2.4 that (x1
n)n∈Z and (x2

n)n∈Z belong to YB. Now let
xn = x1

n + x2
n for n ∈ Z and x = (xn)n∈Z. Then x ∈ YB and one can easily verify that TBx = y.

This completes the proof of the theorem.

Now we establish the converse of Theorem 3.3.

Theorem 3.4. If the operator TB is bijective, then the sequence (Am)m∈Z admits an exponential di-
chotomy with respect to the sequence of norms ‖·‖m.

Proof. For each n ∈ Z, let X(n) be the set of all x ∈ X with the property that there exists a
sequence x = (xm)m∈Z ∈ YB such that xn = x and xm = Am−1xm−1 for m > n. Moreover, let
Z(n) be the set of all x ∈ X for which there exists z = (zm)m∈Z ∈ YB such that zn = x and
zm = Am−1zm−1 for m ≤ n. One can easily verify that X(n) and Z(n) are subspaces of X.

Lemma 3.5. For each n ∈ Z, we have

X = X(n)⊕ Z(n). (3.5)

Proof of the lemma. Given v ∈ X, we define a sequence y = (ym)m∈Z by yn = v and ym = 0 for
m 6= n. Clearly, y ∈ YB. Hence, there exists x ∈ YB such that TBx = y, that is,

xn − An−1xn−1 = v (3.6)
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and
xm+1 = Amxm for m 6= n− 1. (3.7)

Since x ∈ YB, we obtain
xn ∈ X(n) and An−1xn−1 ∈ Z(n).

Moreover, by (3.6), we have v ∈ X(n) + Z(n).
Now take v ∈ X(n) ∩ Z(n) and choose x = (xm)m∈Z and z = (zm)m∈Z in YB such that

xn = zn = v,

xm = Am−1xm−1 for m > n

and

zm = Am−1zm−1 for m ≤ n.

We define y = (ym)m∈Z by ym = xm for m ≥ n and ym = zm for m < n. It is easy to verify that
y ∈ YB and TBy = 0. Since TB is invertible, we have y = 0 and thus yn = v = 0.

Let Pn : X → X(n) and Qn : X → Z(n) be the projections associated to the decomposition
in (3.5).

Lemma 3.6. Property (3.2) holds.

Proof of the lemma. It is sufficient to show that

AnX(n) ⊂ X(n + 1) and AnZ(n) ⊂ Z(n + 1)

for n ∈ Z. Take v ∈ X(n) and x = (xm)m∈Z ∈ YB such that xn = v and

xm = Am−1xm−1 for m > n.

Then xn+1 = Anv ∈ X(n + 1). Now take v ∈ Z(n) and choose z = (zm)m∈Z such that zn = v
and zm = Am−1zm−1 for m ≤ n. We define z′ = (z′m)m∈Z by z′m = zm for m 6= n + 1 and
zn+1 = Anv. Since z′ ∈ YB and

z′m = Am−1z′m−1 for m ≤ n + 1,

we conclude that Anv ∈ Z(n + 1).

Lemma 3.7. The linear operator An| ker Pn : ker Pn → ker Pn+1 is invertible for each n ∈ Z.

Proof of the lemma. We first establish the injectivity of the operator. Assume that Anv = 0 for
v ∈ ker Pn = Z(n) and choose z = (zm)m∈Z ∈ YB such that zn = v and

zm = Am−1zm−1 for m ≤ n.

Moreover, we define y = (ym)m∈Z by ym = 0 for m > n and ym = zm for m ≤ n. Clearly,
y ∈ YB and TBy = 0. Since TB is invertible, we conclude that y = 0 and thus yn = v = 0.

In order to show that the operator is onto, take v ∈ ker Pn+1 = Z(n+ 1) and z = (zm)m∈Z ∈
YB with zn+1 = v and zm = Am−1zm−1 for m ≤ n + 1. Clearly, zn ∈ Z(n) and Anzn = zn+1.
This shows that An| ker Pn is onto.
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Now we establish exponential bounds. Take n ∈ Z and v ∈ X. Moreover, let y and x be as
in the proof of Lemma 3.5. For each z ≥ 1, we define a linear operator

B(z) : (D(TB), ‖·‖′YB
)→ (YB, ‖·‖YB)

by

(B(z)ν)m =

{
zνm − Am−1νm−1 if m ≤ n,
1
z νm − Am−1νm−1 if m > n.

We have B(1) = TB and

‖(B(z)− TB)ν‖YB ≤ (z− 1)‖ν‖′YB

for ν ∈ D(TB) and z ≥ 1. In particular, this implies that B(z) is invertible whenever 1 ≤ z <

1 + 1/‖T−1
B ‖, and

‖B(z)−1‖ ≤ 1
‖T−1

B ‖−1 − (z− 1)
.

Take t = 1/z for a given z ∈ (1, 1 + 1/‖T−1
B ‖) and let z ∈ YB be the unique element such that

B(1/t)z = y. Writing

D′ =
1

‖T−1
B ‖−1 − (1/t− 1)

,

we obtain

‖z‖YB ≤ ‖z‖′YB
= ‖B(1/t)−1y‖′YB

≤ D′‖y‖YB = ND′αB‖v‖n

(where αB = ‖χ{0}‖B). For each m ∈ Z, let x∗m = t|m−n|−1zm and x∗ = (x∗m)m∈N. Clearly,
x∗ ∈ YB. One can easily verify that TBx∗ = y and hence x∗ = x. Thus,

‖xm‖m = ‖x∗m‖m = t|m−n|−1‖zm‖m

≤ N
αB

t|m−n|−1‖z‖YB ≤
N2D′

t
t|m−n|‖v‖n

(3.8)

for m ∈ Z. Moreover, it was shown in the proof of Lemma 3.5 that Pnv = xn and Qnv =

−An−1xn−1. Hence, it follows from (3.7) and (3.8) that

‖A(m, n)Pnv‖m = ‖A(m, n)xn‖m = ‖xm‖m

≤ N2D′

t
tm−n‖v‖n

(3.9)

for m ≥ n. Similarly, it follows from (3.7) and (3.8) that

‖A(m, n)Qnv‖m ≤
N2D′

t
tn−m‖v‖n (3.10)

for m < n. By (3.9) and (3.10), there exists D > 0 such that (3.3) and (3.4) hold taking λ = t
and µ = 1/t. This completes the proof of the theorem.
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4 Nonuniformly hyperbolic sets

Now we consider an elaboration of the situation considered in Section 3. Namely, we char-
acterize the notion of a nonuniformly hyperbolic set in terms of the invertibility of certain
linear operators. More precisely, to each trajectory f n(x) of a nonuniformly hyperbolic set
of a diffeomorphism f one can associate a linear operator defined in terms of the sequence
of tangent spaces d f n(x) f (see the discussion after Definition 3.1). Moreover, each trajectory
admits an exponential dichotomy with respect to the same sequence of tangent spaces and so
it is natural to use arguments that are an elaboration of those in the former section.

4.1 Basic notions

Let M be a compact Riemannian manifold and let f : M→ M be a C1 diffeomorphism.

Definition 4.1. An f -invariant measurable set Λ ⊂ M is said to be nonuniformly hyperbolic if
there exist constants 0 < λ < 1 < µ and a d f -invariant splitting

Tx M = Es(x)⊕ Eu(x)

for x ∈ Λ such that given ε > 0, there exist measurable functions C, K : Λ→ R+ such that for
each x ∈ Λ:

1. for v ∈ Es(x) and n ≥ 0,

‖dx f nv‖ f n(x) ≤ C(x)λneεn‖v‖x; (4.1)

2. for v ∈ Eu(x) and n ≥ 0,

‖dx f−nv‖ f−n(x) ≤ C(x)µ−neεn‖v‖x; (4.2)

3.
∠(Es(x), Eu(x)) ≥ K(x); (4.3)

4. for n ∈ Z,
C( f n(x)) ≤ C(x)eε|n| and K( f n(x)) ≥ K(x)e−ε|n|. (4.4)

We note that a nonuniform hyperbolic set gives rise naturally to a parameterized family
of exponential dichotomies with respect to a sequence of norms. More precisely, to each
trajectory one can associate an exponential dichotomy (see [2]).

Proposition 4.2. Let Λ ⊂ M be a nonuniformly hyperbolic set. Then for each ε > 0 such that
λeε < 1 < µe−ε there exists a norm ‖·‖′ = ‖·‖ε on TΛ M such that for each x ∈ Λ the sequence of
linear operators

An = d f n(x) f : Tf n(x)M→ Tf n+1(x)M

admits an exponential dichotomy with respect to the norms ‖·‖′f n(x).

Alternatively, Proposition 4.2 can be obtained as a consequence of the proof of Theorem 4.3
below (the proof introduces a particular norm that is also adapted to our characterization of
nonuniformly hyperbolic sets).
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4.2 Characterization of nonuniformly hyperbolic sets

Given an admissible Banach sequence space B and a norm ‖·‖′ on the tangent bundle TΛ M,
for each x ∈ Λ we denote by Yx the set of all sequences µ = (µn)n∈Z with µn ∈ Txn M, where
xn = f n(x), such that (‖µn‖′xn

)n∈Z ∈ B. One can easily verify that Yx is a Banach space with
the norm

‖µ‖ = ‖(‖µn‖′xn
)n∈Z‖B.

Finally, we define a linear operator Rx by

(Rxµ)n = µn − dxn−1 f µn−1, n ∈ Z,

on the domain formed by all µ = (µn)n∈Z ∈ Yx such that Rxµ ∈ Yx.

Theorem 4.3. Let Λ ⊂ M be a nonuniformly hyperbolic set and let B be an admissible Banach
sequence space. Then there exists ε0 > 0 such that for every ε ∈ (0, ε0) there is a norm ‖·‖′ = ‖·‖ε on
TΛ M and a measurable function G : Λ→ R+ such that for each x ∈ Λ:

1.
1
2
‖v‖x ≤ ‖v‖ε

x ≤ G(x)‖v‖x, v ∈ Tx M; (4.5)

2.
G( f n(x)) ≤ e2ε|n|G(x), n ∈ Z; (4.6)

3. Rx : Yx → Yx is a well defined, bounded and invertible linear operator;

4. there exists a constant D > 0 (independent of ε and x) such that

‖R−1
x ‖ ≤ D. (4.7)

Proof. Since M is compact and f is continuous, there exists A > 0 such that ‖dx f ‖ ≤ A and
‖dx f−1‖ ≤ A for x ∈ M. Without loss of generality, one may assume that 1/A ≤ λ and µ ≤ A
(since otherwise one can simply increase A). Take ε0 > 0 such that λeε0 < 1 < µe−ε0 . For each
ε ∈ (0, ε0) we introduce an adapted norm ‖·‖ε on TΛ M. For v ∈ Es(x), let

‖v‖ε
x = sup

n≥0

(
λ−ne−εn‖dx f nv‖ f n(x)

)
+ sup

n<0

(
eεn An‖dx f n‖ f n(x)

)
.

It follows from (4.1) that

‖v‖x ≤ ‖v‖ε
x ≤ (C(x) + 1)‖v‖x for v ∈ Es(x). (4.8)

Moreover,

‖dx f v‖ε
f (x) = sup

n≥0

(
λ−ne−εn‖dx f n+1v‖ f n+1(x)

)
+ sup

n<0

(
eεn An‖dx f n+1v‖ f n+1(x)

)
= λeε sup

n≥0

(
λ−(n+1)e−ε(n+1)‖dx f n+1v‖ f n+1(x)

)
+

1
A

e−ε sup
n<0

(
An+1eε(n+1)‖dx f n+1v‖ f n+1(x)

)
≤ λeε‖v‖ε

x

(4.9)
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for v ∈ Es(x). Similarly, for v ∈ Eu(x), let

‖v‖ε
x = sup

n≤0

(
µ−neεn‖dx f nv‖ f n(x)

)
+ sup

n>0

(
A−ne−εn‖dx f nv‖ f n(x)

)
.

It follows from (4.2) that

‖v‖x ≤ ‖v‖ε
x ≤ (C(x) + 1)‖v‖x for v ∈ Eu(x). (4.10)

Moreover,

‖dx f−1v‖ε
f−1(x) = sup

n≤0

(
µ−neεn‖dx f n−1v‖ f n−1(x)

)
+ sup

n>0

(
e−εn A−n‖dx f n−1v‖ f n−1(x)

)
=

1
µ

eε sup
n≤0

(
µ−(n−1)eε(n−1)‖dx f n−1v‖ f n−1(x)

)
+

1
A

e−ε sup
n>0

(
e−ε(n−1)A−(n−1)‖dx f n−1v‖ f n−1(x)

)
≤ 1

µ
eε‖v‖ε

x

(4.11)

for v ∈ Eu(x). One can show in a similar manner that

‖dx f v‖ε
f (x) ≤ A(eε + 1)‖v‖ε

x for v ∈ Eu(x). (4.12)

For an arbitrary v ∈ Tx M, we define

‖v‖ε
x = max

{
‖vs‖ε

x, ‖vu‖ε
x
}

,

where v = vs + vu with vs ∈ Es(x) and vu ∈ Eu(x). It follows from (4.3), (4.8) and (4.10) that

1
2
‖v‖x ≤ ‖v‖ε

x ≤
C(x) + 1

K(x)
‖v‖x for v ∈ Tx M.

Hence, (4.5) holds taking G(x) = (C(x) + 1)/K(x). Moreover, it follows from (4.4) that (4.6)
holds. Finally, it follows from (4.9) and (4.12) that

‖dx f v‖ε
f (x) ≤ A(eε + 1)‖v‖ε

x (4.13)

for x ∈ Λ and v ∈ Tx M.
Now let P(x) : Tx M → Es(x) and Q(x) : Tx M → Eu(x) be the projections associated to the

decomposition Tx M = Es(x)⊕ Eu(x).

Lemma 4.4. There exists a constant Z > 0 (independent of ε and x) such that

‖P(x)v‖ε
x ≤ Z‖v‖ε

x and ‖Q(x)v‖ε
x ≤ Z‖v‖ε

x (4.14)

for x ∈ Λ and v ∈ Tx M.

Proof of the lemma. For each x ∈ Λ let

γε
x = inf

{
‖vs + vu‖ε

x : ‖vs‖ε
x = ‖vu‖ε

x = 1, vs ∈ Es(x), vu ∈ Eu(x)
}

.
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Take a vector v ∈ Tx M such that Pv 6= 0 and Qv 6= 0, where P = P(x) and Q = Q(x). Then

γε
x ≤

∥∥∥∥ Pv
‖Pv‖ε

x
+

Qv
‖Qv‖ε

x

∥∥∥∥ε

x
=

1
‖Pv‖ε

x

∥∥∥∥Pv +
‖Pv‖ε

x
‖Qv‖ε

x
Qv
∥∥∥∥ε

x

=
1

‖Pv‖ε
x

∥∥∥∥v +
‖Pv‖ε

x − ‖Qv‖ε
x

‖Qv‖ε
x

Qv
∥∥∥∥ε

x

≤ 2‖v‖ε
x

‖Pv‖ε
x

and thus,

‖Pv‖ε
x ≤

2
γε

x
‖v‖ε

x

for v ∈ Tx M. In order to estimate γε
x, take vs ∈ Es(x), vu ∈ Eu(x) such that ‖vs‖ε

x = ‖vu‖ε
x = 1.

It follows from (4.9), (4.11) and (4.13) (recall that ε < ε0) that

‖vs + vu‖ε
x ≥

1
A(eε0 + 1)

‖dx f (vs + vu)‖ε
f (x)

≥ 1
A(eε0 + 1)

(
‖dx f vu‖ε

f (x) − ‖dx f vs‖ε
f (x)
)

≥ 1
A(eε0 + 1)

(µe−ε0 − λeε0)

and thus,

γε
x ≥

1
A(eε0 + 1)

(µe−ε0 − λeε0).

Therefore, (4.14) holds taking

Z =
2A(eε0 + 1)
µe−ε0 − λeε0

.

This completes the proof of the lemma.

Now take x ∈ Λ. It follows from (4.13) that Rx is a well defined bounded linear operator
on Yx. We first show that it is onto. Let µ = (µn)n∈Z ∈ Yx. By Lemma 4.4, we have µs =

(µs
n)n∈Z ∈ Yx and µu = (µu

n)n∈Z ∈ Yx, where

µs
n = P( f n(x))µn and µu

n = Q( f n(x))µn.

For each n ∈ Z, let

ξs
n = ∑

m≥0
dxn−m f mµs

n−m

and

ξu
n = − ∑

m≥1
dxn+m f−mµu

n+m.

It follows from (2.1), (4.9), (4.11) and (4.14) (since ε < ε0) that ξs = (ξs
n)n∈Z and ξu = (ξu

n)n∈Z

belong to Yx. Moreover,

‖ξs‖ ≤ 1
1− λeε0

Z‖µ‖ and ‖ξu‖ ≤ 1
µe−ε0 − 1

Z‖µ‖
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for n ∈ Z. Therefore, ξ = (ξn)n∈Z, where ξn = ξs
n + ξu

n, belongs to Yx and

‖ξ‖ ≤ Z
(

1
1− λeε0

+
1

µe−ε0 − 1

)
‖µ‖. (4.15)

Moreover, one can easily verify that Rxξ = µ.
Now we show that Rx is injective. Assume that Rxξ = 0 for some ξ = (ξn)n∈Z ∈ Yx. Then

ξn = dxn−1 f for n ∈ Z and hence, ξs
n = dxn−1 f ξs

n−1 and ξu
n = dxn−1 f ξu

n−1 for n ∈ Z. For each
k ∈ Z, it follows from (4.9) that

‖ξs
k‖ε

xk
≤ (λeε)m‖ξs

k−m‖ε
xk−m
≤ NZ

αB
(λeε0)m‖ξ‖

for m ≥ 0. Letting m → +∞, since λeε0 < 1 we obtain ξs
k = 0. Similarly, ξu

k = 0 for k ∈ Z and
thus ξ = 0. This shows that Rx is invertible. In addition, it follows from (4.15) that there exists
a constant D > 0 (independent on x and ε) such that (4.7) holds. This completes the proof of
the theorem.

Now we establish the converse of Theorem 4.3.

Theorem 4.5. Let Λ ⊂ M be an f -invariant measurable set and let B be an admissible Banach sequence
space. Assume that there exist D > 0 and ε0 > 0 such that for each ε ∈ (0, ε0) there is a norm ‖·‖ε on
TΛ M and a measurable function G : Λ→ R+ such that for each x ∈ Λ:

1. (4.5) and (4.6) hold;

2. Rx : Yx → Yx is a well defined bounded invertible linear operator and (4.7) holds.

Then Λ is a nonuniformly hyperbolic set.

Proof. Take x ∈ Λ and v ∈ Tx M. We define µ = (µn)n∈Z by µ0 = v and µn = 0 for n 6= 0.
Clearly, µ ∈ Yx. Now take ξ = (ξn)n∈Z ∈ Yx such that Rxξ = µ. It can be written in the form

ξn =

{
dxn−1 f ξn−1, n 6= 0,

dx−1 f−1 + v, n = 0.

We will show that v = vs + vu, where vs = ξ0 and vu = −dx−1 f ξ−1 is the hyperbolic splitting.
For each z ≥ 1 we define an operator B(z) on Yx by

(B(z)ν)m =

{
zνm − dxm−1 f νm−1 if m ≤ 0,
1
z νm − dxm−1 f νm−1νm−1 if m > 0.

Clearly,
‖(B(z)− Rx)ν‖ ≤ (z− 1)‖ν‖

for ν ∈ Yx and z ≥ 1. Therefore, B(z) is invertible whenever 1 ≤ z < 1 + 1/D, and

‖B(z)−1‖ ≤ 1
D−1 − (z− 1)

.

Now take λ ∈ (0, 1) (independently on ε) such that λ−1 < 1+ 1/D and take ξ∗ ∈ Yx such that
B(λ−1)ξ∗ = µ. Writing

D′ =
1

D−1 − (λ−1 − 1)
,
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we obtain
‖ξ∗‖ = ‖B(λ−1)−1µ‖ ≤ D′‖µ‖ = D′αB‖v‖ε

x.

For each m ∈ Z, let ξm = λ|m|−1ξ∗m and ξ = (ξm)m∈Z. Clearly, ξ ∈ Yx. Moreover, one can
easily verify that Rxξ = µ and hence ξ = ξ. Thus,

‖ξm‖ε
xm

= ‖ξm‖ε
xm

= λ|m|−1‖ξ∗m‖ε
xm
≤ D′Nλ|m|−1‖v‖ε

x

for m ∈ Z. Finally, it follows from (4.5) that

‖dx f mvs‖ ≤ C(x)λm‖v‖ and ‖dx f−mvu‖ ≤ C(x)λm‖v‖

for m ≥ 1, where C(x) = 2D′NG(x)λ−1.
Now let Es(x) and Eu(x) be the sets, respectively, of all vectors vs and vu constructed above.

These are d f -invariant subspaces of Tx M and are uniquely defined (and so independent of ε).
Indeed, take v ∈ Tx M and let v = vs + vu with vs ∈ Es(x) and vu ∈ Eu(x). We define
µ = (µn)n∈Z by µ0 = dx f v and µn = 0 for n 6= 0. Clearly, µ ∈ Yf (x). Moreover, we define
ξ = (ξn)n∈Z by ξn = dx f n+1vs for n ≥ 0 and ξn = −dx f n+1vu for n < 0. Then ξ ∈ Yf (x) (this
is a consequence of the fact that the sequence ξ constructed above belongs to Yx). Finally, it is
easy to check that R f (x)ξ = µ. This implies that

ξ0 = dx f vs ∈ Es( f (x)) and − dx f ξ−1 = dx f vu ∈ Eu( f (x))

is the hyperbolic splitting of dx f v and so the decomposition is d f -invariant.
We have

‖vs‖ε
x = ‖ξ0‖ε

x ≤
1

αB
‖ξ‖ ≤ D

αB
‖µ‖ = D‖v‖ε

x

and thus,
‖vu‖ε

x = ‖v− vs‖ε
x ≤ ‖v‖ε

x + ‖vs‖ε
x ≤ (1 + D)‖v‖ε

x.

By (4.5), we obtain

‖vs‖x ≤
1

K(x)
‖v‖x and ‖vu‖x ≤

1
K(x)

‖v‖x,

where K(x) = 1/((2 + 2D)G(x)). It follows readily from (4.6) that the functions C and K
satisfy (4.4) with ε replaced by 2ε. This shows that the set Λ is nonuniformly hyperbolic.
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[1] L. Barreira, D. Dragičević, C. Valls, Exponential dichotomies with respect to a
sequence of norms and admissibility, Internat. J. Math. 25(2014), 1450024, 20 pp.
MR3189781; url

http://www.ams.org/mathscinet-getitem?mr=3189781
http://dx.doi.org/10.1142/S0129167X14500244


Admissibility and nonuniformly hyperbolic sets 15

[2] L. Barreira, Ya. Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and its
Applications, Vol. 115, Cambridge University Press, Cambridge, 2007. MR2348606; url

[3] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equa-
tions, Mathematical Surveys and Monographs, Vol. 70, American Mathematical Society,
Providence, RI, 1999. MR1707332; url

[4] Ju. Dalec
′
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