SPECTRAL ANALYSIS OF AN OPERATOR ASSOCIATED WITH LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS *

SATORU MURAKAMI † and TOSHIKI NAITO, NGUYEN VAN MINH ‡

Department of Applied Mathematics, Okayama University of Science, Okayama 700-0005, Japan E-mail: murakami@xmath.ous.ac.jp

and

Department of Mathematics, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan E-mail: naito@e-one.uec.ac.jp ; minh@matha.e-one.uec.ac.jp

1. INTRODUCTION

In this paper, we treat the (autonomous) linear functional differential equation

$$\dot{x}(t) = L(x_t),\tag{1}$$

where L is a bounded linear operator mapping a uniform fading memory space $\mathcal{B} = \mathcal{B}((-\infty, 0]; \mathbb{C}^n)$ into \mathbb{C}^n , and study the admissibility of Eq. (1) for a translation invariant function space \mathcal{M} which consists of functions whose spectrum is contained in a closed set Λ in \mathbb{R} . In case of $\Lambda = \mathbb{R}$ or $\Lambda = \{2k\pi/\omega : k \in \mathbb{Z}\}$, the problem for the admissibility is reduced to the one for the existence of bounded solutions, almost periodic solutions or ω -periodic solutions of the equation

$$\dot{x}(t) = L(x_t) + f(t)$$

with the forced function f(t) which is bounded, almost periodic or ω -periodic, and there are many results on the problem (e.g., [1], [3], [5], [7, 8]). In this paper, we study the problem for a general set Λ . Roughly speaking, we solve the problem by determining the spectrum of an operator $D_{\mathcal{M}} - \mathcal{L}_{\mathcal{M}}$ which is associated with Eq. (1).

^{*}This paper is in final form and no version of it will be submitted for publication elsewhere.

[†]Partly supported in part by Grant-in-Aid for Scientific Research (C), No.11640191, Japanese Ministry of Education, Science, Sports and Culture.

[‡]On leave from the Department of Mathematics, University of Hanoi, 90 Nguyen Trai, Hanoi, Vietnam.

2. UNIFORM FADING MEMORY SPACES AND SOME PRELIMINARIES

In this section we explain uniform fading memory spaces which are employed throughout this paper, and give some preliminary results.

Let \mathbf{C}^n be the *n*-dimensional complex Euclidean space with norm $|\cdot|$. For any interval $J \subset \mathbf{R} := (-\infty, \infty)$, we denote by $C(J; \mathbf{C}^n)$ the space of all continuous functions mapping J into \mathbf{C}^n . Moreover, we denote by $\mathrm{BC}(J; \mathbf{C}^n)$ the subspace of $C(J; \mathbf{C}^n)$ which consists of all bounded functions. Clearly $\mathrm{BC}(J; \mathbf{C}^n)$ is a Banach space with the norm $|\cdot|_{\mathrm{BC}(J;\mathbf{C}^n)}$ defined by $|\phi|_{\mathrm{BC}(J;\mathbf{C}^n)} = \sup\{|\phi(t)| : t \in J\}$. If $J = \mathbf{R}^- := (-\infty, 0]$, then we simply write $\mathrm{BC}(J; \mathbf{C}^n)$ and $|\cdot|_{\mathrm{BC}(J;\mathbf{C}^n)}$ as BC and $|\cdot|_{\mathrm{BC}}$, respectively. For any function $x : (-\infty, a) \mapsto \mathbf{C}^n$ and t < a, we define a function $x_t : \mathbf{R}^- \mapsto \mathbf{C}^n$ by $x_t(s) = x(t+s)$ for $s \in \mathbf{R}^-$. Let $\mathcal{B} = \mathcal{B}(\mathbf{R}^-; \mathbf{C}^n)$ be a complex linear space of functions mapping $\mathbf{R}^$ into \mathbf{C}^n with a complete seminorm $|\cdot|_{\mathcal{B}}$. The space \mathcal{B} is assumed to have the following properties:

(A1) There exist a positive constant N and locally bounded functions $K(\cdot)$ and $M(\cdot)$ on $\mathbf{R}^+ := [0, \infty)$ with the property that if $x : (-\infty, a) \mapsto \mathbf{C}^n$ is continuous on $[\sigma, a)$ with $x_{\sigma} \in \mathcal{B}$ for some $\sigma < a$, then for all $t \in [\sigma, a)$,

(ii)
$$x_t$$
 is continuous in t (w.r.t. $|\cdot|_{\mathcal{B}}$).

(iii) $N|x(t)| \le |x_t|_{\mathcal{B}} \le K(t-\sigma) \sup_{\sigma \le s \le t} |x(s)| + M(t-\sigma)|x_{\sigma}|_{\mathcal{B}}.$

(A2) If $\{\phi^k\}$, $\phi^k \in \mathcal{B}$, converges to ϕ uniformly on any compact set in \mathbb{R}^- and if $\{\phi^k\}$ is a Cauchy sequence in \mathcal{B} , then $\phi \in \mathcal{B}$ and $\phi^k \to \phi$ in \mathcal{B} .

The space \mathcal{B} is called a uniform fading memory space, if it satisfies (A1) and (A2) with $K(\cdot) \equiv K$ (a constant) and $M(\beta) \to 0$ as $\beta \to \infty$ in (A1). A typical one for uniform fading memory spaces is given by the space

$$C_{\gamma} := C_{\gamma}(\mathbf{C}^n) = \{ \phi \in C(\mathbf{R}^-; \mathbf{C}^n) : \lim_{\theta \to -\infty} |\phi(\theta)| e^{\gamma \theta} = 0 \}$$

which is equipped with norm $|\phi|_{C_{\gamma}} = \sup_{\theta < 0} |\phi(\theta)| e^{\gamma \theta}$, where γ is a positive constant.

It is known [2, Lemma 3.2] that if \mathcal{B} is a uniform fading memory space, then BC $\subset \mathcal{B}$ and

$$|\phi|_{\mathcal{B}} \le K |\phi|_{\mathrm{BC}}, \qquad \phi \in \mathrm{BC}.$$
 (2)

For other properties of uniform fading memory spaces, we refer the reader to the book [4].

⁽i) $x_t \in \mathcal{B}$,

We denote by BUC($\mathbf{R}; \mathbf{C}^n$) the space of all bounded and uniformly continuous functions mapping \mathbf{R} into \mathbf{C}^n . BUC($\mathbf{R}; \mathbf{C}^n$) is a Banach space with the supremum norm which will be denoted by $|| \cdot ||$. The spectrum of a given function $f \in \text{BUC}(\mathbf{R}; \mathbf{C}^n)$ is defined as the set

$$sp(f) := \{\xi \in \mathbf{R} : \forall \epsilon > 0 \ \exists u \in L^1(\mathbf{R}), \ supp \ \tilde{u} \subset (\xi - \epsilon, \xi + \epsilon), \ u * f \neq 0\} \ ,$$

where

$$u * f(t) := \int_{-\infty}^{+\infty} u(t-s)f(s)ds \quad ; \ \tilde{u}(s) := \int_{-\infty}^{\infty} e^{-ist}u(t)dt.$$

We collect some main properties of the spectrum of a function, which we will need in the sequel, for the reader's convenience. For the proof we refer the reader to [6], [10-11].

Proposition 1 The following statements hold true:

In the following we always assume that $\mathcal{B} = \mathcal{B}(\mathbf{R}^-; \mathbf{C}^n)$ is a uniform fading memory space. For any bounded linear functional $L : \mathcal{B} \mapsto \mathbf{C}^n$ we define an operator \mathcal{L} by

$$(\mathcal{L}f)(t) = L(f_t), \qquad t \in \mathbf{R},$$

for $f \in BUC(\mathbf{R}; \mathbf{C}^n)$. It follows from (2) that

$$\begin{aligned} |(\mathcal{L}f)(t) - (\mathcal{L}f)(s)| &\leq ||L|||f_t - f_s|_{\mathcal{B}} \\ &\leq K||L|||f_t - f_s|_{\mathrm{BC}} \end{aligned}$$

and hence $\mathcal{L}f \in BUC(\mathbf{R}; \mathbf{C}^n)$. Consequently, \mathcal{L} is a bounded linear operator on $BUC(\mathbf{R}; \mathbf{C}^n)$.

For any closed set $\Lambda \subset \mathbf{R}$, we set

$$\Lambda(\mathbf{C}^n) = \{ f \in \mathrm{BUC}(\mathbf{R}; \mathbf{C}^n) : sp(f) \subset \Lambda \}.$$

From (iii)–(vi) of Proposition 1, we can see that $\Lambda(\mathbf{C}^n)$ is a translation-invariant closed subspace of BUC($\mathbf{R}; \mathbf{C}^n$).

Proposition 2 Let Λ be a closed set in **R**. Then the space $\Lambda(\mathbf{C}^n)$ is invariant under the operator \mathcal{L} .

Proof Let $f \in \text{BUC}(\mathbf{R}; \mathbf{C}^n)$. It suffices to establish that $sp(\mathcal{L}f) \subset sp(f)$. Let $\xi \notin sp(f)$. There is an $\epsilon > 0$ with the property that u * f = 0 for any $u \in L^1(\mathbf{R})$ such that $supp \ \tilde{u} \subset (\xi - \epsilon, \xi + \epsilon)$. Let v be any element in $L^1(\mathbf{R})$ such that $supp \ \tilde{v} \subset (\xi - \epsilon, \xi + \epsilon)$. Since

$$\int_{-\infty}^{\infty} v(t-s)f_s(\theta)ds = \int_{-\infty}^{\infty} v(t-s)f(s+\theta)ds$$
$$= (v*f)(t+\theta) = 0$$

for $\theta \leq 0$, (A2) yields that $\int_{-\infty}^{\infty} v(t-s) f_s ds = 0$ in \mathcal{B} . Hence

$$(v * \mathcal{L}f)(t) = \int_{-\infty}^{\infty} v(t-s)L(f_s)ds$$
$$= L(\int_{-\infty}^{\infty} v(t-s)f_sds)$$
$$= 0,$$

which shows that $\xi \notin sp(\mathcal{L}f)$.

3. SPECTRUM OF AN OPERATOR ASSOCIATED WITH FUNCTIONAL DIFFERENTIAL EQUATIONS

We consider the linear functional differential equation

$$\dot{x}(t) = L(x_t),\tag{1}$$

where L is a bounded linear operator mapping a uniform fading memory space $\mathcal{B} = \mathcal{B}(\mathbf{R}^-; \mathbf{C}^n)$ into \mathbf{C}^n . A translation-invariant space $\mathcal{M} \subset \text{BUC}(\mathbf{R}; \mathbf{C}^n)$ is said to be admissible with respect to Eq. (1), if for any $f \in \mathcal{M}$, the equation

$$\dot{x}(t) = L(x_t) + f(t)$$

possesses a unique solution which belongs to \mathcal{M} . Let Λ be a closed set in \mathbf{R} . An aim in this section is to obtain a condition under which the subspace $\Lambda(\mathbf{C}^n)$ introduced in the previous section is admissible with respect to Eq. (1). To do this, we first introduce the operators \mathcal{D}_{Λ} and \mathcal{L}_{Λ} associated with Eq. (1):

$$\mathcal{D}_{\Lambda} := (d/dt)|_{D(\mathcal{D}_{\Lambda})}$$

 $\mathcal{L}_{\Lambda} := \mathcal{L}|_{\Lambda(\mathbf{C}^n)},$

where

$$D(\mathcal{D}_{\Lambda}) = \{ u \in \Lambda(\mathbf{C}^n) : du/dt \in \Lambda(\mathbf{C}^n) \}.$$

Clearly, the admissibility of $\Lambda(\mathbf{C}^n)$ with respect to Eq. (1) is equivalent to the invertibility of the operator $\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda}$ in $\Lambda(\mathbf{C}^n)$. In fact, we will determine the spectrum $\sigma(\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda})$ of $\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda}$ in Theorem 1, and as a consequence of Theorem 1, we will obtain a condition for $\Lambda(\mathbf{C}^n)$ to be admissible with respect to Eq. (1).

Before stating Theorem 1, we prepare some notation. For any $\lambda \in \Lambda$, we define a function $\omega(\lambda) : \mathbf{R}^- \mapsto \mathbf{C} := \mathbf{C}^1$ by

$$[\omega(\lambda)](\theta) = e^{i\lambda\theta}, \quad \theta \in \mathbf{R}^-.$$

Because \mathcal{B} is a uniform fading memory space, it follows that $\omega(\lambda)a \in \mathcal{B}$ for any (column) vector $a \in \mathbb{C}^n$. In particular, we get $\omega(\lambda)e_i \in \mathcal{B}$ for $i = 1, \dots, n$, where e_i is the element in \mathbb{C}^n whose *i*-th component is 1 and the other components are 0. We denote by *I* the $n \times n$ unit matrix, and define an $n \times n$ matrix by

$$(L(\omega(\lambda)e_1), \cdots, L(\omega(\lambda)e_n)) =: L(\omega(\lambda)I).$$

Theorem 1 Let Λ be a closed subset of \mathbf{R} , and let \mathcal{D}_{Λ} and \mathcal{L}_{Λ} be the ones introduced above. Then the following relation holds:

$$\sigma(\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda}) = \{ \mu \in \mathbf{C} : \det[(i\lambda - \mu)I - L(\omega(\lambda)I)] = 0 \text{ for some } \lambda \in \Lambda \} \ (=: (\tilde{i\Lambda})).$$

In order to establish the theorem, we need the following result for ordinary differential equations:

Lemma 1 Let Q be an $n \times n$ matrix such that $\sigma(Q) \subset i\mathbf{R} \setminus i\Lambda$. Then for any $f \in \Lambda(\mathbf{C}^n)$ there is a unique solution x_f in $\Lambda(\mathbf{C}^n)$ of the system of ordinary differential equations

$$\dot{x}(t) = Qx(t) + f(t).$$

Moreover, the map $f \in \Lambda(\mathbf{C}^n) \mapsto x_f \in \Lambda(\mathbf{C}^n)$ is continuous.

Proof. Without loss of generality, we may assume that Q is a matrix of Jordan canonical form

$$Q=\left(egin{array}{cccc} i\lambda_1&\delta_1&&0\ &i\lambda_2&\delta_2&\ &\dots&\dots&\ &&i\lambda_{n-1}&\delta_{n-1}\ 0&&&i\lambda_n \end{array}
ight),$$

where $\{\lambda_1, \dots, \lambda_n\} \cap \Lambda = \emptyset$, and $\delta_k = 0$ or 1 for $k = 1, \dots, n-1$. The equation for x_n is written as

$$\dot{x}_n(t) = i\lambda_n x_n(t) + f_n(t),$$

where $f_n \in \Lambda(\mathbf{C})$. By setting $z(t) = x_n(t)e^{-i\lambda_n t}$, we get

$$\dot{z}(t) = e^{-i\lambda_n t} f_n(t) =: g(t).$$

It follows that $0 \notin sp(g)$ because of $sp(g) \subset \Lambda - \{\lambda_n\}$. Then, by virtue of [6, Chapter 6, Theorem 3 and its proof] there exists an integrable function ϕ such that $z = \phi * g$ satisfies $\dot{z}(t) = g(t)$ (and hence $x_n(t) = z(t)e^{i\lambda_n t}$ is a solution of the above equation). From (vii) of Proposition 1 it follows that $sp(z) \subset sp(g)$, and hence $sp(x_n) \subset sp(g) + \{\lambda_n\} \subset \Lambda$. If y(t) is another solution in $\Lambda(\mathbf{C})$ of the above equation, then $x_n(t) - y(t) \equiv ae^{i\lambda_n t}$ for some a, and hence $sp(x_n - y) \subset \{\lambda_n\}$. Since $\lambda_n \notin \Lambda$, we must have $x_n - y \equiv 0$. Thus the above equation possesses a unique solution x_n in $\Lambda(\mathbf{C})$, which is represented as the convolution of f_n and an integrable function. For this x_n , let us consider the equation for x_{n-1}

$$\dot{x}_{n-1}(t) = i\lambda_{n-1}x_{n-1}(t) + \delta_{n-1}x_n(t) + f_{n-1}(t).$$

Since the term $\delta_{n-1}x_n(t) + f_{n-1}(t)$ belongs to the space $\Lambda(\mathbf{C})$, the above argument shows that the equation for x_{n-1} possesses a unique solution in $\Lambda(\mathbf{C})$, too. In fact, the solution is represented as

$$\psi_{n-1} * f_{n-1} + \psi_n * f_n$$

for some integrable functions ψ_{n-1} and ψ_n . Continue the procedure to the equations for x_{n-2}, \dots, x_2 and x_1 , subsequently. Then we conclude that the system possesses a unique solution in $\Lambda(\mathbb{C}^n)$, which is represented as the convolution Y * f for some $n \times n$ matrix-valued integrable function Y.

Proof of Theorem 1. In case where $|\cdot|_{\mathcal{B}}$ is a complete semi-norm of \mathcal{B} , one can prove the theorem by considering the quotient space $\mathcal{B}/|\cdot|_{\mathcal{B}}$. In order to avoid some cumbersome notation, we shall establish the theorem in case where $|\cdot|_{\mathcal{B}}$ is a norm and consequently \mathcal{B} is a Banach space.

Assume that $\mu \in \mathbf{C}$ satisfies $\det[(i\lambda - \mu)I - L(\omega(\lambda)I] = 0$ for some $\lambda \in \Lambda$. Then there is a nonzero $a \in \mathbf{C}^n$ such that $i\lambda a - L(\omega(\lambda)a) = \mu a$. Set $\phi(t) = e^{i\lambda t}a$, $t \in \mathbf{R}$. Then $\phi \in D(\mathcal{D}_{\Lambda})$, and

$$\begin{aligned} [(\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda})\phi](t) &= \phi(t) - L(\phi_t) \\ &= i\lambda e^{i\lambda t}a - L(e^{i\lambda t}\omega(\lambda)a) \\ &= e^{i\lambda t}(i\lambda a - L(\omega(\lambda)a)) \\ &= \mu\phi(t), \end{aligned}$$

or $(\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda})\phi = \mu\phi$. Thus $\mu \in P_{\sigma}(\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda})$. Hence $(\tilde{i\Lambda}) \subset \sigma(\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda})$.

Next we shall show that $(i\Lambda) \supset \sigma(\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda})$. To do this, it is sufficient to prove the claim:

Assertion If det[
$$(i\lambda - k)I - L(\omega(\lambda)I)$$
] $\neq 0$ ($\forall \lambda \in \Lambda$), then $k \in \rho(\mathcal{D}_{\Lambda} - \mathcal{L}_{\Lambda})$.

To establish the claim, we will show that for each $f \in \Lambda(\mathbf{C}^n)$, the equation

$$\dot{x}(t) = L(x_t) + kx(t) + f(t), \quad t \in \mathbf{R}$$
(3)

possesses a unique solution $x_f \in \Lambda(\mathbf{C}^n)$ and that the map $f \in \Lambda(\mathbf{C}^n) \mapsto x_f \in \Lambda(\mathbf{C}^n)$ is continuous. We first treat the homogeneous functional differential equation

$$\dot{x}(t) = L(x_t) + kx(t), \tag{4}$$

and consider the solution semigroup $T(t): \mathcal{B} \mapsto \mathcal{B}, t \geq 0$, of Eq. (4) which is defined as

$$T(t)\phi = x_t(\phi), \quad \phi \in \mathcal{B},$$

where $x(\cdot, \phi)$ denotes the solution of (4) through $(0, \phi)$ and x_t is an element in \mathcal{B} defined as $x_t(\theta) = x(t+\theta), \ \theta \leq 0$. Let G be the infinitesimal generator of the solution semigroup T(t). We assert that

$$i\mathbf{R} \cap \sigma(G) = \{i\lambda \in i\mathbf{R} : \det[(i\lambda - k)I - L(\omega(\lambda)I)] = 0\}.$$

Before proving the assertion, we first remark that the constant β introduced in [4, p. 127] satisfies $\beta < 0$ because \mathcal{B} is a uniform fading memory space. In particular, if λ is a real number, then $\operatorname{Re}(i\lambda) = 0 > \beta$, and hence $\omega(\lambda)b \in \mathcal{B}$ for any $b \in \mathbb{C}^n$ by [4, p. 137, Th. 2.4].

Now, let $i\lambda \in i\mathbf{R} \cap \sigma(G)$. Since $i\lambda$ is a normal point of G by [4, p. 141, Th. 2.7], we must have that $i\lambda \in P_{\sigma}(G)$. Then [4, p. 134, Th. 2.1] implies that there exists a nonzero $b \in \mathbf{C}^n$ such that $i\lambda b - L(\omega(\lambda)b) - kb = 0$, which shows that $i\lambda$ belongs to the set of the right hand side in the assertion. Conversely, assume that $i\lambda$ is an element of the set of the right hand side in the assertion. Then there is a nonzero $a \in \mathbf{C}^n$ such that $i\lambda a = ka + L(\omega(\lambda)a)$. Set $x(t) = e^{i\lambda t}a$, $t \in \mathbf{R}$. Then $x_t = e^{i\lambda t}\omega(\lambda)a$ and

$$\dot{x}(t) = i\lambda e^{i\lambda t}a = e^{i\lambda t}(ka + L(\omega(\lambda)a))$$
$$= kx(t) + L(x_t).$$

Thus x(t) is a solution of Eq. (4) satisfying $x_0 = \omega(\lambda)a$, and it follows that $T(t)\omega(\lambda)a = T(t)x_0 = x_t = e^{i\lambda t}\omega(\lambda)a$ for $t \ge 0$, which implies that $\omega(\lambda)a \in D(G)$ and $G(\omega(\lambda)a) = i\lambda\omega(\lambda)a$. Thus $i\lambda \in \sigma(G) \cap i\mathbf{R}$, and the assertion is proved.

Now consider the sets $\Sigma_C := \{\lambda \in \sigma(G) : \operatorname{Re}\lambda = 0\}$ and $\Sigma_U := \{\lambda \in \sigma(G) : \operatorname{Re}\lambda > 0\}$. Then the set $\Sigma = \Sigma_C \cup \Sigma_U$ is a finite set [4, p. 144, Prop. 3.2]. Corresponding to the set Σ , we get the decomposition of the space \mathcal{B} :

$$\mathcal{B} = S \oplus C \oplus U,$$

where S, C, U are invariant under T(t), the restriction $T(t)|_U$ can be extendable as a group, and there exist positive constants c_1 and α such that

$$\|T(t)|_{S}\| \le c_{1}e^{-\alpha t} \quad (t \ge 0),$$

$$\|T(t)|_{U}\| \le c_{1}e^{\alpha t} \quad (t \le 0)$$

([4, p. 145, Ths. 3.1, 3.3]). Let Φ be a basis vector in C, and let Ψ be the basis vector associated with Φ . From [4, p. 149, Cor. 3.8] we know that the C-component u(t) of the segment x_t for each solution $x(\cdot)$ of Eq. (3) is given by the relation $u(t) = \langle \Psi, \Pi_C x_t \rangle$ (where Π_C denotes the projection from \mathcal{B} onto C which corresponds to the decomposition of the space \mathcal{B}), and u(t) satisfies the ordinary differential equation

$$\dot{u}(t) = Qu(t) - \hat{\Psi}(0^{-})f(t),$$
(5)

where Q is a matrix such that $\sigma(Q) = \sigma(G) \cap i\mathbf{R}$ and the relation $T(t)\Phi = \Phi e^{tQ}$ holds. Moreover, $\hat{\Psi}$ is the one associated with the Riesz representation of Ψ . Indeed, $\hat{\Psi}$ is a normalized vector-valued function which is of locally bounded variation on $\mathbf{R}^$ satisfying $\langle \Psi, \phi \rangle = \int_{-\infty}^{0} \phi(\theta) d\hat{\Psi}(\theta)$ for any $\phi \in \mathrm{BC}(\mathbf{R}^-; \mathbf{C}^n)$ with compact support. Observe that $\Sigma_C \subset i\mathbf{R} \setminus i\Lambda$. Indeed, if $\mu \in \Sigma_C$, then $\mu = i\lambda$ for some $\lambda \in \mathbf{R}$, where $\det[(i\lambda - k)I - L(\omega(\lambda)I)] = 0$ by the preceding assertion. Hence we get $\lambda \notin \Lambda$ by the assumption of the claim, and $\mu \in i\mathbf{R} \setminus i\Lambda$, as required. This observation leads to $\sigma(Q) \cap i\Lambda = \emptyset$. Since $sp(\hat{\Psi}(0^-)f) \subset \Lambda$, lemma 1 implies that the ordinary differential equation (5) has a unique solution u satisfying $sp(u) \subset \Lambda$ and $||u|| \leq c_2 ||\hat{\Psi}(0^-)f|| \leq c_3 ||f||$ for some constants c_2 and c_3 . Consider a function $\xi : \mathbf{R} \mapsto \mathcal{B}$ defined by

$$\xi(t) = \int_{*-\infty}^{t} T^{**}(t-s)\Pi_{S}^{**}\Gamma f(s)ds + \Phi u(t) - \int_{*t}^{\infty} T^{**}(t-s)\Pi_{U}^{**}\Gamma f(s)ds,$$

where Γ is the one defined in [4, p. 118] and \int_* denotes the weak-star integration (cf. [4, p. 116]). If $t \ge 0$, then

$$T(t)\xi(\sigma) + \int_{*\sigma}^{t+\sigma} T^{**}(t+\sigma-s)\Gamma f(s)ds$$

= $T(t) [\int_{*-\infty}^{\sigma} T^{**}(\sigma-s)\Pi_{S}^{**}\Gamma f(s)ds + \Phi u(\sigma) - \int_{*\sigma}^{\infty} T^{**}(\sigma-s)\Pi_{U}^{**}\Gamma f(s)ds]$
+ $\int_{*\sigma}^{t+\sigma} T^{**}(t+\sigma-s)\Gamma f(s)ds$

$$\begin{split} &= \int_{*-\infty}^{\sigma} T^{**}(t+\sigma-s)\Pi_{S}^{**}\Gamma f(s)ds + \Phi e^{tQ}u(\sigma) - \int_{*\sigma}^{\infty} T^{**}(t+\sigma-s)\Pi_{U}^{**}\Gamma f(s)ds \\ &+ \int_{*\sigma}^{t+\sigma} T^{**}(t+\sigma-s)(\Pi_{S}^{**} + \Pi_{C}^{**} + \Pi_{U}^{**})\Gamma f(s)ds \\ &= \int_{*-\infty}^{t+\sigma} T^{**}(t+\sigma-s)\Pi_{S}^{**}\Gamma f(s)ds + \Phi [e^{tQ}u(\sigma) + \int_{\sigma}^{t+\sigma} e^{(t+\sigma-s)Q}(-\hat{\Psi}(0^{-})f(s))ds] \\ &- \int_{*t+\sigma}^{\infty} T^{**}(t+\sigma-s)\Pi_{U}^{**}\Gamma f(s)ds \\ &= \int_{*-\infty}^{t+\sigma} T^{**}(t+\sigma-s)\Pi_{S}^{**}\Gamma f(s)ds + \Phi u(t+\sigma) \\ &- \int_{*t+\sigma}^{\infty} T^{**}(t+\sigma-s)\Pi_{S}^{**}\Gamma f(s)ds \\ &= \xi(t+\sigma), \end{split}$$

where we used the relation $T^{**}(t)\Pi_C^{**}\Gamma = T^{**}(t)\Phi\langle\Psi,\Gamma\rangle = \Phi e^{tQ}(-\hat{\Psi}(0^-))$. Then [4, p. 121, Th. 2.9] yields that $x(t) := [\xi(t)](0)$ is a solution of (3). Define a $\psi \in \mathcal{B}^* \times \cdots \times \mathcal{B}^*$ (*n*-copies) by $\langle \psi, \phi \rangle = \phi(0), \ \phi \in \mathcal{B}$. Then

$$\begin{split} x(t) - \Phi(0)u(t) &= \langle \psi, \xi(t) - \Phi u(t) \rangle \\ &= \langle \psi, \int_{*-\infty}^{t} T^{**}(t-s)\Pi_{S}^{**}\Gamma f(s)ds - \int_{*t}^{\infty} T^{**}(t-s)\Pi_{U}^{**}\Gamma f(s)ds \rangle \\ &= \int_{-\infty}^{t} \langle \psi, T^{**}(t-s)\Pi_{S}^{**}\Gamma \rangle f(s)ds - \int_{t}^{\infty} \langle \psi, T^{**}(t-s)\Pi_{U}^{**}\Gamma \rangle f(s)ds \\ &= \int_{-\infty}^{\infty} Y(t-s)f(s)ds = Y * f(t), \end{split}$$

where $Y(\cdot) = \langle \psi, T^{**}(\cdot)\Pi_S^{**}\Gamma \rangle \chi_{[0,\infty)} - \langle \psi, T^{**}(\cdot)\Pi_U^{**}\Gamma \rangle \chi_{(-\infty,0]}$ and it is an $n \times n$ matrixvalued integrable function on **R**. Then $\sigma(x - \Phi(0)u) \subset \sigma(f) \subset \Lambda$ by (vii) of Proposition 1, and hence $x - \Phi(0)u \in \Lambda(\mathbf{C}^n)$. Thus we get $x \in \Lambda(\mathbf{C}^n)$ because of $sp(u) \subset \Lambda$. Moreover, the map $f \in \Lambda(\mathbf{C}^n) \mapsto x \in \Lambda(\mathbf{C}^n)$ is continuous.

Finally, we will prove the uniqueness of solutions of (3) in $\Lambda(\mathbf{C}^n)$. Let x be any solution of (3) which belongs to $\Lambda(\mathbf{C}^n)$. By [4, p. 120, Th. 2.8] the \mathcal{B} -valued function $\prod_S x_t$ satisfies the relation

$$\Pi_S x_t = T(t-\sigma)\Pi_S x_\sigma + \int_{*\sigma}^t T^{**}(t-s)\Pi_S^{**}\Gamma f(s)ds$$

for all $t \geq \sigma > -\infty$. Note that $\sup_{\sigma \in \mathbf{R}} |x_{\sigma}|_{\mathcal{B}} < \infty$. Therefore, letting $\sigma \to -\infty$ we get

$$\Pi_S x_t = \int_{*-\infty}^t T^{**}(t-s)\Pi_S^{**}\Gamma f(s)ds,$$

because

$$\lim_{\sigma \to -\infty} \int_{*\sigma}^{t} T^{**}(t-s) \Pi_{S}^{**} \Gamma f(s) ds = \int_{*-\infty}^{t} T^{**}(t-s) \Pi_{S}^{**} \Gamma f(s) ds$$

converges. Similarly, one gets

$$\Pi_U x_\sigma = -\int_{*\sigma}^{\infty} T^{**}(\sigma - s) \Pi_U^{**} \Gamma f(s) ds.$$

Also, since $\langle \Psi, x_t \rangle$ satisfies Eq. (5) and since $sp(\langle \Psi, x_t \rangle) \subset sp(x) \subset \Lambda$, it follows that $\Pi_C x_t = \Phi \langle \Psi, x_t \rangle = \Phi u(t)$ for all $t \in \mathbf{R}$ by the uniqueness of the solution of (5) in $\Lambda(\mathbf{C}^n)$. Consequently, we have $x_t \equiv \xi(t)$ or $x(t) \equiv [\xi(t)](0)$, which shows the uniqueness of the solution of (3) in $\Lambda(\mathbf{C}^n)$.

Corollary 1 Suppose that det $[i\lambda I - L(\omega(\lambda)I)] \neq 0$ for all $\lambda \in \Lambda$. Then Eq. (1) is admissible for $\mathcal{M} = \Lambda(\mathbb{C}^n)$.

Proof. The corollary is a direct consequence of Theorem 1, since $0 \notin \sigma(\mathcal{D}_{\mathcal{M}} - \mathcal{L}_{\mathcal{M}})$.

Corollary 2 Let Λ be a closed set in \mathbf{R} , and suppose that $det[(i\lambda - k)I - L(\omega(\lambda)I)] \neq 0$ for all $\lambda \in \Lambda$. Then there exists an $n \times n$ matrix-valued integrable function F such that

$$[(i\lambda - k)I - L(\omega(\lambda)I)]^{-1} = \tilde{F}(\lambda) := \int_{-\infty}^{\infty} F(t)e^{-i\lambda t}dt \qquad (\forall \lambda \in \Lambda).$$
(6)

Furthermore, for any $f \in \Lambda(\mathbf{C}^n)$ Eq. (3) possesses a unique solution in $\Lambda(\mathbf{C}^n)$ which is explicitly given by F * f.

Proof. As seen in the proof of Theorem 1, there exists an $n \times n$ matrix-valued integrable function Y such that $(\mathcal{D}_{\mathcal{M}} - \mathcal{B}_{\mathcal{M}} - k)^{-1}f - \Phi(0)u(t) = Y * f$ for all $f \in \mathcal{M} := \Lambda(\mathbb{C}^n)$. Furthermore, as pointed out in the proof of Lemma 1, there exists an integrable matrixvalued function F_1 such that $u = F_1 * f$ is a unique solution of (5) satisfying $sp(u) \subset \Lambda$ for each $f \in \mathcal{M}$. Set $F = Y + \Phi(0)F_1$. Then F is an $n \times n$ matrix-valued integrable function on \mathbb{R} , and F * f is a unique solution in \mathcal{M} of Eq. (3) for each $f \in \mathcal{M}$.

Now we shall prove the relation (6). Let $\lambda \in \Lambda$, and set $x^{j}(t) = F(t) * e^{i\lambda t}e_{j}$ for $j = 1, \dots, n$. We claim that

$$\tilde{F}(\lambda)e_j = \frac{1}{2T} \int_{s-T}^{s+T} x^j(t)e^{-i\lambda t} dt, \qquad j = 1, \cdots, n$$

for all $s \in \mathbf{R}$. Indeed, we get

$$\int_{s-T}^{s+T} x^{j}(t) e^{-i\lambda t} dt = \int_{s-T}^{s+T} (\int_{-\infty}^{\infty} F(\tau) e^{i\lambda(t-\tau)} d\tau) e^{-i\lambda t} dt \cdot e_{j}$$
$$= \int_{s-T}^{s+T} \int_{-\infty}^{\infty} F(\tau) e^{-i\lambda \tau} d\tau dt \cdot e_{j}$$
$$= 2T \tilde{F}(\lambda) e_{j}.$$

Since

$$\frac{1}{2T} \int_{-T}^{T} x_t^j(\theta) e^{-i\lambda t} dt = \frac{1}{2T} \int_{-T+\theta}^{T+\theta} x^j(\tau) e^{-i\lambda \tau} d\tau \cdot e^{i\lambda \theta} = [\omega(\lambda)](\theta) \tilde{F}(\lambda) e_j$$

for $\theta \leq 0$, (A2) implies that

$$\frac{1}{2T} \int_{-T}^{T} x_t^j e^{-i\lambda t} dt = \omega(\lambda) \tilde{F}(\lambda) e_j, \qquad j = 1, \cdots, n.$$

Then

$$\begin{aligned} \frac{1}{2T}(x^{j}(T)e^{-i\lambda T} - x^{j}(-T)e^{i\lambda T}) &= \frac{1}{2T}\int_{-T}^{T}\{-i\lambda x^{j}(t) + \dot{x}^{j}(t)\}e^{-i\lambda t}dt \\ &= \frac{1}{2T}\int_{-T}^{T}(-i\lambda x^{j}(t) + L(x_{t}^{j}) + kx^{j}(t) + e^{i\lambda t}e_{j})e^{-i\lambda t}dt \\ &= (k - i\lambda)\tilde{F}(\lambda)e_{j} + e_{j} + L(\omega(\lambda)\tilde{F}(\lambda)e_{j}) \\ &= [(k - i\lambda)I + L(\omega(\lambda)I)]\tilde{F}(\lambda)e_{j} + e_{j}.\end{aligned}$$

Letting $T \to \infty$ in the above, we get $0 = [(k-i\lambda)I + L(\omega(\lambda)I)]\tilde{F}(\lambda)e_j + e_j$ for $j = 1, \dots, n$, or $\tilde{F}(\lambda) = [(i\lambda - k)I - L(\omega(\lambda)I)]^{-1}$, as required.

We denote by $AP(\mathbf{C}^n)$ or AP the set of all almost periodic (continuous) functions $f : \mathbf{R} \mapsto \mathbf{C}^n$. The next result on the admissibility of $\Lambda(\mathbf{C}^n) \cap AP(\mathbf{C}^n)$ with respect to Eq. (1) is a direct consequence of Corollary 2, because $F * f \in AP$ whenever $f \in AP$ and F is integrable.

Corollary 3 Suppose that det $[i\lambda I - L(\omega(\lambda)I)] \neq 0$ for all $\lambda \in \Lambda$. Then Eq. (1) is admissible for $\Lambda(\mathbf{C}^n) \cap AP(\mathbf{C}^n)$.

The preceding corollary is a result in the non-critical case. In fact, if (1) is a scalar equation (that is, n = 1), our result is available even for the crical case.

Corollary 4 The following statements hold true for Eq. (1) with n = 1:

(i) Let $f \in AP(\mathbf{C})$ with discrete spectrum, and assume the following condition:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \overline{z(s)} f(s) ds = 0 \text{ for any almost periodic solution } z(t)$$

of Eq. (1) satisfying $sp(z) \subset sp(f)$.

Then the equation $\dot{x}(t) = L(x_t) + f(t)$ has an almost periodic solution.

(ii) Let $f \in BUC(\mathbf{R}; \mathbf{C})$ be a periodic function of period $\tau > 0$, and assume the

following condition:

$$\int_0^{\tau} \overline{z(s)} f(s) ds = 0 \text{ for any } \tau \text{-periodic solution } z(t) \text{ of Eq. (1)}.$$

Then the equation $\dot{x}(t) = L(x_t) + f(t)$ has a τ -periodic solution.

Proof. (ii) is a direct consequence of (i). We shall prove (i). To do this, it suffices to show that $i\lambda - L(\omega(\lambda)) \neq 0$ for any $\lambda \in sp(f)$. Suppose that $i\lambda = L(\omega(\lambda))$ for some $\lambda \in sp(f)$, and set $z(t) = e^{i\lambda t}$, $t \in \mathbf{R}$. As seen in the proof of Theorem 1, z(t) is a (periodic) solution of Eq. (1), and moreover $sp(z) \subset sp(f)$. Therefore, by the condition in the statement (i) we get $\lim_{T\to\infty} (1/T) \int_0^T f(s)e^{-i\lambda s}ds = 0$, which shows that λ is not an exponent of f(t). On the other hand, because sp(f) is discrete, any point in sp(f) must be an exponent of f(t). This is a contradiction.

4. APPLICATIONS

As an application, we consider the integro-differential equation

$$\dot{x}(t) = \int_0^\infty [dB(s)]x(t-s),$$
(7)

where B is an $n \times n$ matrix-valued function whose components are of bounded variation satisfying

$$\exists \gamma > 0: \ \int_0^\infty e^{\gamma s} d|B(s)| < \infty.$$

In order to set up Eq. (7) as an FDE on a uniform fading memory space, we take the space C_{γ} introduced in Section 2, and define a functional L on C_{γ} by

$$L(\phi) = \int_0^\infty [dB(s)]\phi(-s), \qquad \phi \in C_\gamma.$$

Then Eq. (7) is rewritten as Eq. (1) with $\mathcal{B} = C_{\gamma}$, and our previous results are applicable to Eq. (7):

Theorem 2 Suppose that det $[i\lambda I - \int_0^\infty [dB(s)]e^{-i\lambda s}] \neq 0$ for all $\lambda \in \Lambda$. Then Eq. (7) is admissible for the spaces $\Lambda(\mathbf{C}^n)$ and $\Lambda(\mathbf{C}^n) \cap AP(\mathbf{C}^n)$.

In fact, there exists an $n \times n$ matrix-valued integrable function F such that

$$[(i\lambda - k)I - \int_0^\infty [dB(s)]e^{-i\lambda s}]^{-1} = \tilde{F}(\lambda) \qquad (\forall \lambda \in \Lambda),$$

and for any $f \in \Lambda(\mathbb{C}^n)$, F * f is a unique solution in $\Lambda(\mathbb{C}^n)$ of the equation

$$\dot{x}(t) = \int_0^\infty [dB(s)]x(t-s) + f(t).$$

Finally, we consider the following integro-differential equation

$$\dot{x}(t) = Ax(t) + \int_0^\infty x(t-s)db(s)$$
(8)

in a Banach space X, where A is the infinitesimal generator of an analytic strongly continuous semigroup of linear operators on X, and $b : \mathbf{R}^+ \mapsto \mathbf{C}$ is a function of bounded variation satisfying

$$\exists \gamma > 0: \ \int_0^\infty e^{\gamma s} d|b(s)| < \infty.$$

In a similar way for Eq. (7), one can define the operator L on the uniform fading memory space $C_{\gamma}(X)$.

Now we denote by BUC(\mathbf{R} ; X), $\Lambda(X)$, AP(X), $\mathcal{D}_{\Lambda(X)}$, $\mathcal{L}_{\Lambda(X)}$, \cdots the ones corresponding to BUC(\mathbf{R} ; \mathbf{C}^n), $\Lambda(\mathbf{C}^n)$, $AP(\mathbf{C}^n)$, $\mathcal{D}_{\Lambda(\mathbf{C}^n)}$, $\mathcal{L}_{\Lambda(\mathbf{C}^n)}$, \cdots , and set $\mathcal{M}(\mathbf{C}) = \Lambda(\mathbf{C}) \cap AP(\mathbf{C})$ and $\mathcal{M}(X) = \Lambda(X) \cap AP(X)$. Then $\mathcal{M}(X)$ is a translation invariant closed subspace of BUC(\mathbf{R} ; X), and one can consider the operator $\mathcal{D}_{\mathcal{M}(X)} - \mathcal{L}_{\mathcal{M}(X)}$, together with the operator $\mathcal{D}_{\mathcal{M}(\mathbf{C})} - \mathcal{L}_{\mathcal{M}(\mathbf{C})}$.

Lemma 2 Under the notation explained above, the following relation holds:

$$\sigma(\mathcal{D}_{\mathcal{M}(X)} - \mathcal{L}_{\mathcal{M}(X)}) = \sigma(\mathcal{D}_{\mathcal{M}(\mathbf{C})} - \mathcal{L}_{\mathcal{M}(\mathbf{C})})$$

Proof. The inclusion $\sigma(\mathcal{D}_{\mathcal{M}(X)} - \mathcal{L}_{\mathcal{M}(X)}) \subset \sigma(\mathcal{D}_{\mathcal{M}(\mathbf{C})} - \mathcal{L}_{\mathcal{M}(\mathbf{C})})$ is an immediate consequence of Corollary 2 (cf. [9, Lemma 3.6]). We shall establish the converse inclusion. Let $k \in \sigma(\mathcal{D}_{\mathcal{M}(\mathbf{C})} - \mathcal{L}_{\mathcal{M}(\mathbf{C})})$, and assume that $k \notin \sigma(\mathcal{D}_{\mathcal{M}(X)} - \mathcal{L}_{\mathcal{M}(X)})$. It follows from Theorem 1 that $k = i\lambda - \int_0^\infty e^{-i\lambda s} db(s)$ for some $\lambda \in \Lambda$. Let $a \in X$ be any nonzero element, and define a function $f \in \Lambda(X)$ by $f(t) = e^{i\lambda t}a$, $t \in \mathbf{R}$. Then there is a unique solution x in $\mathcal{M}(X)$ of the equation

$$\dot{x}(t) = kx(t) + \int_0^\infty x(t-s)db(s) + f(t).$$
(9)

Since $x \in AP(X)$, the limit

$$\lim_{T \to \infty} \frac{1}{T} \int_{-s}^{T-s} x(t) e^{-i\lambda t} dt \ (=: x_{\lambda})$$

exists in X uniformly for $s \in \mathbf{R}$. From (9) we get the relation

$$\begin{aligned} [x(T)e^{-i\lambda T} - x(0)]/T &= -(i\lambda/T)\int_0^T x(t)e^{-i\lambda t}dt + (k/T)\int_0^T x(t)e^{-i\lambda t}dt \\ &+ (1/T)\int_0^T [\int_0^\infty x(t-s)db(s)]e^{-i\lambda t}dt + a, \end{aligned}$$

and hence letting $T \to \infty$ we get $[-i\lambda + k + \int_0^\infty e^{-i\lambda s} db(s)]x_\lambda + a = 0$, or a = 0. This is a contradiction. Hence we must have the inclusion $\sigma(\mathcal{D}_{\mathcal{M}(X)} - \mathcal{L}_{\mathcal{M}(X)}) \supset \sigma(\mathcal{D}_{\mathcal{M}(C)} - \mathcal{L}_{\mathcal{M}(C)})$.

For $\mathcal{M}(X) = \Lambda(X) \cap AP(X)$, we denote by $\mathcal{A}_{\mathcal{M}(X)}$ the operator $f \in \mathcal{M}(X) \mapsto Af(\cdot)$ with $D(\mathcal{A}) = \{f \in \mathcal{M}(X) : f(t) \in D(\mathcal{A}), Af(\cdot) \in \mathcal{M} \text{ for } \forall t \in \mathbf{R}\}$. For two (unbounded) commuting operators $\mathcal{D}_{\mathcal{M}(X)} - \mathcal{L}_{\mathcal{M}(X)}$ and $\mathcal{A}_{\mathcal{M}(X)}$, it is known (cf. [9, Theorem 2.2]) that

$$\sigma(\overline{\mathcal{D}_{\mathcal{M}(X)} - \mathcal{L}_{\mathcal{M}(X)} - \mathcal{A}_{\mathcal{M}(X)}}) \subset \sigma(\mathcal{D}_{\mathcal{M}(X)} - \mathcal{L}_{\mathcal{M}(X)}) - \sigma(\mathcal{A}_{\mathcal{M}(X)}),$$

here $\overline{(\cdots)}$ denotes the usual closure of the operator. Applying Lemma 2 and this relation, we get the following result on the admissibility of $\mathcal{M}(X)$ with respect to Eq. (8).

Theorem 3 Assume that $i\lambda - \int_0^\infty e^{-i\lambda s} db(s) \in \rho(A)$ for all $\lambda \in \Lambda$. Then for any $f \in \Lambda(X) \cap AP(X)$ the equation $\dot{x}(t) = Ax(t) + \int_0^\infty x(t-s)db(s) + f(t)$ has a unique (mild) solution in $\Lambda(X) \cap AP(X)$.

References

- [1] J.K. Hale, "Theory of Functional Differential Equations", Springer-Verlag, New York-Heidelberg-Berlin, 1977.
- [2] J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, *Funkcial. Ekvac.* 21 (1978), 11–41.
- [3] L. Hatvani and T. Krisztin, On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations, J. Diff. Eq. 97 (1992), 1–15.
- [4] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Math. 1473, Springer-Verlag, Berlin-New York 1991.
- [5] C. Langenhop, Periodic and almost periodic solutions of Volterra integral differential equations with infinite memory, J. Diff. Eq. 58 (1985), 391–403.
- [6] B.M. Levitan and V.V. Zhikov, "Almost Periodic Functions and Differential Equations", Moscow Univ. Publ. House 1978. English translation by Cambridge University Press 1982.
- [7] J.J. Massera and J.J. Schäffer, "Linear Differential Equations and Function Spaces", Academic Press, New York, 1966.

- [8] S. Murakami, Linear periodic functional differential equations with infinite delay, *Funkcial. Ekvac.* 29 (1986), N.3, 335–361.
- [9] S. Murakami, T. Naito and Nguyen V. Minh, Evolution semigroups and sums of commuting operators: a new approach to the admissibility theory of function spaces, J. Diff. Eq. (in press).
- [10] J. Prüss, "Evolutionary Integral Equations and Applications", Birkhäuser, Basel, 1993.
- [11] Q.P. Vu, Almost periodic solutions of Volterra equations, *Diff. Int. Eq.* 7 (1994), 1083–1093.
- [12] Q.P. Vu and E. Schüler, The operator equation AX XB = C, stability and asymptotic behaviour of differential equations, J. Diff. Eq. 145 (1998), 394–419.