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1. INTRODUCTION

In this paper, we treat the (autonomous) linear functional differential equation

ẋ(t) = L(xt), (1)

where L is a bounded linear operator mapping a uniform fading memory space B =

B((−∞, 0];Cn) into Cn, and study the admissibility of Eq. (1) for a translation invariant

function space M which consists of functions whose spectrum is contained in a closed

set Λ in R. In case of Λ = R or Λ = {2kπ/ω : k ∈ Z}, the problem for the admissibility

is reduced to the one for the existence of bounded solutions, almost periodic solutions

or ω-periodic solutions of the equation

ẋ(t) = L(xt) + f(t)

with the forced function f(t) which is bounded, almost periodic or ω-periodic, and there

are many results on the problem (e.g., [1], [3], [5], [7, 8] ). In this paper, we study the

problem for a general set Λ. Roughly speaking, we solve the problem by determining

the spectrum of an operator DM − LM which is associated with Eq. (1).
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istry of Education, Science, Sports and Culture.
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2. UNIFORM FADING MEMORY SPACES AND SOME

PRELIMINARIES

In this section we explain uniform fading memory spaces which are employed through-

out this paper, and give some preliminary results.

Let Cn be the n-dimensional complex Euclidean space with norm | · |. For any

interval J ⊂ R := (−∞,∞), we denote by C(J ;Cn) the space of all continuous functions

mapping J into Cn. Moreover, we denote by BC(J ;Cn) the subspace of C(J ;Cn) which

consists of all bounded functions. Clearly BC(J ;Cn) is a Banach space with the norm

| · |BC(J ;Cn) defined by |φ|BC(J ;Cn) = sup{|φ(t)| : t ∈ J}. If J = R− := (−∞, 0], then we

simply write BC(J ;Cn) and | · |BC(J ;Cn) as BC and | · |BC, respectively. For any function

x : (−∞, a) 7→ Cn and t < a, we define a function xt : R− 7→ Cn by xt(s) = x(t + s)

for s ∈ R−. Let B = B(R−;Cn) be a complex linear space of functions mapping R−

into Cn with a complete seminorm | · |B. The space B is assumed to have the following

properties:

(A1) There exist a positive constant N and locally bounded functions K(·) and

M(·) on R+ := [0,∞) with the property that if x : (−∞, a) 7→ Cn is continuous on [σ, a)

with xσ ∈ B for some σ < a, then for all t ∈ [σ, a),

(i) xt ∈ B,

(ii) xt is continuous in t (w.r.t. | · |B),

(iii) N |x(t)| ≤ |xt|B ≤ K(t− σ) supσ≤s≤t |x(s)| +M(t− σ)|xσ|B.

(A2) If {φk}, φk ∈ B, converges to φ uniformly on any compact set in R− and if

{φk} is a Cauchy sequence in B, then φ ∈ B and φk → φ in B.

The space B is called a uniform fading memory space, if it satisfies (A1) and (A2)

with K(·) ≡ K (a constant) and M(β) → 0 as β → ∞ in (A1). A typical one for

uniform fading memory spaces is given by the space

Cγ := Cγ(C
n) = {φ ∈ C(R−;Cn) : lim

θ→−∞
|φ(θ)|eγθ = 0}

which is equipped with norm |φ|Cγ
= supθ≤0 |φ(θ)|eγθ, where γ is a positive constant.

It is known [2, Lemma 3.2] that if B is a uniform fading memory space, then BC ⊂ B

and

|φ|B ≤ K|φ|BC, φ ∈ BC. (2)

For other properties of uniform fading memory spaces, we refer the reader to the book

[4].
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We denote by BUC(R;Cn) the space of all bounded and uniformly continuous func-

tions mapping R into Cn. BUC(R;Cn) is a Banach space with the supremum norm

which will be denoted by || · ||. The spectrum of a given function f ∈ BUC(R;Cn) is

defined as the set

sp(f) := {ξ ∈ R : ∀ε > 0 ∃u ∈ L1(R), supp ũ ⊂ (ξ − ε, ξ + ε), u ∗ f 6= 0} ,

where

u ∗ f(t) :=
∫ +∞

−∞
u(t− s)f(s)ds ; ũ(s) :=

∫ ∞

−∞
e−istu(t)dt.

We collect some main properties of the spectrum of a function, which we will need in

the sequel, for the reader’s convenience. For the proof we refer the reader to [6], [10-11].

Proposition 1 The following statements hold true:

(i) sp(eiλ·) = {λ} for λ ∈ R.

(ii) sp(eiλ·f) = sp(f) + λ for λ ∈ R.

(iii) sp(αf + βg) ⊂ sp(f) ∪ sp(g) for α, β ∈ C.

(iv) sp(f) is closed. Moreover, sp(f) is not empty if f 6≡ 0.

(v) sp(f(· + τ)) = sp(f) for τ ∈ R.

(vi) If f, gk ∈ BUC(R;Cn) with sp(gk) ⊂ Λ for all n ∈ N, and if

limk→∞ ||gk − f || = 0, then sp(f) ⊂ Λ.

(vii) sp(ψ ∗ f) ⊂ sp(f) ∩ supp ψ̃ for all ψ ∈ L1(R).

In the following we always assume that B = B(R−;Cn) is a uniform fading memory

space. For any bounded linear functional L : B 7→ Cn we define an operator L by

(Lf)(t) = L(ft), t ∈ R,

for f ∈ BUC(R;Cn). It follows from (2) that

|(Lf)(t) − (Lf)(s)| ≤ ||L|||ft − fs|B

≤ K||L|||ft − fs|BC,

and hence Lf ∈ BUC(R;Cn). Consequently, L is a bounded linear operator on

BUC(R;Cn).

For any closed set Λ ⊂ R, we set

Λ(Cn) = {f ∈ BUC(R;Cn) : sp(f) ⊂ Λ}.

From (iii)–(vi) of Proposition 1, we can see that Λ(Cn) is a translation-invariant closed

subspace of BUC(R;Cn).
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Proposition 2 Let Λ be a closed set in R. Then the space Λ(Cn) is invariant under

the operator L.

Proof Let f ∈ BUC(R;Cn). It suffices to establish that sp(Lf) ⊂ sp(f). Let ξ /∈

sp(f). There is an ε > 0 with the property that u ∗ f = 0 for any u ∈ L1(R) such that

supp ũ ⊂ (ξ− ε, ξ + ε). Let v be any element in L1(R) such that supp ṽ ⊂ (ξ− ε, ξ+ ε).

Since
∫ ∞

−∞
v(t− s)fs(θ)ds =

∫ ∞

−∞
v(t− s)f(s+ θ)ds

= (v ∗ f)(t+ θ) = 0

for θ ≤ 0, (A2) yields that
∫ ∞

−∞
v(t− s)fsds = 0 in B. Hence

(v ∗ Lf)(t) =
∫ ∞

−∞
v(t− s)L(fs)ds

= L(
∫ ∞

−∞
v(t− s)fsds)

= 0,

which shows that ξ /∈ sp(Lf).

3. SPECTRUM OF AN OPERATOR ASSOCIATED WITH

FUNCTIONAL DIFFERENTIAL EQUATIONS

We consider the linear functional differential equation

ẋ(t) = L(xt), (1)

where L is a bounded linear operator mapping a uniform fading memory space B =

B(R−;Cn) into Cn. A translation-invariant space M ⊂ BUC(R;Cn) is said to be

admissible with respect to Eq. (1), if for any f ∈ M, the equation

ẋ(t) = L(xt) + f(t)

possesses a unique solution which belongs to M. Let Λ be a closed set in R. An aim in

this section is to obtain a condition under which the subspace Λ(Cn) introduced in the

previous section is admissible with respect to Eq. (1). To do this, we first introduce the

operators DΛ and LΛ associated with Eq. (1):

DΛ := (d/dt)|D(DΛ)

LΛ := L|Λ(Cn),
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where

D(DΛ) = {u ∈ Λ(Cn) : du/dt ∈ Λ(Cn)}.

Clearly, the admissibility of Λ(Cn) with respect to Eq. (1) is equivalent to the invertibil-

ity of the operator DΛ−LΛ in Λ(Cn). In fact, we will determine the spectrum σ(DΛ−LΛ)

of DΛ−LΛ in Theorem 1, and as a consequence of Theorem 1, we will obtain a condition

for Λ(Cn) to be admissible with respect to Eq. (1).

Before stating Theorem 1, we prepare some notation. For any λ ∈ Λ, we define a

function ω(λ) : R− 7→ C := C1 by

[ω(λ)](θ) = eiλθ, θ ∈ R−.

Because B is a uniform fading memory space, it follows that ω(λ)a ∈ B for any (column)

vector a ∈ Cn. In particular, we get ω(λ)ei ∈ B for i = 1, · · · , n, where ei is the element

in Cn whose i-th component is 1 and the other components are 0. We denote by I the

n× n unit matrix, and define an n× n matrix by

(L(ω(λ)e1), · · · , L(ω(λ)en)) =: L(ω(λ)I).

Theorem 1 Let Λ be a closed subset of R, and let DΛ and LΛ be the ones introduced

above. Then the following relation holds:

σ(DΛ − LΛ) = {µ ∈ C : det[(iλ− µ)I − L(ω(λ)I)] = 0 for some λ ∈ Λ} (=: ˜(iΛ)).

In order to establish the theorem, we need the following result for ordinary differential

equations:

Lemma 1 Let Q be an n×n matrix such that σ(Q) ⊂ iR\iΛ. Then for any f ∈ Λ(Cn)

there is a unique solution xf in Λ(Cn) of the system of ordinary differential equations

ẋ(t) = Qx(t) + f(t).

Moreover, the map f ∈ Λ(Cn) 7→ xf ∈ Λ(Cn) is continuous.

Proof. Without loss of generality, we may assume thatQ is a matrix of Jordan canonical

form

Q =





















iλ1 δ1 0
iλ2 δ2

. . . . . .

iλn−1 δn−1

0 iλn





















,
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where {λ1, · · · , λn} ∩Λ = ∅, and δk = 0 or 1 for k = 1, · · · , n− 1. The equation for xn is

written as

ẋn(t) = iλnxn(t) + fn(t),

where fn ∈ Λ(C). By setting z(t) = xn(t)e−iλnt, we get

ż(t) = e−iλntfn(t) =: g(t).

It follows that 0 /∈ sp(g) because of sp(g) ⊂ Λ−{λn}. Then, by virtue of [6, Chapter 6,

Theorem 3 and its proof] there exists an integrable function φ such that z = φ∗g satisfies

ż(t) = g(t) (and hence xn(t) = z(t)eiλnt is a solution of the above equation). From (vii)

of Proposition 1 it follows that sp(z) ⊂ sp(g), and hence sp(xn) ⊂ sp(g) + {λn} ⊂ Λ.

If y(t) is another solution in Λ(C) of the above equation, then xn(t) − y(t) ≡ aeiλnt for

some a, and hence sp(xn − y) ⊂ {λn}. Since λn 6∈ Λ, we must have xn − y ≡ 0. Thus

the above equation possesses a unique solution xn in Λ(C), which is represented as the

convolution of fn and an integrable function. For this xn, let us consider the equation

for xn−1

ẋn−1(t) = iλn−1xn−1(t) + δn−1xn(t) + fn−1(t).

Since the term δn−1xn(t)+fn−1(t) belongs to the space Λ(C), the above argument shows

that the equation for xn−1 possesses a unique solution in Λ(C), too. In fact, the solution

is represented as

ψn−1 ∗ fn−1 + ψn ∗ fn

for some integrable functions ψn−1 and ψn. Continue the procedure to the equations

for xn−2, · · · , x2 and x1, subsequently. Then we conclude that the system possesses a

unique solution in Λ(Cn), which is represented as the convolution Y ∗ f for some n× n

matrix-valued integrable function Y .

Proof of Theorem 1. In case where | · |B is a complete semi-norm of B, one can

prove the theorem by considering the quotient space B/| · |B. In order to avoid some

cumbersome notation, we shall establish the theorem in case where | · |B is a norm and

consequently B is a Banach space.

Assume that µ ∈ C satisfies det[(iλ − µ)I − L(ω(λ)I] = 0 for some λ ∈ Λ. Then

there is a nonzero a ∈ Cn such that iλa − L(ω(λ)a) = µa. Set φ(t) = eiλta, t ∈ R.

Then φ ∈ D(DΛ), and

[(DΛ − LΛ)φ](t) = φ̇(t) − L(φt)

= iλeiλta− L(eiλtω(λ)a)

= eiλt(iλa− L(ω(λ)a))

= µφ(t),
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or (DΛ − LΛ)φ = µφ. Thus µ ∈ Pσ(DΛ − LΛ). Hence ˜(iΛ) ⊂ σ(DΛ − LΛ).

Next we shall show that ˜(iΛ) ⊃ σ(DΛ − LΛ). To do this, it is sufficient to prove the

claim:

Assertion If det[(iλ− k)I − L(ω(λ)I)] 6= 0 (∀λ ∈ Λ), then k ∈ ρ(DΛ − LΛ).

To establish the claim, we will show that for each f ∈ Λ(Cn), the equation

ẋ(t) = L(xt) + kx(t) + f(t), t ∈ R (3)

possesses a unique solution xf ∈ Λ(Cn) and that the map f ∈ Λ(Cn) 7→ xf ∈ Λ(Cn) is

continuous. We first treat the homogeneous functional differential equation

ẋ(t) = L(xt) + kx(t), (4)

and consider the solution semigroup T (t) : B 7→ B, t ≥ 0, of Eq. (4) which is defined as

T (t)φ = xt(φ), φ ∈ B,

where x(·, φ) denotes the solution of (4) through (0, φ) and xt is an element in B defined

as xt(θ) = x(t+θ), θ ≤ 0. Let G be the infinitesimal generator of the solution semigroup

T (t). We assert that

iR ∩ σ(G) = {iλ ∈ iR : det[(iλ− k)I − L(ω(λ)I)] = 0}.

Before proving the assertion, we first remark that the constant β introduced in [4, p.

127] satisfies β < 0 because B is a uniform fading memory space. In particular, if λ is a

real number, then Re(iλ) = 0 > β, and hence ω(λ)b ∈ B for any b ∈ Cn by [4, p. 137,

Th. 2.4].

Now, let iλ ∈ iR ∩ σ(G). Since iλ is a normal point of G by [4, p. 141, Th. 2.7], we

must have that iλ ∈ Pσ(G). Then [4, p. 134, Th. 2.1] implies that there exists a nonzero

b ∈ Cn such that iλb − L(ω(λ)b) − kb = 0, which shows that iλ belongs to the set of

the right hand side in the assertion. Conversely, assume that iλ is an element of the

set of the right hand side in the assertion. Then there is a nonzero a ∈ Cn such that

iλa = ka+ L(ω(λ)a). Set x(t) = eiλta, t ∈ R. Then xt = eiλtω(λ)a and

ẋ(t) = iλeiλta = eiλt(ka+ L(ω(λ)a))

= kx(t) + L(xt).

Thus x(t) is a solution of Eq. (4) satisfying x0 = ω(λ)a, and it follows that T (t)ω(λ)a =

T (t)x0 = xt = eiλtω(λ)a for t ≥ 0, which implies that ω(λ)a ∈ D(G) and G(ω(λ)a) =

iλω(λ)a. Thus iλ ∈ σ(G) ∩ iR, and the assertion is proved.
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Now consider the sets ΣC := {λ ∈ σ(G) : Reλ = 0} and ΣU := {λ ∈ σ(G) : Reλ > 0}.

Then the set Σ = ΣC ∪ΣU is a finite set [4, p. 144, Prop. 3.2]. Corresponding to the set

Σ, we get the decomposition of the space B:

B = S ⊕ C ⊕ U,

where S, C, U are invariant under T (t), the restriction T (t)|U can be extendable as a

group, and there exist positive constants c1 and α such that

‖T (t)|S‖ ≤ c1e
−αt (t ≥ 0),

‖T (t)|U‖ ≤ c1e
αt (t ≤ 0)

([4, p. 145, Ths. 3.1, 3.3]). Let Φ be a basis vector in C, and let Ψ be the basis vector

associated with Φ. From [4, p. 149, Cor. 3.8] we know that the C-component u(t) of

the segment xt for each solution x(·) of Eq. (3) is given by the relation u(t) = 〈Ψ,ΠCxt〉

(where ΠC denotes the projection from B onto C which corresponds to the decomposition

of the space B), and u(t) satisfies the ordinary differential equation

u̇(t) = Qu(t) − Ψ̂(0−)f(t), (5)

where Q is a matrix such that σ(Q) = σ(G) ∩ iR and the relation T (t)Φ = ΦetQ

holds. Moreover, Ψ̂ is the one associated with the Riesz representation of Ψ. Indeed,

Ψ̂ is a normalized vector-valued function which is of locally bounded variation on R−

satisfying 〈Ψ, φ〉 =
∫ 0
−∞ φ(θ)dΨ̂(θ) for any φ ∈ BC(R−;Cn) with compact support.

Observe that ΣC ⊂ iR \ iΛ. Indeed, if µ ∈ ΣC , then µ = iλ for some λ ∈ R, where

det[(iλ − k)I − L(ω(λ)I)] = 0 by the preceding assertion. Hence we get λ 6∈ Λ by

the assumption of the claim, and µ ∈ iR \ iΛ, as required. This observation leads to

σ(Q) ∩ iΛ = �. Since sp(Ψ̂(0−)f) ⊂ Λ, lemma 1 implies that the ordinary differential

equation (5) has a unique solution u satisfying sp(u) ⊂ Λ and ‖u‖ ≤ c2‖Ψ̂(0−)f‖ ≤ c3‖f‖

for some constants c2 and c3. Consider a function ξ : R 7→ B defined by

ξ(t) =
∫ t

∗−∞
T ∗∗(t− s)Π∗∗

S Γf(s)ds+ Φu(t) −
∫ ∞

∗t
T ∗∗(t− s)Π∗∗

U Γf(s)ds,

where Γ is the one defined in [4, p. 118] and
∫

∗ denotes the weak-star integration (cf. [4,

p. 116]). If t ≥ 0, then

T (t)ξ(σ) +
∫ t+σ

∗σ
T ∗∗(t+ σ − s)Γf(s)ds

= T (t)[
∫ σ

∗−∞
T ∗∗(σ − s)Π∗∗

S Γf(s)ds+ Φu(σ) −
∫ ∞

∗σ
T ∗∗(σ − s)Π∗∗

U Γf(s)ds]

+
∫ t+σ

∗σ
T ∗∗(t+ σ − s)Γf(s)ds
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=
∫ σ

∗−∞
T ∗∗(t + σ − s)Π∗∗

S Γf(s)ds+ ΦetQu(σ) −
∫ ∞

∗σ
T ∗∗(t + σ − s)Π∗∗

U Γf(s)ds

+
∫ t+σ

∗σ
T ∗∗(t+ σ − s)(Π∗∗

S + Π∗∗
C + Π∗∗

U )Γf(s)ds

=
∫ t+σ

∗−∞
T ∗∗(t + σ − s)Π∗∗

S Γf(s)ds+ Φ[etQu(σ) +
∫ t+σ

σ
e(t+σ−s)Q(−Ψ̂(0−)f(s))ds]

−
∫ ∞

∗t+σ
T ∗∗(t+ σ − s)Π∗∗

U Γf(s)ds

=
∫ t+σ

∗−∞
T ∗∗(t + σ − s)Π∗∗

S Γf(s)ds+ Φu(t + σ)

−
∫ ∞

∗t+σ
T ∗∗(t+ σ − s)Π∗∗

U Γf(s)ds

= ξ(t+ σ),

where we used the relation T ∗∗(t)Π∗∗
C Γ = T ∗∗(t)Φ〈Ψ,Γ〉 = ΦetQ(−Ψ̂(0−)). Then [4, p.

121, Th. 2.9] yields that x(t) := [ξ(t)](0) is a solution of (3). Define a ψ ∈ B∗ × · · · × B∗

(n-copies) by 〈ψ, φ〉 = φ(0), φ ∈ B. Then

x(t) − Φ(0)u(t) = 〈ψ, ξ(t) − Φu(t)〉

= 〈ψ,
∫ t

∗−∞
T ∗∗(t− s)Π∗∗

S Γf(s)ds−
∫ ∞

∗t
T ∗∗(t− s)Π∗∗

U Γf(s)ds〉

=
∫ t

−∞
〈ψ, T ∗∗(t− s)Π∗∗

S Γ〉f(s)ds−
∫ ∞

t
〈ψ, T ∗∗(t− s)Π∗∗

U Γ〉f(s)ds

=
∫ ∞

−∞
Y (t− s)f(s)ds = Y ∗ f(t),

where Y (·) = 〈ψ, T ∗∗(·)Π∗∗
S Γ〉χ[0,∞) − 〈ψ, T ∗∗(·)Π∗∗

U Γ〉χ(−∞,0] and it is an n × n matrix-

valued integrable function on R. Then σ(x−Φ(0)u) ⊂ σ(f) ⊂ Λ by (vii) of Proposition

1, and hence x − Φ(0)u ∈ Λ(Cn). Thus we get x ∈ Λ(Cn) because of sp(u) ⊂ Λ.

Moreover, the map f ∈ Λ(Cn) 7→ x ∈ Λ(Cn) is continuous.

Finally, we will prove the uniqueness of solutions of (3) in Λ(Cn). Let x be any

solution of (3) which belongs to Λ(Cn). By [4, p. 120, Th. 2.8] the B-valued function

ΠSxt satisfies the relation

ΠSxt = T (t− σ)ΠSxσ +
∫ t

∗σ
T ∗∗(t− s)Π∗∗

S Γf(s)ds

for all t ≥ σ > −∞. Note that supσ∈R
|xσ|B <∞. Therefore, letting σ → −∞ we get

ΠSxt =
∫ t

∗−∞
T ∗∗(t− s)Π∗∗

S Γf(s)ds,

because

lim
σ→−∞

∫ t

∗σ
T ∗∗(t− s)Π∗∗

S Γf(s)ds =
∫ t

∗−∞
T ∗∗(t− s)Π∗∗

S Γf(s)ds
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converges. Similarly, one gets

ΠUxσ = −
∫ ∞

∗σ
T ∗∗(σ − s)Π∗∗

U Γf(s)ds.

Also, since 〈Ψ, xt〉 satisfies Eq. (5) and since sp(〈Ψ, xt〉) ⊂ sp(x) ⊂ Λ, it follows that

ΠCxt = Φ〈Ψ, xt〉 = Φu(t) for all t ∈ R by the uniqueness of the solution of (5) in Λ(Cn).

Consequently, we have xt ≡ ξ(t) or x(t) ≡ [ξ(t)](0), which shows the uniqueness of the

solution of (3) in Λ(Cn).

Corollary 1 Suppose that det[iλI − L(ω(λ)I)] 6= 0 for all λ ∈ Λ. Then Eq. (1) is

admissible for M = Λ(Cn).

Proof. The corollary is a direct consequence of Theorem 1, since 0 6∈ σ(DM − LM).

Corollary 2 Let Λ be a closed set in R, and suppose that det[(iλ−k)I−L(ω(λ)I)] 6= 0

for all λ ∈ Λ. Then there exists an n× n matrix-valued integrable function F such that

[(iλ− k)I − L(ω(λ)I)]−1 = F̃ (λ) :=
∫ ∞

−∞
F (t)e−iλtdt (∀λ ∈ Λ). (6)

Furthermore, for any f ∈ Λ(Cn) Eq. (3) possesses a unique solution in Λ(Cn) which is

explicitly given by F ∗ f .

Proof. As seen in the proof of Theorem 1, there exists an n×n matrix-valued integrable

function Y such that (DM − BM − k)−1f − Φ(0)u(t) = Y ∗ f for all f ∈ M := Λ(Cn).

Furthermore, as pointed out in the proof of Lemma 1, there exists an integrable matrix-

valued function F1 such that u = F1 ∗ f is a unique solution of (5) satisfying sp(u) ⊂ Λ

for each f ∈ M. Set F = Y + Φ(0)F1. Then F is an n × n matrix-valued integrable

function on R, and F ∗ f is is a unique solution in M of Eq. (3) for each f ∈ M.

Now we shall prove the relation (6). Let λ ∈ Λ, and set xj(t) = F (t) ∗ eiλtej for

j = 1, · · · , n. We claim that

F̃ (λ)ej =
1

2T

∫ s+T

s−T
xj(t)e−iλtdt, j = 1, · · · , n

for all s ∈ R. Indeed, we get

∫ s+T

s−T
xj(t)e−iλtdt =

∫ s+T

s−T
(
∫ ∞

−∞
F (τ)eiλ(t−τ)dτ)e−iλtdt · ej

=
∫ s+T

s−T

∫ ∞

−∞
F (τ)e−iλτdτdt · ej

= 2T F̃ (λ)ej.
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Since

1

2T

∫ T

−T
xj

t (θ)e
−iλtdt =

1

2T

∫ T+θ

−T+θ
xj(τ)e−iλτdτ · eiλθ = [ω(λ)](θ)F̃ (λ)ej

for θ ≤ 0, (A2) implies that

1

2T

∫ T

−T
xj

te
−iλtdt = ω(λ)F̃ (λ)ej, j = 1, · · · , n.

Then

1

2T
(xj(T )e−iλT − xj(−T )eiλT ) =

1

2T

∫ T

−T
{−iλxj(t) + ẋj(t)}e−iλtdt

=
1

2T

∫ T

−T
(−iλxj(t) + L(xj

t ) + kxj(t) + eiλtej)e
−iλtdt

= (k − iλ)F̃ (λ)ej + ej + L(ω(λ)F̃ (λ)ej)

= [(k − iλ)I + L(ω(λ)I)]F̃ (λ)ej + ej.

Letting T → ∞ in the above, we get 0 = [(k−iλ)I+L(ω(λ)I)]F̃ (λ)ej+ej for j = 1, · · · , n,

or F̃ (λ) = [(iλ− k)I − L(ω(λ)I)]−1, as required.

We denote by AP (Cn) or AP the set of all almost periodic (continuous) functions

f : R 7→ Cn. The next result on the admissibility of Λ(Cn) ∩ AP (Cn) with respect to

Eq. (1) is a direct consequence of Corollary 2, because F ∗ f ∈ AP whenever f ∈ AP

and F is integrable.

Corollary 3 Suppose that det[iλI − L(ω(λ)I)] 6= 0 for all λ ∈ Λ. Then Eq. (1) is

admissible for Λ(Cn) ∩ AP (Cn).

The preceding corollary is a result in the non-critical case. In fact, if (1) is a scalar

equation (that is, n = 1), our result is available even for the crical case.

Corollary 4 The following statements hold true for Eq. (1) with n = 1:

(i) Let f ∈ AP (C) with discrete spectrum, and assume the following condition:

lim
T→∞

1

T

∫ T

0
z(s)f(s)ds = 0 for any almost periodic solution z(t)

of Eq. (1) satisfying sp(z) ⊂ sp(f).

Then the equation ẋ(t) = L(xt) + f(t) has an almost periodic solution.

(ii) Let f ∈ BUC(R;C) be a periodic function of period τ > 0, and assume the
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following condition:

∫ τ

0
z(s)f(s)ds = 0 for any τ -periodic solution z(t) of Eq. (1).

Then the equation ẋ(t) = L(xt) + f(t) has a τ -periodic solution.

Proof. (ii) is a direct consequence of (i). We shall prove (i). To do this, it suffices to

show that iλ − L(ω(λ)) 6= 0 for any λ ∈ sp(f). Suppose that iλ = L(ω(λ)) for some

λ ∈ sp(f), and set z(t) = eiλt, t ∈ R. As seen in the proof of Theorem 1, z(t) is a

(periodic) solution of Eq. (1), and moreover sp(z) ⊂ sp(f). Therefore, by the condition

in the statement (i) we get limT→∞(1/T )
∫ T
0 f(s)e−iλsds = 0, which shows that λ is not

an exponent of f(t). On the other hand, because sp(f) is discrete, any point in sp(f)

must be an exponent of f(t). This is a contradiction.

4. APPLICATIONS

As an application, we consider the integro-differential equation

ẋ(t) =
∫ ∞

0
[dB(s)]x(t− s), (7)

where B is an n×n matrix-valued function whose components are of bounded variation

satisfying

∃γ > 0 :
∫ ∞

0
eγsd|B(s)| <∞.

In order to set up Eq. (7) as an FDE on a uniform fading memory space, we take the

space Cγ introduced in Section 2, and define a functional L on Cγ by

L(φ) =
∫ ∞

0
[dB(s)]φ(−s), φ ∈ Cγ.

Then Eq. (7) is rewritten as Eq. (1) with B = Cγ, and our previous results are applicable

to Eq. (7):

Theorem 2 Suppose that det[iλI −
∫ ∞
0 [dB(s)]e−iλs] 6= 0 for all λ ∈ Λ. Then Eq. (7) is

admissible for the spaces Λ(Cn) and Λ(Cn) ∩ AP (Cn).

In fact, there exists an n× n matrix-valued integrable function F such that

[(iλ− k)I −
∫ ∞

0
[dB(s)]e−iλs]−1 = F̃ (λ) (∀λ ∈ Λ),

and for any f ∈ Λ(Cn), F ∗ f is a unique solution in Λ(Cn) of the equation

ẋ(t) =
∫ ∞

0
[dB(s)]x(t− s) + f(t).
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Finally, we consider the following integro-differential equation

ẋ(t) = Ax(t) +
∫ ∞

0
x(t− s)db(s) (8)

in a Banach space X, where A is the infinitesimal generator of an analytic strongly

continuous semigroup of linear operators on X, and b : R+ 7→ C is a function of bounded

variation satisfying

∃γ > 0 :
∫ ∞

0
eγsd|b(s)| <∞.

In a similar way for Eq. (7), one can define the operator L on the uniform fading memory

space Cγ(X).

Now we denote by BUC(R;X),Λ(X), AP (X),DΛ(X),LΛ(X), · · · the ones correspond-

ing to BUC(R;Cn),Λ(Cn), AP (Cn),DΛ(Cn), LΛ(Cn), · · ·, and set M(C) = Λ(C)∩AP (C)

and M(X) = Λ(X) ∩ AP (X). Then M(X) is a translation invariant closed subspace

of BUC(R;X), and one can consider the operator DM(X) − LM(X), together with the

operator DM(C) − LM(C).

Lemma 2 Under the notation explained above, the following relation holds:

σ(DM(X) − LM(X)) = σ(DM(C) − LM(C))

Proof. The inclusion σ(DM(X) − LM(X)) ⊂ σ(DM(C) − LM(C)) is an immediate conse-

quence of Corollary 2 (cf. [9, Lemma 3.6]). We shall establish the converse inclusion.

Let k ∈ σ(DM(C) − LM(C)), and assume that k 6∈ σ(DM(X) − LM(X)). It follows from

Theorem 1 that k = iλ −
∫ ∞
0 e−iλsdb(s) for some λ ∈ Λ. Let a ∈ X be any nonzero

element, and define a function f ∈ Λ(X) by f(t) = eiλta, t ∈ R. Then there is a unique

solution x in M(X) of the equation

ẋ(t) = kx(t) +
∫ ∞

0
x(t− s)db(s) + f(t). (9)

Since x ∈ AP (X), the limit

lim
T→∞

1

T

∫ T−s

−s
x(t)e−iλtdt (=: xλ)

exists in X uniformly for s ∈ R. From (9) we get the relation

[x(T )e−iλT − x(0)]/T = −(iλ/T )
∫ T

0
x(t)e−iλtdt+ (k/T )

∫ T

0
x(t)e−iλtdt

+(1/T )
∫ T

0
[
∫ ∞

0
x(t− s)db(s)]e−iλtdt+ a,
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and hence letting T → ∞ we get [−iλ + k +
∫ ∞
0 e−iλsdb(s)]xλ + a = 0, or a = 0. This

is a contradiction. Hence we must have the inclusion σ(DM(X) − LM(X)) ⊃ σ(DM(C) −

LM(C)).

For M(X) = Λ(X) ∩ AP (X), we denote by AM(X ) the operator f ∈ M(X) 7→

Af(·) with D(A) = {f ∈ M(X) : f(t) ∈ D(A), Af(·) ∈ M for ∀t ∈ R}. For two

(unbounded) commuting operators DM(X) − LM(X) and AM(X), it is known (cf. [9,

Theorem 2.2]) that

σ(DM(X) − LM(X) −AM(X)) ⊂ σ(DM(X) − LM(X)) − σ(AM(X)),

here (· · ·) denotes the usual closure of the operator. Applying Lemma 2 and this relation,

we get the following result on the admissiblity of M(X) with respect to Eq. (8).

Theorem 3 Assume that iλ −
∫ ∞
0 e−iλsdb(s) ∈ ρ(A) for all λ ∈ Λ. Then for any

f ∈ Λ(X) ∩ AP (X) the equation ẋ(t) = Ax(t) +
∫ ∞
0 x(t − s)db(s) + f(t) has a unique

(mild) solution in Λ(X) ∩ AP (X).
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