SPECTRAL ANALYSIS OF AN OPERATOR ASSOCIATED WITH LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS *

SATORU MURAKAMI ${ }^{\dagger}$ and TOSHIKI NAITO, NGUYEN VAN MINH ${ }^{\ddagger}$
Department of Applied Mathematics, Okayama University of Science, Okayama 700-0005, Japan
E-mail: murakami@xmath.ous.ac.jp
and
Department of Mathematics, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
E-mail: naito@e-one.uec.ac.jp ; minh@matha.e-one.uec.ac.jp

1. INTRODUCTION

In this paper, we treat the (autonomous) linear functional differential equation

$$
\begin{equation*}
\dot{x}(t)=L\left(x_{t}\right) \tag{1}
\end{equation*}
$$

where L is a bounded linear operator mapping a uniform fading memory space $\mathcal{B}=$ $\mathcal{B}\left((-\infty, 0] ; \mathbf{C}^{n}\right)$ into \mathbf{C}^{n}, and study the admissibility of Eq. (1) for a translation invariant function space \mathcal{M} which consists of functions whose spectrum is contained in a closed set Λ in \mathbf{R}. In case of $\Lambda=\mathbf{R}$ or $\Lambda=\{2 k \pi / \omega: k \in \mathbf{Z}\}$, the problem for the admissibility is reduced to the one for the existence of bounded solutions, almost periodic solutions or ω-periodic solutions of the equation

$$
\dot{x}(t)=L\left(x_{t}\right)+f(t)
$$

with the forced function $f(t)$ which is bounded, almost periodic or ω-periodic, and there are many results on the problem (e.g., [1], [3], [5], [7, 8]). In this paper, we study the problem for a general set Λ. Roughly speaking, we solve the problem by determining the spectrum of an operator $D_{\mathcal{M}}-\mathcal{L}_{\mathcal{M}}$ which is associated with Eq. (1).

[^0]
2. UNIFORM FADING MEMORY SPACES AND SOME PRELIMINARIES

In this section we explain uniform fading memory spaces which are employed throughout this paper, and give some preliminary results.

Let \mathbf{C}^{n} be the n-dimensional complex Euclidean space with norm $|\cdot|$. For any interval $J \subset \mathbf{R}:=(-\infty, \infty)$, we denote by $C\left(J ; \mathbf{C}^{n}\right)$ the space of all continuous functions mapping J into \mathbf{C}^{n}. Moreover, we denote by $\mathrm{BC}\left(J ; \mathbf{C}^{n}\right)$ the subspace of $C\left(J ; \mathbf{C}^{n}\right)$ which consists of all bounded functions. Clearly $\mathrm{BC}\left(J ; \mathbf{C}^{n}\right)$ is a Banach space with the norm $|\cdot|_{\mathrm{BC}\left(J ; \mathbf{C}^{n}\right)}$ defined by $|\phi|_{\mathrm{BC}\left(J ; \mathbf{C}^{n}\right)}=\sup \{|\phi(t)|: t \in J\}$. If $J=\mathbf{R}^{-}:=(-\infty, 0]$, then we simply write $\mathrm{BC}\left(J ; \mathbf{C}^{n}\right)$ and $|\cdot|_{\mathrm{BC}\left(J ; \mathbf{C}^{n}\right)}$ as BC and $|\cdot|_{\mathrm{BC}}$, respectively. For any function $x:(-\infty, a) \mapsto \mathbf{C}^{n}$ and $t<a$, we define a function $x_{t}: \mathbf{R}^{-} \mapsto \mathbf{C}^{n}$ by $x_{t}(s)=x(t+s)$ for $s \in \mathbf{R}^{-}$. Let $\mathcal{B}=\mathcal{B}\left(\mathbf{R}^{-} ; \mathbf{C}^{n}\right)$ be a complex linear space of functions mapping \mathbf{R}^{-} into \mathbf{C}^{n} with a complete seminorm $|\cdot|_{\mathcal{B}}$. The space \mathcal{B} is assumed to have the following properties:
(A1) There exist a positive constant N and locally bounded functions $K(\cdot)$ and $M(\cdot)$ on $\mathbf{R}^{+}:=[0, \infty)$ with the property that if $x:(-\infty, a) \mapsto \mathbf{C}^{n}$ is continuous on $[\sigma, a)$ with $x_{\sigma} \in \mathcal{B}$ for some $\sigma<a$, then for all $t \in[\sigma, a)$,
(i) $x_{t} \in \mathcal{B}$,
(ii) $\quad x_{t}$ is continuous in t (w.r.t. $|\cdot|_{\mathcal{B}}$),
(iii) $N|x(t)| \leq\left|x_{t}\right|_{\mathcal{B}} \leq K(t-\sigma) \sup _{\sigma \leq s \leq t}|x(s)|+M(t-\sigma)\left|x_{\sigma}\right|_{\mathcal{B}}$.
(A2) If $\left\{\phi^{k}\right\}, \phi^{k} \in \mathcal{B}$, converges to ϕ uniformly on any compact set in \mathbf{R}^{-}and if $\left\{\phi^{k}\right\}$ is a Cauchy sequence in \mathcal{B}, then $\phi \in \mathcal{B}$ and $\phi^{k} \rightarrow \phi$ in \mathcal{B}.

The space \mathcal{B} is called a uniform fading memory space, if it satisfies (A1) and (A2) with $K(\cdot) \equiv K$ (a constant) and $M(\beta) \rightarrow 0$ as $\beta \rightarrow \infty$ in (A1). A typical one for uniform fading memory spaces is given by the space

$$
C_{\gamma}:=C_{\gamma}\left(\mathbf{C}^{n}\right)=\left\{\phi \in C\left(\mathbf{R}^{-} ; \mathbf{C}^{n}\right): \lim _{\theta \rightarrow-\infty}|\phi(\theta)| e^{\gamma \theta}=0\right\}
$$

which is equipped with norm $|\phi|_{C_{\gamma}}=\sup _{\theta \leq 0}|\phi(\theta)| e^{\gamma \theta}$, where γ is a positive constant.
It is known [2, Lemma 3.2] that if \mathcal{B} is a uniform fading memory space, then $\mathrm{BC} \subset \mathcal{B}$ and

$$
\begin{equation*}
|\phi|_{\mathcal{B}} \leq K|\phi|_{\mathrm{BC}}, \quad \phi \in \mathrm{BC} . \tag{2}
\end{equation*}
$$

For other properties of uniform fading memory spaces, we refer the reader to the book [4].

We denote by $\operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$ the space of all bounded and uniformly continuous functions mapping \mathbf{R} into $\mathbf{C}^{n} . \operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$ is a Banach space with the supremum norm which will be denoted by $\|\cdot\|$. The spectrum of a given function $f \in \operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$ is defined as the set

$$
\operatorname{sp}(f):=\left\{\xi \in \mathbf{R}: \forall \epsilon>0 \exists u \in L^{1}(\mathbf{R}), \operatorname{supp} \tilde{u} \subset(\xi-\epsilon, \xi+\epsilon), u * f \neq 0\right\}
$$

where

$$
u * f(t):=\int_{-\infty}^{+\infty} u(t-s) f(s) d s \quad ; \tilde{u}(s):=\int_{-\infty}^{\infty} e^{-i s t} u(t) d t
$$

We collect some main properties of the spectrum of a function, which we will need in the sequel, for the reader's convenience. For the proof we refer the reader to [6], [10-11].

Proposition 1 The following statements hold true:
(i) $s p\left(e^{i \lambda \cdot}\right)=\{\lambda\}$ for $\lambda \in \mathbf{R}$.
(ii) $s p\left(e^{i \lambda \cdot} f\right)=s p(f)+\lambda$ for $\lambda \in \mathbf{R}$.
(iii) $s p(\alpha f+\beta g) \subset s p(f) \cup s p(g)$ for $\alpha, \beta \in \mathbf{C}$.
(iv) $s p(f)$ is closed. Moreover, $s p(f)$ is not empty if $f \not \equiv 0$.
(v) $s p(f(\cdot+\tau))=s p(f)$ for $\tau \in \mathbf{R}$.
(vi) If $f, g^{k} \in \operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$ with $\operatorname{sp}\left(g^{k}\right) \subset \Lambda$ for all $n \in \mathbf{N}$, and if $\lim _{k \rightarrow \infty}\left\|g^{k}-f\right\|=0$, then $\operatorname{sp}(f) \subset \bar{\Lambda}$.
(vii) $\operatorname{sp}(\psi * f) \subset \operatorname{sp}(f) \cap \operatorname{supp} \tilde{\psi}$ for all $\psi \in L^{1}(\mathbf{R})$.

In the following we always assume that $\mathcal{B}=\mathcal{B}\left(\mathbf{R}^{-} ; \mathbf{C}^{n}\right)$ is a uniform fading memory space. For any bounded linear functional $L: \mathcal{B} \mapsto \mathbf{C}^{n}$ we define an operator \mathcal{L} by

$$
(\mathcal{L} f)(t)=L\left(f_{t}\right), \quad t \in \mathbf{R},
$$

for $f \in \operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$. It follows from (2) that

$$
\begin{aligned}
|(\mathcal{L} f)(t)-(\mathcal{L} f)(s)| & \leq \| L| |\left|f_{t}-f_{s}\right|_{\mathcal{B}} \\
& \leq K| | L| |\left|f_{t}-f_{s}\right|_{\mathrm{BC}}
\end{aligned}
$$

and hence $\mathcal{L} f \in \operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$. Consequently, \mathcal{L} is a bounded linear operator on $\operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$.

For any closed set $\Lambda \subset \mathbf{R}$, we set

$$
\Lambda\left(\mathbf{C}^{n}\right)=\left\{f \in \operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right): s p(f) \subset \Lambda\right\} .
$$

From (iii)-(vi) of Proposition 1, we can see that $\Lambda\left(\mathbf{C}^{n}\right)$ is a translation-invariant closed subspace of $\operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$.

Proposition 2 Let Λ be a closed set in \mathbf{R}. Then the space $\Lambda\left(\mathbf{C}^{n}\right)$ is invariant under the operator \mathcal{L}.

Proof Let $f \in \operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$. It suffices to establish that $\operatorname{sp}(\mathcal{L} f) \subset \operatorname{sp}(f)$. Let $\xi \notin$ $\operatorname{sp}(f)$. There is an $\epsilon>0$ with the property that $u * f=0$ for any $u \in L^{1}(\mathbf{R})$ such that supp $\tilde{u} \subset(\xi-\epsilon, \xi+\epsilon)$. Let v be any element in $L^{1}(\mathbf{R})$ such that $\operatorname{supp} \tilde{v} \subset(\xi-\epsilon, \xi+\epsilon)$. Since

$$
\begin{aligned}
\int_{-\infty}^{\infty} v(t-s) f_{s}(\theta) d s & =\int_{-\infty}^{\infty} v(t-s) f(s+\theta) d s \\
& =(v * f)(t+\theta)=0
\end{aligned}
$$

for $\theta \leq 0,(\mathrm{~A} 2)$ yields that $\int_{-\infty}^{\infty} v(t-s) f_{s} d s=0$ in \mathcal{B}. Hence

$$
\begin{aligned}
(v * \mathcal{L} f)(t) & =\int_{-\infty}^{\infty} v(t-s) L\left(f_{s}\right) d s \\
& =L\left(\int_{-\infty}^{\infty} v(t-s) f_{s} d s\right) \\
& =0
\end{aligned}
$$

which shows that $\xi \notin s p(\mathcal{L} f)$.

3. SPECTRUM OF AN OPERATOR ASSOCIATED WITH FUNCTIONAL DIFFERENTIAL EQUATIONS

We consider the linear functional differential equation

$$
\begin{equation*}
\dot{x}(t)=L\left(x_{t}\right), \tag{1}
\end{equation*}
$$

where L is a bounded linear operator mapping a uniform fading memory space $\mathcal{B}=$ $\mathcal{B}\left(\mathbf{R}^{-} ; \mathbf{C}^{n}\right)$ into \mathbf{C}^{n}. A translation-invariant space $\mathcal{M} \subset \operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right)$ is said to be admissible with respect to Eq. (1), if for any $f \in \mathcal{M}$, the equation

$$
\dot{x}(t)=L\left(x_{t}\right)+f(t)
$$

possesses a unique solution which belongs to \mathcal{M}. Let Λ be a closed set in \mathbf{R}. An aim in this section is to obtain a condition under which the subspace $\Lambda\left(\mathbf{C}^{n}\right)$ introduced in the previous section is admissible with respect to Eq. (1). To do this, we first introduce the operators \mathcal{D}_{Λ} and \mathcal{L}_{Λ} associated with Eq. (1):

$$
\begin{aligned}
\mathcal{D}_{\Lambda} & :=\left.(d / d t)\right|_{D\left(\mathcal{D}_{\Lambda}\right)} \\
\mathcal{L}_{\Lambda} & :=\left.\mathcal{L}\right|_{\Lambda\left(\mathbf{C}^{n}\right)},
\end{aligned}
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 20, p. 4
where

$$
D\left(\mathcal{D}_{\Lambda}\right)=\left\{u \in \Lambda\left(\mathbf{C}^{n}\right): d u / d t \in \Lambda\left(\mathbf{C}^{n}\right)\right\} .
$$

Clearly, the admissibility of $\Lambda\left(\mathbf{C}^{n}\right)$ with respect to Eq. (1) is equivalent to the invertibility of the operator $\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}$ in $\Lambda\left(\mathbf{C}^{n}\right)$. In fact, we will determine the spectrum $\sigma\left(\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}\right)$ of $\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}$ in Theorem 1, and as a consequence of Theorem 1, we will obtain a condition for $\Lambda\left(\mathbf{C}^{n}\right)$ to be admissible with respect to Eq. (1).

Before stating Theorem 1, we prepare some notation. For any $\lambda \in \Lambda$, we define a function $\omega(\lambda): \mathbf{R}^{-} \mapsto \mathbf{C}:=\mathbf{C}^{1}$ by

$$
[\omega(\lambda)](\theta)=e^{i \lambda \theta}, \quad \theta \in \mathbf{R}^{-} .
$$

Because \mathcal{B} is a uniform fading memory space, it follows that $\omega(\lambda) a \in \mathcal{B}$ for any (column) vector $a \in \mathbf{C}^{n}$. In particular, we get $\omega(\lambda) e_{i} \in \mathcal{B}$ for $i=1, \cdots, n$, where e_{i} is the element in \mathbf{C}^{n} whose i-th component is 1 and the other components are 0 . We denote by I the $n \times n$ unit matrix, and define an $n \times n$ matrix by

$$
\left(L\left(\omega(\lambda) e_{1}\right), \cdots, L\left(\omega(\lambda) e_{n}\right)\right)=: L(\omega(\lambda) I)
$$

Theorem 1 Let Λ be a closed subset of \mathbf{R}, and let \mathcal{D}_{Λ} and \mathcal{L}_{Λ} be the ones introduced above. Then the following relation holds:

$$
\sigma\left(\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}\right)=\{\mu \in \mathbf{C}: \operatorname{det}[(i \lambda-\mu) I-L(\omega(\lambda) I)]=0 \text { for some } \lambda \in \Lambda\} \quad(=:(i \tilde{\Lambda})) .
$$

In order to establish the theorem, we need the following result for ordinary differential equations:

Lemma 1 Let Q be an $n \times n$ matrix such that $\sigma(Q) \subset i \mathbf{R} \backslash i \Lambda$. Then for any $f \in \Lambda\left(\mathbf{C}^{n}\right)$ there is a unique solution x_{f} in $\Lambda\left(\mathbf{C}^{n}\right)$ of the system of ordinary differential equations

$$
\dot{x}(t)=Q x(t)+f(t) .
$$

Moreover, the map $f \in \Lambda\left(\mathbf{C}^{n}\right) \mapsto x_{f} \in \Lambda\left(\mathbf{C}^{n}\right)$ is continuous.

Proof. Without loss of generality, we may assume that Q is a matrix of Jordan canonical form

$$
Q=\left(\begin{array}{cccc}
i \lambda_{1} & \delta_{1} & & 0 \\
& i \lambda_{2} & \delta_{2} & 0 \\
& \cdots & \cdots & \\
& & i \lambda_{n-1} & \delta_{n-1} \\
0 & & & i \lambda_{n}
\end{array}\right)
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 20, p. 5
where $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\} \cap \Lambda=\emptyset$, and $\delta_{k}=0$ or 1 for $k=1, \cdots, n-1$. The equation for x_{n} is written as

$$
\dot{x}_{n}(t)=i \lambda_{n} x_{n}(t)+f_{n}(t),
$$

where $f_{n} \in \Lambda(\mathbf{C})$. By setting $z(t)=x_{n}(t) e^{-i \lambda_{n} t}$, we get

$$
\dot{z}(t)=e^{-i \lambda_{n} t} f_{n}(t)=: g(t)
$$

It follows that $0 \notin s p(g)$ because of $s p(g) \subset \Lambda-\left\{\lambda_{n}\right\}$. Then, by virtue of [6, Chapter 6 , Theorem 3 and its proof] there exists an integrable function ϕ such that $z=\phi * g$ satisfies $\dot{z}(t)=g(t)$ (and hence $x_{n}(t)=z(t) e^{i \lambda_{n} t}$ is a solution of the above equation). From (vii) of Proposition 1 it follows that $s p(z) \subset s p(g)$, and hence $s p\left(x_{n}\right) \subset s p(g)+\left\{\lambda_{n}\right\} \subset \Lambda$. If $y(t)$ is another solution in $\Lambda(\mathbf{C})$ of the above equation, then $x_{n}(t)-y(t) \equiv a e^{i \lambda_{n} t}$ for some a, and hence $s p\left(x_{n}-y\right) \subset\left\{\lambda_{n}\right\}$. Since $\lambda_{n} \notin \Lambda$, we must have $x_{n}-y \equiv 0$. Thus the above equation possesses a unique solution x_{n} in $\Lambda(\mathbf{C})$, which is represented as the convolution of f_{n} and an integrable function. For this x_{n}, let us consider the equation for x_{n-1}

$$
\dot{x}_{n-1}(t)=i \lambda_{n-1} x_{n-1}(t)+\delta_{n-1} x_{n}(t)+f_{n-1}(t) .
$$

Since the term $\delta_{n-1} x_{n}(t)+f_{n-1}(t)$ belongs to the space $\Lambda(\mathbf{C})$, the above argument shows that the equation for x_{n-1} possesses a unique solution in $\Lambda(\mathbf{C})$, too. In fact, the solution is represented as

$$
\psi_{n-1} * f_{n-1}+\psi_{n} * f_{n}
$$

for some integrable functions ψ_{n-1} and ψ_{n}. Continue the procedure to the equations for x_{n-2}, \cdots, x_{2} and x_{1}, subsequently. Then we conclude that the system possesses a unique solution in $\Lambda\left(\mathbf{C}^{n}\right)$, which is represented as the convolution $Y * f$ for some $n \times n$ matrix-valued integrable function Y.

Proof of Theorem 1. In case where $|\cdot|_{\mathcal{B}}$ is a complete semi-norm of \mathcal{B}, one can prove the theorem by considering the quotient space $\mathcal{B} /|\cdot|_{\mathcal{B}}$. In order to avoid some cumbersome notation, we shall establish the theorem in case where $|\cdot|_{\mathcal{B}}$ is a norm and consequently \mathcal{B} is a Banach space.

Assume that $\mu \in \mathbf{C}$ satisfies $\operatorname{det}[(i \lambda-\mu) I-L(\omega(\lambda) I]=0$ for some $\lambda \in \Lambda$. Then there is a nonzero $a \in \mathbf{C}^{n}$ such that $i \lambda a-L(\omega(\lambda) a)=\mu a$. Set $\phi(t)=e^{i \lambda t} a, t \in \mathbf{R}$. Then $\phi \in D\left(\mathcal{D}_{\Lambda}\right)$, and

$$
\begin{aligned}
{\left[\left(\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}\right) \phi\right](t) } & =\dot{\phi}(t)-L\left(\phi_{t}\right) \\
& =i \lambda e^{i \lambda t} a-L\left(e^{i \lambda t} \omega(\lambda) a\right) \\
& =e^{i \lambda t}(i \lambda a-L(\omega(\lambda) a)) \\
& =\mu \phi(t)
\end{aligned}
$$

or $\left(\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}\right) \phi=\mu \phi$. Thus $\mu \in P_{\sigma}\left(\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}\right)$. Hence $(i \tilde{\Lambda}) \subset \sigma\left(\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}\right)$.
Next we shall show that $(i \tilde{\Lambda}) \supset \sigma\left(\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}\right)$. To do this, it is sufficient to prove the claim:

Assertion If $\operatorname{det}[(i \lambda-k) I-L(\omega(\lambda) I)] \neq 0 \quad(\forall \lambda \in \Lambda)$, then $k \in \rho\left(\mathcal{D}_{\Lambda}-\mathcal{L}_{\Lambda}\right)$.
To establish the claim, we will show that for each $f \in \Lambda\left(\mathbf{C}^{n}\right)$, the equation

$$
\begin{equation*}
\dot{x}(t)=L\left(x_{t}\right)+k x(t)+f(t), \quad t \in \mathbf{R} \tag{3}
\end{equation*}
$$

possesses a unique solution $x_{f} \in \Lambda\left(\mathbf{C}^{n}\right)$ and that the map $f \in \Lambda\left(\mathbf{C}^{n}\right) \mapsto x_{f} \in \Lambda\left(\mathbf{C}^{n}\right)$ is continuous. We first treat the homogeneous functional differential equation

$$
\begin{equation*}
\dot{x}(t)=L\left(x_{t}\right)+k x(t), \tag{4}
\end{equation*}
$$

and consider the solution semigroup $T(t): \mathcal{B} \mapsto \mathcal{B}, t \geq 0$, of Eq. (4) which is defined as

$$
T(t) \phi=x_{t}(\phi), \quad \phi \in \mathcal{B},
$$

where $x(\cdot, \phi)$ denotes the solution of (4) through $(0, \phi)$ and x_{t} is an element in \mathcal{B} defined as $x_{t}(\theta)=x(t+\theta), \theta \leq 0$. Let G be the infinitesimal generator of the solution semigroup $T(t)$. We assert that

$$
i \mathbf{R} \cap \sigma(G)=\{i \lambda \in i \mathbf{R}: \operatorname{det}[(i \lambda-k) I-L(\omega(\lambda) I)]=0\}
$$

Before proving the assertion, we first remark that the constant β introduced in [4, p . 127] satisfies $\beta<0$ because \mathcal{B} is a uniform fading memory space. In particular, if λ is a real number, then $\operatorname{Re}(i \lambda)=0>\beta$, and hence $\omega(\lambda) b \in \mathcal{B}$ for any $b \in \mathbf{C}^{n}$ by [4, p. 137, Th. 2.4].

Now, let $i \lambda \in i \mathbf{R} \cap \sigma(G)$. Since $i \lambda$ is a normal point of G by [4, p. 141, Th. 2.7], we must have that $i \lambda \in P_{\sigma}(G)$. Then [4, p. 134, Th. 2.1] implies that there exists a nonzero $b \in \mathbf{C}^{n}$ such that $i \lambda b-L(\omega(\lambda) b)-k b=0$, which shows that $i \lambda$ belongs to the set of the right hand side in the assertion. Conversely, assume that $i \lambda$ is an element of the set of the right hand side in the assertion. Then there is a nonzero $a \in \mathbf{C}^{n}$ such that $i \lambda a=k a+L(\omega(\lambda) a)$. Set $x(t)=e^{i \lambda t} a, t \in \mathbf{R}$. Then $x_{t}=e^{i \lambda t} \omega(\lambda) a$ and

$$
\begin{aligned}
\dot{x}(t)=i \lambda e^{i \lambda t} a & =e^{i \lambda t}(k a+L(\omega(\lambda) a)) \\
& =k x(t)+L\left(x_{t}\right)
\end{aligned}
$$

Thus $x(t)$ is a solution of Eq. (4) satisfying $x_{0}=\omega(\lambda) a$, and it follows that $T(t) \omega(\lambda) a=$ $T(t) x_{0}=x_{t}=e^{i \lambda t} \omega(\lambda) a$ for $t \geq 0$, which implies that $\omega(\lambda) a \in D(G)$ and $G(\omega(\lambda) a)=$ $i \lambda \omega(\lambda) a$. Thus $i \lambda \in \sigma(G) \cap i \mathbf{R}$, and the assertion is proved.

Now consider the sets $\Sigma_{C}:=\{\lambda \in \sigma(G): \operatorname{Re} \lambda=0\}$ and $\Sigma_{U}:=\{\lambda \in \sigma(G): \operatorname{Re} \lambda>0\}$. Then the set $\Sigma=\Sigma_{C} \cup \Sigma_{U}$ is a finite set [4, p. 144, Prop. 3.2]. Corresponding to the set Σ, we get the decomposition of the space \mathcal{B} :

$$
\mathcal{B}=S \oplus C \oplus U,
$$

where S, C, U are invariant under $T(t)$, the restriction $\left.T(t)\right|_{U}$ can be extendable as a group, and there exist positive constants c_{1} and α such that

$$
\begin{array}{r}
\left\|\left.T(t)\right|_{S}\right\| \leq c_{1} e^{-\alpha t} \quad(t \geq 0) \\
\left\|\left.T(t)\right|_{U}\right\| \leq c_{1} e^{\alpha t} \quad(t \leq 0)
\end{array}
$$

([4, p. 145, Ths. 3.1, 3.3]). Let Φ be a basis vector in C, and let Ψ be the basis vector associated with Φ. From [4, p. 149, Cor. 3.8] we know that the C-component $u(t)$ of the segment x_{t} for each solution $x(\cdot)$ of Eq. (3) is given by the relation $u(t)=\left\langle\Psi, \Pi_{C} x_{t}\right\rangle$ (where Π_{C} denotes the projection from \mathcal{B} onto C which corresponds to the decomposition of the space \mathcal{B}), and $u(t)$ satisfies the ordinary differential equation

$$
\begin{equation*}
\dot{u}(t)=Q u(t)-\hat{\Psi}\left(0^{-}\right) f(t), \tag{5}
\end{equation*}
$$

where Q is a matrix such that $\sigma(Q)=\sigma(G) \cap i \mathbf{R}$ and the relation $T(t) \Phi=\Phi e^{t Q}$ holds. Moreover, $\hat{\Psi}$ is the one associated with the Riesz representation of Ψ. Indeed, $\hat{\Psi}$ is a normalized vector-valued function which is of locally bounded variation on \mathbf{R}^{-} satisfying $\langle\Psi, \phi\rangle=\int_{-\infty}^{0} \phi(\theta) d \hat{\Psi}(\theta)$ for any $\phi \in \mathrm{BC}\left(\mathbf{R}^{-} ; \mathbf{C}^{n}\right)$ with compact support. Observe that $\Sigma_{C} \subset i \mathbf{R} \backslash i \Lambda$. Indeed, if $\mu \in \Sigma_{C}$, then $\mu=i \lambda$ for some $\lambda \in \mathbf{R}$, where $\operatorname{det}[(i \lambda-k) I-L(\omega(\lambda) I)]=0$ by the preceding assertion. Hence we get $\lambda \notin \Lambda$ by the assumption of the claim, and $\mu \in i \mathbf{R} \backslash i \Lambda$, as required. This observation leads to $\sigma(Q) \cap i \Lambda=\oslash$. Since $s p\left(\hat{\Psi}\left(0^{-}\right) f\right) \subset \Lambda$, lemma 1 implies that the ordinary differential equation (5) has a unique solution u satisfying $s p(u) \subset \Lambda$ and $\|u\| \leq c_{2}\left\|\hat{\Psi}\left(0^{-}\right) f\right\| \leq c_{3}\|f\|$ for some constants c_{2} and c_{3}. Consider a function $\xi: \mathbf{R} \mapsto \mathcal{B}$ defined by

$$
\xi(t)=\int_{*-\infty}^{t} T^{* *}(t-s) \Pi_{S}^{* *} \Gamma f(s) d s+\Phi u(t)-\int_{* t}^{\infty} T^{* *}(t-s) \Pi_{U}^{* *} \Gamma f(s) d s
$$

where Γ is the one defined in [4, p. 118] and \int_{*} denotes the weak-star integration (cf. [4, p. 116]). If $t \geq 0$, then

$$
\begin{aligned}
& T(t) \xi(\sigma)+\int_{* \sigma}^{t+\sigma} T^{* *}(t+\sigma-s) \Gamma f(s) d s \\
& =T(t)\left[\int_{*-\infty}^{\sigma} T^{* *}(\sigma-s) \Pi_{S}^{* *} \Gamma f(s) d s+\Phi u(\sigma)-\int_{* \sigma}^{\infty} T^{* *}(\sigma-s) \Pi_{U}^{* *} \Gamma f(s) d s\right] \\
& \quad+\int_{* \sigma}^{t+\sigma} T^{* *}(t+\sigma-s) \Gamma f(s) d s
\end{aligned}
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 20, p. 8

$$
\left.\begin{array}{rl}
= & \int_{*-\infty}^{\sigma} T^{* *}(t+\sigma-s) \Pi_{S}^{* *} \Gamma f(s) d s+\Phi e^{t Q} u(\sigma)-\int_{* \sigma}^{\infty} T^{* *}(t+\sigma-s) \Pi_{U}^{* *} \Gamma f(s) d s \\
& \quad+\int_{* \sigma}^{t+\sigma} T^{* *}(t+\sigma-s)\left(\Pi_{S}^{* *}+\Pi_{C}^{* *}+\Pi_{U}^{* *}\right) \Gamma f(s) d s \\
= & \int_{*-\infty}^{t+\sigma} T^{* *}(t+\sigma-s) \Pi_{S}^{* *} \Gamma f(s) d s+\Phi\left[e^{t Q} u(\sigma)+\int_{\sigma}^{t+\sigma} e^{(t+\sigma-s) Q}\left(-\hat{\Psi}\left(0^{-}\right) f(s)\right) d s\right] \\
& -\int_{* t+\sigma}^{\infty} T^{* *}(t+\sigma-s) \Pi_{U}^{* *} \Gamma f(s) d s \\
= & \int_{*-\infty}^{t+\sigma} T^{* *}(t+\sigma-s) \Pi_{S}^{* *} \Gamma f(s) d s+\Phi u(t+\sigma) \\
= & \xi(t+\sigma),
\end{array} \quad \quad-\int_{* t+\sigma}^{\infty} T^{* *}(t+\sigma-s) \Pi_{U}^{* *} \Gamma f(s) d s\right)
$$

where we used the relation $T^{* *}(t) \Pi_{C}^{* *} \Gamma=T^{* *}(t) \Phi\langle\Psi, \Gamma\rangle=\Phi e^{t Q}\left(-\hat{\Psi}\left(0^{-}\right)\right)$. Then [4, p. 121, Th. 2.9] yields that $x(t):=[\xi(t)](0)$ is a solution of (3). Define a $\psi \in \mathcal{B}^{*} \times \cdots \times \mathcal{B}^{*}$ (n-copies) by $\langle\psi, \phi\rangle=\phi(0), \phi \in \mathcal{B}$. Then

$$
\begin{aligned}
x(t)-\Phi(0) u(t) & =\langle\psi, \xi(t)-\Phi u(t)\rangle \\
& =\left\langle\psi, \int_{*-\infty}^{t} T^{* *}(t-s) \Pi_{S}^{* *} \Gamma f(s) d s-\int_{* t}^{\infty} T^{* *}(t-s) \Pi_{U}^{* *} \Gamma f(s) d s\right\rangle \\
& =\int_{-\infty}^{t}\left\langle\psi, T^{* *}(t-s) \Pi_{S}^{* *} \Gamma\right\rangle f(s) d s-\int_{t}^{\infty}\left\langle\psi, T^{* *}(t-s) \Pi_{U}^{* *} \Gamma\right\rangle f(s) d s \\
& =\int_{-\infty}^{\infty} Y(t-s) f(s) d s=Y * f(t),
\end{aligned}
$$

where $Y(\cdot)=\left\langle\psi, T^{* *}(\cdot) \Pi_{S}^{* *} \Gamma\right\rangle \chi_{[0, \infty)}-\left\langle\psi, T^{* *}(\cdot) \Pi_{U}^{* *} \Gamma\right\rangle \chi_{(-\infty, 0]}$ and it is an $n \times n$ matrixvalued integrable function on \mathbf{R}. Then $\sigma(x-\Phi(0) u) \subset \sigma(f) \subset \Lambda$ by (vii) of Proposition 1 , and hence $x-\Phi(0) u \in \Lambda\left(\mathbf{C}^{n}\right)$. Thus we get $x \in \Lambda\left(\mathbf{C}^{n}\right)$ because of $\operatorname{sp}(u) \subset \Lambda$. Moreover, the map $f \in \Lambda\left(\mathbf{C}^{n}\right) \mapsto x \in \Lambda\left(\mathbf{C}^{n}\right)$ is continuous.

Finally, we will prove the uniqueness of solutions of (3) in $\Lambda\left(\mathbf{C}^{n}\right)$. Let x be any solution of (3) which belongs to $\Lambda\left(\mathbf{C}^{n}\right)$. By [4, p. 120, Th. 2.8] the \mathcal{B}-valued function $\Pi_{S} x_{t}$ satisfies the relation

$$
\Pi_{S} x_{t}=T(t-\sigma) \Pi_{S} x_{\sigma}+\int_{* \sigma}^{t} T^{* *}(t-s) \Pi_{S}^{* *} \Gamma f(s) d s
$$

for all $t \geq \sigma>-\infty$. Note that $\sup _{\sigma \in \mathbf{R}}\left|x_{\sigma}\right|_{\mathcal{B}}<\infty$. Therefore, letting $\sigma \rightarrow-\infty$ we get

$$
\Pi_{S} x_{t}=\int_{*-\infty}^{t} T^{* *}(t-s) \Pi_{S}^{* *} \Gamma f(s) d s
$$

because

$$
\lim _{\sigma \rightarrow-\infty} \int_{* \sigma}^{t} T^{* *}(t-s) \Pi_{S}^{* *} \Gamma f(s) d s=\int_{*-\infty}^{t} T^{* *}(t-s) \Pi_{S}^{* *} \Gamma f(s) d s
$$

converges. Similarly, one gets

$$
\Pi_{U} x_{\sigma}=-\int_{* \sigma}^{\infty} T^{* *}(\sigma-s) \Pi_{U}^{* *} \Gamma f(s) d s
$$

Also, since $\left\langle\Psi, x_{t}\right\rangle$ satisfies Eq. (5) and since $s p\left(\left\langle\Psi, x_{t}\right\rangle\right) \subset s p(x) \subset \Lambda$, it follows that $\Pi_{C} x_{t}=\Phi\left\langle\Psi, x_{t}\right\rangle=\Phi u(t)$ for all $t \in \mathbf{R}$ by the uniqueness of the solution of (5) in $\Lambda\left(\mathbf{C}^{n}\right)$. Consequently, we have $x_{t} \equiv \xi(t)$ or $x(t) \equiv[\xi(t)](0)$, which shows the uniqueness of the solution of (3) in $\Lambda\left(\mathbf{C}^{n}\right)$.

Corollary 1 Suppose that $\operatorname{det}[i \lambda I-L(\omega(\lambda) I)] \neq 0$ for all $\lambda \in \Lambda$. Then Eq. (1) is admissible for $\mathcal{M}=\Lambda\left(\mathbf{C}^{n}\right)$.

Proof. The corollary is a direct consequence of Theorem 1 , since $0 \notin \sigma\left(\mathcal{D}_{\mathcal{M}}-\mathcal{L}_{\mathcal{M}}\right)$.
Corollary 2 Let Λ be a closed set in \mathbf{R}, and suppose that $\operatorname{det}[(i \lambda-k) I-L(\omega(\lambda) I)] \neq 0$ for all $\lambda \in \Lambda$. Then there exists an $n \times n$ matrix-valued integrable function F such that

$$
\begin{equation*}
[(i \lambda-k) I-L(\omega(\lambda) I)]^{-1}=\tilde{F}(\lambda):=\int_{-\infty}^{\infty} F(t) e^{-i \lambda t} d t \quad(\forall \lambda \in \Lambda) \tag{6}
\end{equation*}
$$

Furthermore, for any $f \in \Lambda\left(\mathbf{C}^{n}\right)$ Eq. (3) possesses a unique solution in $\Lambda\left(\mathbf{C}^{n}\right)$ which is explicitly given by $F * f$.

Proof. As seen in the proof of Theorem 1, there exists an $n \times n$ matrix-valued integrable function Y such that $\left(\mathcal{D}_{\mathcal{M}}-\mathcal{B}_{\mathcal{M}}-k\right)^{-1} f-\Phi(0) u(t)=Y * f$ for all $f \in \mathcal{M}:=\Lambda\left(\mathbf{C}^{n}\right)$. Furthermore, as pointed out in the proof of Lemma 1, there exists an integrable matrixvalued function F_{1} such that $u=F_{1} * f$ is a unique solution of (5) satisfying $\operatorname{sp}(u) \subset \Lambda$ for each $f \in \mathcal{M}$. Set $F=Y+\Phi(0) F_{1}$. Then F is an $n \times n$ matrix-valued integrable function on \mathbf{R}, and $F * f$ is is a unique solution in \mathcal{M} of Eq. (3) for each $f \in \mathcal{M}$.

Now we shall prove the relation (6). Let $\lambda \in \Lambda$, and set $x^{j}(t)=F(t) * e^{i \lambda t} e_{j}$ for $j=1, \cdots, n$. We claim that

$$
\tilde{F}(\lambda) e_{j}=\frac{1}{2 T} \int_{s-T}^{s+T} x^{j}(t) e^{-i \lambda t} d t, \quad j=1, \cdots, n
$$

for all $s \in \mathbf{R}$. Indeed, we get

$$
\begin{aligned}
\int_{s-T}^{s+T} x^{j}(t) e^{-i \lambda t} d t & =\int_{s-T}^{s+T}\left(\int_{-\infty}^{\infty} F(\tau) e^{i \lambda(t-\tau)} d \tau\right) e^{-i \lambda t} d t \cdot e_{j} \\
& =\int_{s-T}^{s+T} \int_{-\infty}^{\infty} F(\tau) e^{-i \lambda \tau} d \tau d t \cdot e_{j} \\
& =2 T \tilde{F}(\lambda) e_{j} .
\end{aligned}
$$

Since

$$
\frac{1}{2 T} \int_{-T}^{T} x_{t}^{j}(\theta) e^{-i \lambda t} d t=\frac{1}{2 T} \int_{-T+\theta}^{T+\theta} x^{j}(\tau) e^{-i \lambda \tau} d \tau \cdot e^{i \lambda \theta}=[\omega(\lambda)](\theta) \tilde{F}(\lambda) e_{j}
$$

for $\theta \leq 0$, (A2) implies that

$$
\frac{1}{2 T} \int_{-T}^{T} x_{t}^{j} e^{-i \lambda t} d t=\omega(\lambda) \tilde{F}(\lambda) e_{j}, \quad j=1, \cdots, n
$$

Then

$$
\begin{aligned}
\frac{1}{2 T}\left(x^{j}(T) e^{-i \lambda T}-x^{j}(-T) e^{i \lambda T}\right) & =\frac{1}{2 T} \int_{-T}^{T}\left\{-i \lambda x^{j}(t)+\dot{x}^{j}(t)\right\} e^{-i \lambda t} d t \\
& =\frac{1}{2 T} \int_{-T}^{T}\left(-i \lambda x^{j}(t)+L\left(x_{t}^{j}\right)+k x^{j}(t)+e^{i \lambda t} e_{j}\right) e^{-i \lambda t} d t \\
& =(k-i \lambda) \tilde{F}(\lambda) e_{j}+e_{j}+L\left(\omega(\lambda) \tilde{F}(\lambda) e_{j}\right) \\
& =[(k-i \lambda) I+L(\omega(\lambda) I)] \tilde{F}(\lambda) e_{j}+e_{j} .
\end{aligned}
$$

Letting $T \rightarrow \infty$ in the above, we get $0=[(k-i \lambda) I+L(\omega(\lambda) I)] \tilde{F}(\lambda) e_{j}+e_{j}$ for $j=1, \cdots, n$, or $\tilde{F}(\lambda)=[(i \lambda-k) I-L(\omega(\lambda) I)]^{-1}$, as required.

We denote by $A P\left(\mathbf{C}^{n}\right)$ or $A P$ the set of all almost periodic (continuous) functions $f: \mathbf{R} \mapsto \mathbf{C}^{n}$. The next result on the admissibility of $\Lambda\left(\mathbf{C}^{n}\right) \cap A P\left(\mathbf{C}^{n}\right)$ with respect to Eq. (1) is a direct consequence of Corollary 2, because $F * f \in A P$ whenever $f \in A P$ and F is integrable.

Corollary 3 Suppose that $\operatorname{det}[i \lambda I-L(\omega(\lambda) I)] \neq 0$ for all $\lambda \in \Lambda$. Then Eq. (1) is admissible for $\Lambda\left(\mathbf{C}^{n}\right) \cap A P\left(\mathbf{C}^{n}\right)$.

The preceding corollary is a result in the non-critical case. In fact, if (1) is a scalar equation (that is, $n=1$), our result is available even for the crical case.

Corollary 4 The following statements hold true for Eq. (1) with $n=1$:
(i) Let $f \in A P(\mathbf{C})$ with discrete spectrum, and assume the following condition:

$$
\begin{array}{r}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \overline{z(s)} f(s) d s=0 \text { for any almost periodic solution } z(t) \\
\text { of Eq. (1) satisfying } \operatorname{sp}(z) \subset s p(f) .
\end{array}
$$

Then the equation $\dot{x}(t)=L\left(x_{t}\right)+f(t)$ has an almost periodic solution.
(ii) Let $f \in \operatorname{BUC}(\mathbf{R} ; \mathbf{C})$ be a periodic function of period $\tau>0$, and assume the
following condition:

$$
\int_{0}^{\tau} \overline{z(s)} f(s) d s=0 \text { for any } \tau \text {-periodic solution } z(t) \text { of Eq. (1). }
$$

Then the equation $\dot{x}(t)=L\left(x_{t}\right)+f(t)$ has a τ-periodic solution.
Proof. (ii) is a direct consequence of (i). We shall prove (i). To do this, it suffices to show that $i \lambda-L(\omega(\lambda)) \neq 0$ for any $\lambda \in \operatorname{sp}(f)$. Suppose that $i \lambda=L(\omega(\lambda))$ for some $\lambda \in \operatorname{sp}(f)$, and set $z(t)=e^{i \lambda t}, t \in \mathbf{R}$. As seen in the proof of Theorem $1, z(t)$ is a (periodic) solution of Eq. (1), and moreover $s p(z) \subset s p(f)$. Therefore, by the condition in the statement (i) we get $\lim _{T \rightarrow \infty}(1 / T) \int_{0}^{T} f(s) e^{-i \lambda s} d s=0$, which shows that λ is not an exponent of $f(t)$. On the other hand, because $s p(f)$ is discrete, any point in $s p(f)$ must be an exponent of $f(t)$. This is a contradiction.

4. APPLICATIONS

As an application, we consider the integro-differential equation

$$
\begin{equation*}
\dot{x}(t)=\int_{0}^{\infty}[d B(s)] x(t-s), \tag{7}
\end{equation*}
$$

where B is an $n \times n$ matrix-valued function whose components are of bounded variation satisfying

$$
\exists \gamma>0: \quad \int_{0}^{\infty} e^{\gamma s} d|B(s)|<\infty
$$

In order to set up Eq. (7) as an FDE on a uniform fading memory space, we take the space C_{γ} introduced in Section 2, and define a functional L on C_{γ} by

$$
L(\phi)=\int_{0}^{\infty}[d B(s)] \phi(-s), \quad \phi \in C_{\gamma} .
$$

Then Eq. (7) is rewritten as Eq. (1) with $\mathcal{B}=C_{\gamma}$, and our previous results are applicable to Eq. (7):

Theorem 2 Suppose that $\operatorname{det}\left[i \lambda I-\int_{0}^{\infty}[d B(s)] e^{-i \lambda s}\right] \neq 0$ for all $\lambda \in \Lambda$. Then Eq. (7) is admissible for the spaces $\Lambda\left(\mathbf{C}^{n}\right)$ and $\Lambda\left(\mathbf{C}^{n}\right) \cap A P\left(\mathbf{C}^{n}\right)$.

In fact, there exists an $n \times n$ matrix-valued integrable function F such that

$$
\left[(i \lambda-k) I-\int_{0}^{\infty}[d B(s)] e^{-i \lambda s}\right]^{-1}=\tilde{F}(\lambda) \quad(\forall \lambda \in \Lambda),
$$

and for any $f \in \Lambda\left(\mathbf{C}^{n}\right), F * f$ is a unique solution in $\Lambda\left(\mathbf{C}^{n}\right)$ of the equation

$$
\dot{x}(t)=\int_{0}^{\infty}[d B(s)] x(t-s)+f(t) .
$$

Finally, we consider the following integro-differential equation

$$
\begin{equation*}
\dot{x}(t)=A x(t)+\int_{0}^{\infty} x(t-s) d b(s) \tag{8}
\end{equation*}
$$

in a Banach space X, where A is the infinitesimal generator of an analytic strongly continuous semigroup of linear operators on X, and $b: \mathbf{R}^{+} \mapsto \mathbf{C}$ is a function of bounded variation satisfying

$$
\exists \gamma>0: \quad \int_{0}^{\infty} e^{\gamma s} d|b(s)|<\infty
$$

In a similar way for Eq. (7), one can define the operator L on the uniform fading memory space $C_{\gamma}(X)$.

Now we denote by $\operatorname{BUC}(\mathbf{R} ; X), \Lambda(X), A P(X), \mathcal{D}_{\Lambda(X)}, \mathcal{L}_{\Lambda(X)}, \cdots$ the ones corresponding to $\operatorname{BUC}\left(\mathbf{R} ; \mathbf{C}^{n}\right), \Lambda\left(\mathbf{C}^{n}\right), A P\left(\mathbf{C}^{n}\right), \mathcal{D}_{\Lambda\left(\mathbf{C}^{n}\right)}, \mathcal{L}_{\Lambda\left(\mathbf{C}^{n}\right)}, \cdots$, and set $\mathcal{M}(\mathbf{C})=\Lambda(\mathbf{C}) \cap A P(\mathbf{C})$ and $\mathcal{M}(X)=\Lambda(X) \cap A P(X)$. Then $\mathcal{M}(X)$ is a translation invariant closed subspace of $\operatorname{BUC}(\mathbf{R} ; X)$, and one can consider the operator $\mathcal{D}_{\mathcal{M}(X)}-\mathcal{L}_{\mathcal{M}(X)}$, together with the operator $\mathcal{D}_{\mathcal{M}(\mathbf{C})}-\mathcal{L}_{\mathcal{M}(\mathbf{C})}$.

Lemma 2 Under the notation explained above, the following relation holds:

$$
\sigma\left(\mathcal{D}_{\mathcal{M}(X)}-\mathcal{L}_{\mathcal{M}(X)}\right)=\sigma\left(\mathcal{D}_{\mathcal{M}(\mathbf{C})}-\mathcal{L}_{\mathcal{M}(\mathbf{C})}\right)
$$

Proof. The inclusion $\sigma\left(\mathcal{D}_{\mathcal{M}(X)}-\mathcal{L}_{\mathcal{M}(X)}\right) \subset \sigma\left(\mathcal{D}_{\mathcal{M}(\mathbf{C})}-\mathcal{L}_{\mathcal{M}(\mathbf{C})}\right)$ is an immediate consequence of Corollary 2 (cf. [9, Lemma 3.6]). We shall establish the converse inclusion. Let $k \in \sigma\left(\mathcal{D}_{\mathcal{M}(\mathbf{C})}-\mathcal{L}_{\mathcal{M}(\mathbf{C})}\right)$, and assume that $k \notin \sigma\left(\mathcal{D}_{\mathcal{M}(X)}-\mathcal{L}_{\mathcal{M}(X)}\right)$. It follows from Theorem 1 that $k=i \lambda-\int_{0}^{\infty} e^{-i \lambda s} d b(s)$ for some $\lambda \in \Lambda$. Let $a \in X$ be any nonzero element, and define a function $f \in \Lambda(X)$ by $f(t)=e^{i \lambda t} a, t \in \mathbf{R}$. Then there is a unique solution x in $\mathcal{M}(X)$ of the equation

$$
\begin{equation*}
\dot{x}(t)=k x(t)+\int_{0}^{\infty} x(t-s) d b(s)+f(t) . \tag{9}
\end{equation*}
$$

Since $x \in A P(X)$, the limit

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-s}^{T-s} x(t) e^{-i \lambda t} d t\left(=: x_{\lambda}\right)
$$

exists in X uniformly for $s \in \mathbf{R}$. From (9) we get the relation

$$
\begin{aligned}
{\left[x(T) e^{-i \lambda T}-x(0)\right] / T=} & -(i \lambda / T) \int_{0}^{T} x(t) e^{-i \lambda t} d t+(k / T) \int_{0}^{T} x(t) e^{-i \lambda t} d t \\
& +(1 / T) \int_{0}^{T}\left[\int_{0}^{\infty} x(t-s) d b(s)\right] e^{-i \lambda t} d t+a,
\end{aligned}
$$

and hence letting $T \rightarrow \infty$ we get $\left[-i \lambda+k+\int_{0}^{\infty} e^{-i \lambda s} d b(s)\right] x_{\lambda}+a=0$, or $a=0$. This is a contradiction. Hence we must have the inclusion $\sigma\left(\mathcal{D}_{\mathcal{M}(X)}-\mathcal{L}_{\mathcal{M}(X)}\right) \supset \sigma\left(\mathcal{D}_{\mathcal{M}(\mathbf{C})}-\right.$ $\left.\mathcal{L}_{\mathcal{M}(\mathbf{C})}\right)$.

For $\mathcal{M}(X)=\Lambda(X) \cap A P(X)$, we denote by $\mathcal{A}_{\mathcal{M}(\mathcal{X})}$ the operator $f \in \mathcal{M}(X) \mapsto$ $A f(\cdot)$ with $D(\mathcal{A})=\{f \in \mathcal{M}(X): f(t) \in D(A), A f(\cdot) \in \mathcal{M}$ for $\forall t \in \mathbf{R}\}$. For two (unbounded) commuting operators $\mathcal{D}_{\mathcal{M}(X)}-\mathcal{L}_{\mathcal{M}(X)}$ and $\mathcal{A}_{\mathcal{M}(X)}$, it is known (cf. [9, Theorem 2.2]) that

$$
\sigma\left(\overline{\overline{\mathcal{D}}_{\mathcal{M}(X)}-\mathcal{L}_{\mathcal{M}(X)}-\mathcal{A}_{\mathcal{M}(X)}}\right) \subset \sigma\left(\mathcal{D}_{\mathcal{M}(X)}-\mathcal{L}_{\mathcal{M}(X)}\right)-\sigma\left(\mathcal{A}_{\mathcal{M}(X)}\right)
$$

here $\overline{(\cdots)}$ denotes the usual closure of the operator. Applying Lemma 2 and this relation, we get the following result on the admissiblity of $\mathcal{M}(X)$ with respect to Eq. (8).

Theorem 3 Assume that $i \lambda-\int_{0}^{\infty} e^{-i \lambda s} d b(s) \in \rho(A)$ for all $\lambda \in \Lambda$. Then for any $f \in \Lambda(X) \cap A P(X)$ the equation $\dot{x}(t)=A x(t)+\int_{0}^{\infty} x(t-s) d b(s)+f(t)$ has a unique (mild) solution in $\Lambda(X) \cap A P(X)$.

References

[1] J.K. Hale, "Theory of Functional Differential Equations", Springer-Verlag, New York-Heidelberg-Berlin, 1977.
[2] J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
[3] L. Hatvani and T. Krisztin, On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations, J. Diff. Eq. 97 (1992), 1-15.
[4] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Math. 1473, Springer-Verlag, Berlin-New York 1991.
[5] C. Langenhop, Periodic and almost periodic solutions of Volterra integral differential equations with infinite memory, J. Diff. Eq. 58 (1985), 391-403.
[6] B.M. Levitan and V.V. Zhikov, "Almost Periodic Functions and Differential Equations", Moscow Univ. Publ. House 1978. English translation by Cambridge University Press 1982.
[7] J.J. Massera and J.J. Schäffer, "Linear Differential Equations and Function Spaces", Academic Press, New York, 1966.
[8] S. Murakami, Linear periodic functional differential equations with infinite delay, Funkcial. Ekvac. 29 (1986), N.3, 335-361.
[9] S. Murakami, T. Naito and Nguyen V. Minh, Evolution semigroups and sums of commuting operators: a new approach to the admissibility theory of function spaces, J. Diff. Eq. (in press).
[10] J. Prüss, "Evolutionary Integral Equations and Applications", Birkhäuser, Basel, 1993.
[11] Q.P. Vu, Almost periodic solutions of Volterra equations, Diff. Int. Eq. 7 (1994), 1083-1093.
[12] Q.P. Vu and E. Schüler, The operator equation $A X-X B=C$, stability and asymptotic behaviour of differential equations, J. Diff. Eq. 145 (1998), 394-419.

[^0]: *This paper is in final form and no version of it will be submitted for publication elsewhere.
 ${ }^{\dagger}$ Partly supported in part by Grant-in-Aid for Scientific Research (C), No.11640191, Japanese Ministry of Education, Science, Sports and Culture.
 ${ }^{\ddagger}$ On leave from the Department of Mathematics, University of Hanoi, 90 Nguyen Trai, Hanoi, Vietnam.

