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AN OPTIMAL CONDITION FOR THE UNIQUENESS
OF A PERIODIC SOLUTION FOR LINEAR
FUNCTIONAL DIFFERENTIAL SYSTEMS

S. MUKHIGULASHVILI, I. GRYTSAY

ABSTRACT. Unimprovable effective efficient conditions are estab-
lished for the unique solvability of the periodic problem

i+1
u;(t):ZEiyj(uj)(t)nLqi(t) for 1<i<n-—1,
j=2

-

up(t) = >l j(ug)(t) + qn(t),

j=1
u;(0) = u;(w) for 1<j<n,

where w > 0, ¢;; : C([0,w]) — L([0,w]) are linear bounded opera-
tors, and ¢; € L([0,w]).

2000 Mathematics Subject Classification: 34K06, 34K13

Key words and phrases: Linear functional differential system,
periodic boundary value problem, uniqueness.

1. STATEMENT OF PROBLEM AND FORMULATION OF MAIN
REsuLTS

Consider on [0, w] the system
it1
wi(t) = li(u) () +qi(t)  for 1<i<n-—1,
7 (1.1)
W () = () () + ga(t),
j=1

with the periodic boundary conditions
1;(0) = u;(w) for 1<j<n, (1.2)

where n > 2, w > 0, ¢;; : C([0,w]) — L([0,w]) are linear bounded
operators and ¢; € L([0,w]).

By a solution of the problem (1.1), (1.2) we understand a vector
function v = (u;)™, with u; € C([0,w]) (i = 1,n) which satisfies

system (1.1) almost everywhere on [0, w] and satisfies conditions (1.2).
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Much work had been carried out on the investigation of the existence
and uniqueness of the solution for a periodic boundary value problem
for systems of ordinary differential equations and many interesting re-
sults have been obtained (see, for instance, [1-3,7-9,11,12,17] and the
references therein). However, an analogous problem for functional dif-
ferential equations, remains investigated in less detail even for linear
equations. In the present paper, we study problem (1.1) (1.2) under
the assumption that ¢, 1,¢; ;11 (i = 1,n — 1) are monotone linear oper-
ators. We establish new unimprovable integral conditions sufficient for
unique solvability of the problem (1.1),(1.2) which generalize the well-
known results of A. Lasota and Z. Opial (see Remark 1.1) obtained for
ordinary differential equations in [13], and on the other hand, extend
results obtained for linear functional differential equations in [5,14-16].
These results are new not only for the systems of functional differen-
tial equations (for reference see [2,4,6,10] ), but also for the system of
ordinary differential equations of the form

i+1
w(t) =Y pi)u(t) +q(t)  for 1<i<n-—1,
=2 (1.3)

(0) = D2 g5 (0) + 00 1)

where ¢;,p;; € L([0,w]) (see, for instance, [2,7-9] and the references
therein). The method used for the investigation of the problem con-
sidered is based on that developed in our previous papers [14-16] for
functional differential equations.

The following notation is used throughout the paper: N(R) is the
set of all the natural (real) numbers; R" is the space of n-dimensional
column vectors r = (z;)", with elements x; € R (i = 1,n); Ry =
[0, +00[; C([0,w]) is the Banach space of continuous functions u :
[0,w] — R with the norm ||u||c = max{|u(t)|: 0 <t < w}; C([0,w]; R™)
is the space of continuous functions v : [0,w] — R™ C([0,w]) is the
set of absolutely continuous functions u : [0,w] — R; L([0,w]) is the
Banach space of Lebesgue integrable functions p : [0,w] — R with
the norm ||pll, =[5 [p(s)|ds; if £ : C([0,w]) — L([0,w]) is a linear
operator, then |[¢[| = supy|,.<1 1€(7)]|L-

Definition 1.1. We will say that a linear operator ¢ : C([0,w]) —
L([0,w]) is monnegative (nonpositive), if for any nonnegative x €
C([0,w]) the inequality ¢(x)(t) > 0 (¢(x)(t) < 0) for 0 < ¢t < w is
satisfied. We will say that an operator ¢ is monotone if it is either
nonnegative or nonpositive.
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Definition 1.2. With system (1.1) we associate the matrix A4; =
(a(1 )itj=1 defined by the equalities

1
aﬂ:—l, aﬁ)lzi||€n71||, az(,ll):O for 2<i<n-1,

1 .
o o = il =1, alhy, = Hamu for 1<i<n—1, (14)

ag}}:o for i+2<j<mn, am- =||l;;|| for 3<j+1<i<n.

(k)

and the matrices Ay = (a;;)7;—;, (k= 2,n) given by the recurrence

.J
relations
A2 - A17 (15)
aEIEH) = a%) for i<k or jé&{kk+1}, (1.6)
(k+1) (k) aﬁQ (k)
i —am—i—a(lf) a; g for k+1<i<n, k<j<k+1. (1.7)
k. ke

Theorem 1.1. Let (1, 4; ;41 : C([0,w]) — L([0,w]) (: = I,n—1) be
linear monotone operators,

w w

/@ﬂg@%%m /&Hﬂxmh¢0ﬂwlgi§n—Lﬂ&
0 0

and
af) <0 for 2<k<n. (1.9)

where the matrices Ay, are defined by relations (1.4)-(1.7). Let, more-
over,

/wm |¢H/mw m<MHM] (1.10)
0

Then problem (1.1), (1.2) has a unique solution.
Definition 1.3. For the system (1.3) we define the matrix A; =
(a(1 )itj=1 by the equalities (1.4)-(1.7) with
0 i(x)(t) = pij(t)x(t) for 4,5 €1,n, xeC(0,w]). (1.11)
Corollary 1.1. Let
0<0,pn1(t) Z0, 0<opiina(t) Z0  for 1<i<n—-1 (1.12)

where 0; € {—1,1} (i = 1,n), the matrices Ay are defined by the
relations (1.5)-(1.7), (1.11) and

af) <0  for 2<k<n. (1.13)
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Let, moreover,

w n—1 w n '
/0 \pn,l(s)usH/O pjga(s)lds < 4" T la¥)]. (1.14)
j=1 j=2

Then problem (1.3), (1.2) has a unique solution.

Now, assume that

0;=0 for j#£2, ¢;=0 for j€{i,i+1}, i=2,n—1, (1.15)
l,; =0 for j=2,n—-1

Then system (1.1) is of the following type
ui(t) = li2(u2)(t) + ¢i (2),
wp(t) = € (w)(t) + Ciipr (uip1)(t) +q;(t) for 2<i<n-—1, (1.16)
U () = na (W) (8) + Lo (n) (8) + aa(2),

and from Theorem 1.1 we obtain

Corollary 1.2. Let l,,1,0; ;1 (i = 1,n — 1) be linear monotone oper-
ators, the conditions (1.8) hold and

/ ee(1)(s)lds <1 for 2<k<n. (1.17)

Let, moreover,

/|fn,1<1 |ds /wml lds <
0

(1.18)
< 4" 1 —/ 1; (1 |ds
Then problem (1.16), (1.2) has a unique solution.
For the cyclic feedback system
w(t) = Li(ui1)(t) + qi(t for 1<i<n-—1,
() = ) (®) + (1) -

U (1) = bn(un) () + an(t),

Corollary 1.2 yields

Corollary 1.3. Let ¢; : C([0,w]) — L([0,w]) (i = 1,n) be linear mono-
tone operators,

|G| #0 for i=1,n, (1.20)

and .
[T el <4 (1.21)

=1

Then problem (1.19), (1.2) has a unique solution.
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Remark 1.1. The problem

u’(t) = p(t)u(t) +q(t), u(0) =u(w), v'(0) =u'(w), (1.22)

is equivalent to the problem (1.19), (1.2) with n = 2, {1(x)(t) =
2(t), £(2)(1) = p(H)a(t), ¢ =0 and g = g.

Then if p,q € L([0,w]), p(t) < 0 and [ p(s)ds # 0 from the corol-
lary 1.3 it follows that problem (1.19), (1. 2) and therefore problem
(1.22), has a unique solution if the condition [ |p(s)|ds < & is ful-
filled. This follows from the well-known result of A. Lasota and Z.

Opial (see [13]).

Example 1.1. The example below shows that condition (1.21) in
Corollary 1.3 is optimal and cannot be replaced by the condition

[T el < 4 (1.21;)
=1

Define the function ug € C([0,1]) on [0,1/2], and extend it to [1/2,1]
by the equalities

1 for 0 <t <1/8
up(t) = < sinm(1 —4¢t) for 1/8 <t <3/8,
-1 for 3/8 <t <1/2

up(t) =up(l —t) for 1/2<t<1.

Now let measurable functions 7; : [0,1] — [0, 1] and the linear non-
negative operators ¢; : C([0,1]) — L([0,1])(: = 1,n) be given by the
equalities

n(f) = {1/ s for 0= un(!) ) (t) = Ju(D)a(m().

1/2 —1/8i for 0 > wy(t)

Then it is clear that uO(O) = up(l), ¢; # ¢; if i # j, and ||4;]| =
[ 16:(1)(s)]ds = 167rf1/8 cos(1 — 4s)ds = 4 for i = 1,n. Thus, all
the assumptlons of Corollary 1.3 are satisfied except (1.21), instead
of which condition (1.21;) is fulfilled with w = 1. On the other hand,
from the relations uy(t) = |uf(t)|ug(mi(t)) = Li(uo)(t) (i = 1,n), it
follows that the vector function (u;(t))", if w;(t) = ue(t) (i = 1,n) is a
nontrivial solution of problem (1.1), (1.2) with w =1, ¢(t) = Whlch
contradicts the conclusion of Corollary 1.3.
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2. AUXILIARY PROPOSITIONS

Lemma 2.1. Let the matrices Ay (k = 1,n) be defined by equalities
(1.4)-(1.7). Then the following relations hold:

(m) . . _
a’i,j ZO fOT Z#]a m = 1,7’1,, (21m)
al) = all) (2:20)
o) <a?  for i>m>2 j>m, A<m. (2:2,1)

Proof. It immediately follows from the definition of A;, A, that in-
equalities (2.17) and (2.2;) are true. Now, we assume that (2.1,,)
holds for m = 3,..,my (mo < n) and prove (2.1,,,+1). If i < my or
Jj & {mo, mo + 1}, relation (1.6) implies inequality (2.1,,,+1), and if
i>mo+1, j € {my, mo+ 1}, then (2.1,,,41) follows from (1.7).

Now we prove inequality (2.2,,). First assume that 7 > m+ 1. Then
from (1.6) it is clear that

ag”\j) = agj\jﬂ) =..= aggl) for 7>m+1,i>m, A<m. (2.3)

Now, let j = m. Then from (1.6) we get agf;zl = agiil) =..= aETn_l) for

i >m, A < m. By the last equalities and (2.1,,), from (1.7) it follows
L)
(m) _ _(m—1) m—lm __(m—1) (m—1) _ ()

> ai,m - Yi,m

ai,m - Yi,m | (m—1) im—1 = for 1 Z m, A S m,

m—1,m—1

From this inequality and (2.3) we conclude that (2.2,,) is fulfilled for
all j > m and i > m. Equality (2.2¢) follows immediately from (1.5)
and (1.6). O

Also we need the following simple lemma proved in the paper [17].

Lemma 2.2. Let 0 € {—1,1} and of : C([0,w]) — L([0,w]) be a
nonnegative linear operator. Then
—ml(1)(t)| < ol(z)(t) < M(1)(t)] for 0<t<w, z€C([0,w]),

where m = — Ogltlgnw{x(t)}, M= olg%)i{x(t)}'

Now, consider on [0, w] the homogeneous problem
i+1

Vi) =) Lij(v)(t)  for 1<i<n, (2.4

v;(0) = v;(w) for 1<j<n, (2.5)
where the operator ¢, ,,+1 and function v,;; are defined by the equal-
ities {ppt1 = €p1 and v,41 = vy, Also define the functional A; :
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C([0,w]; R™) — Ry by the equality A;(v) = Jnax {vi(t)} — Or<nti<n {vi(t)}
(1 =1,n) for any vector function v = (v;)I, and put A,y =A,.
Lemma 2.3. Let {;;,1 : C([0,w]) — L([0,w]) (i = 1,n) be linear
monotone operators,

/Ow liiv1(1)(s)ds # 0 for 1<i<n, (2.6)

the matrices Ay be defined by the equalities (1.4)-(1.7) and

agf,)g <0 for 2<k<n. (2.7)

Let, moreoverv = (v;)?_, be a nontrivial solution of the problem ((2.4;)),,
(2.5) for which there ezists a ky € {2,...,n} such that vy, #0. Then if

ko = min{k € {2,...,n} : vp Z 0}, (2.8)

the inequalities
0< Hkac < Ak(’l]) fOT k= 17 k(] < k < n, (29k)
0< a,glfllAk(v) + a,(g]f,)HlAkH(v) for ko <k <n, (2.10%)

hold, where a,(izlﬂ = a,(i)l.

Proof. Define the numbers My, my € R, t,,t] € [0,w] by the relations
My, = vi(ty) = max {ox(t)}, —my = vx(ty) = min {ux(0)}, (2.11,)

and introduce the sets [,gl) [t th] I,Ff’ =1\ [lgl) for tj, < t]. It is
clear from (2.8) that

vy 2 0. (2.12)
On the other hand, from (2.4;,-1) by (2.8) we obtain

/0 e 1 (000)()ds = 0. (2.13)

Equality (2.13), in view of (2.6) and Lemma 2.2 guarantees the exis-
tence of a ty € [0, w| such that vg,(ty) = 0. Then from (2.12) we get
(2.9k,).

Let the numbers My, my, € R, ;. ,t{, € [0,w] be defined by the
relations (2.114,) and t; <t (the case t; <t can be considered
analogously). The integration of (2.4;,) on I,gg), by virtue of (2.5) and
(2.8) results in

Bif0) = (1| [ trpas ) [ brypia(vags)(5)ds
Y "
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for r = 1, 2. From the last equality, by virtue of (1.4), (2.7), (2.9y,) and
(2.2k,) with A =1, i = j = ko we get

0< _al(c]:)(jl)coAk(J(U) < (=1 /( : Cro ko1 (Vo +1)(8)ds (2.15,)
Ik:)
for r = 1,2. Assume that vy,41 is a constant sign function. Then

in view of the fact that the operator /x, j,+1 is monotone we get the
contradiction with (2.151) or (2.155), i.e., vg,+1 changes its sign. Then

Mk0+1 > O, Migt+1 > O, (216)

and the inequality (2.9%,41) holds ((2.91) if kg = n). If lx, k,+1 is a non-

negative operator, from (2.15,) (r = 1,2) in view of (2.16) by Lemma

2.2 we get 0 < —a,&ﬁ?&oAko(v) < Myt flél) [0k ko+1(1)(s)|ds, 0 <
0

—a/(;z?l)mAko (v) < Myy11 flliz) |0k ko+1(1)(s)|ds. By multiplying these es-

timates and applying the numerical inequality 4AB < (A + B)?, in
view of the notations (1.4) we obtain 0 < agz(jlloAko(v) + +(Myos1 +

mig1) (S0 ko st o iy poer (D(5)lds) = ), Ay (0)+

a,&t{k0+1Ako+1(v), (0< agf,)lAn(v) + a,(i)lAl(v) if kg = n), from which by
(2.20) if ko = n and (2.2,) with A = 1, i = ko, j = ko + 1 if ko < n,
follows (2.104,). Analogously, from (2.15,) we get (2.104,) in the case
when the operator (, 5,41 is nonpositive.

Consequently, we have proved the proposition:

i. Let 2 < kg < n, then the inequalities (2.9x,), (2.9x+1) ((2.91) if
ko = n) and (2.104,) hold.

Now, we shall prove the following proposition:

ii. Let ky € {ko,...,n—1} be such that the inequalities (2.9;),(2.10)
for (k = ko, k1), and (2.94,41) hold. Then the inequalities (2.9, 2) if
ki <n—2, (2.91) if k; =n — 1 and (2.104,41) hold too.

Define the numbers My, 41, mp,11 € R, t) .15 ., € [0,w] by the
relations (2.114,11) and let ¢}, <t ., (thecaset) ., <t} ., canbe

proved analogously). The integration of (2.4;,.1) on [ ,g:)ﬂ, by virtue
of (2.5) and (2.8) results in
k1+2
B = (1Y [ ns@)eds a7

Jj=ko Tey+1

for r = 1,2. From this equality, by the conditions (1.4),(2.7),(2.9;) with
k= ]{30, ceey k’l + 1, and (22k0) with A\ = ]_, 1= k’l + 1, j = ]{30, cees ]{31 +1
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we get
ki+1

0= Z ak1+1j +(=1)" /() €k1+1,k1+2<vk1+2)(8)d8 (2.18)

J=ko I

for r = 1, 2. By multiplying (2.10;) with a,&’jlrl’k/|a,(f,)§\ for k € {ko, ..., k1}
in view of the inequalities (2.7) we obtain

(k)
Ok kt1
0< ak1+1kAk( v) + —J)r‘ k1+1kAk+1( v). (2.19;)

kk

Now, summing (2.18) and (2.19,) by virtue of (1.7) with k = ko, i =
i+ 1, j=ko+ 1, we get

k141

ko+1) ko)
0< 1(910+1 o1 8%0+1(V) Z a/(ﬂo+1] v)+
j=ko+2
HD [ () (5)ds,
Pt
from which by (2.2x,41) with i = k1 +1, 7 > ko +2, A = ko, we obtain
k1+1
(ko+1) T
0< > @AW+ [l (0)ds (220)
j=ko+1 k1+1

for r = 1,2. Analogously, by summing (2.20) and the inequalities
(2.19;) for all k = ko + 1, ..., k; we get

0< a1 Ap(v) < (—1) / lostinsa(vnse) (s)ds (221)

(r)
P

for 7 = 1,2. In the same way as the inequality (2.9x,41) and (2.104,)
follow from (2.15,), the inequalities (2.9x,12) ((2.91) if kg =n —1) and
(2.10%,+1) follow from (2.21).

From the propositions i. and ii. by the the method of mathematical
induction we obtain that the inequalities (2.91), (2.9x) and (2.10;)
(k = ko,n) hold. O

3. PROOFS

Proof of Theorem 1.1. It is known from the general theory of boundary
value problems for functional differential equations that if ¢; ; (i, =
1,n) are strongly bounded linear operators, then problem (1.1), (1.2)
has the Fredholm property (see [6]). Thus, problem (1.1), (1.2) is
uniquely solvable iff the homogeneous problem (2.4;)" ,, (2.5) has only
the trivial solution.
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Assume that, on the contrary, the problem (2.4;)!" ,,(2.5) has a non-
trivial solution v = (v;)I,. Let

nZz0, vu=0 for 2<i<n. (3.1)

Thus from (2.41) and (2.4;,) it follows that v{(¢) = 0 and ¢, ;(v1)(t) =
0, ie., in view of the fact that the operator /£, satisfies (1.8) we
obtain that v; = 0, which contradicts (3.1). Consequently there exists
ko € {2,...,n} such that vy, # 0. Then all the conditions of Lemma
2.3 are satisfied, from which it follows that 0 < ||v1||c < Aq(v), i.e.,
v; #Z Const and in view of the condition (2.5) the function v] changes
its sign. Thus from (2.4;) by the monotonicity of the operator ¢ o,
we get that vy changes its sign too. Consequently if My, msy are the
numbers defined by the equalities (2.115) then

M; >0, my >0, (3.2)

and if ky is the number defined by the equality (2.8), then ky = 2.
Thus from Lemma 2.3 it follows that the inequalities (2.91), (2.9%) and
(2.104) (k = 2, ) hold.

Now, assume that the numbers My, my, and t},t] € [0, w] are defined
by the equalities (2.11;) and ¢} < ] (the case t] < t| can be proved

analogously). By integration of (2.4;) on the set I{T) we obtain

Ay(v) = (—1)" / () (s)ds (3.3)
n"
for r = 1,2. First assume that the operator ¢, » is nonnegative (the
case of nonpositive ¢; » can be proved analogously), then from (3.3) by
(2.91), (3.2) and the Lemma 2.2 we obtain

0< Al(l)) < mgy /(1) |£172(1)(8)|d8, 0< Al(v) < M, /(2) |£172(1)(8)|d8.
Il Il
By multiplying these estimates and applying the numerical equality

4AB < (A+ B)? and the equalities (1.4) we get 0 < aﬂAl(v) +2(ma+

1) ( Sy 12(D)(3)lds + [y [2(1)(3)]ds) = afiAi(v) + aldAs(v),
i.e., all the inequalities (2.10;) (k = 1,n) are satisfied.
On the other hand from (1.4)—(1.6) and Lemma 2.1 it is clear that

1 n 1 k 1 1
ad =1 @l =an i =ah0 = el (64
for 1 <k <n—1. By multiplying all the estimates (2.10x) (k = 1,n)
and applying (3.4) we get the contradiction with condition (1.10). Thus

our assumption fails, and hence v; =0 (i = 1, n). O
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Proof of Corollary 1.1. From (1.11) and (1.12) it is clear that ¢, ; and
{; 11 are monotone operators and (1.8) holds. Also, from (1.13) and
(1.14), the conditions (1.9) and (1.10) follow. Consequently all the

conditions of Theorem 1.1 are fulfilled for system (1.3). O
Proof of Corollary 1.2. From (1.4), (1.6), and (1.15) it is clear that
af U =al Y == al) = |Gl -1 for 2<k<n, (3.5)
and
a,ikk ZZ - a,(f,;_if) =..= a,(i,)ﬁ_i =0 for 3<k—i<n,
W (3.6)
(l271 — O.
From (1.7), (1.15) and the first equality of (3.6) we get
(k—2) (k—2)
(k-1) (k-2 | Y—2k—1 (k—2)  D—2k-1 (k-2)
k-1~ Q1 v G k-2 = T2 Phk—2 =
‘%—2,19—2 |ak—2,k—2 (3.7)
(k=2) (k=3) k=2 () '
O o1 Qp_3kp-—2 (k-3 (2 jj41
+—2) (lc3 akk%—...—a“HT—O
| ool [0 583 |aj;]

for k> 3. From (3.7) and the second equality of (3.6) it is clear that

afi =0 for  2<k<n (3.8)
Then from (1.7) by (3.5) and (3 8) we obtain
k k-1 k—1)
Ak = 4+ e 1S = [l = 1

Thus from the conditions (1.17) and (1.18) it follows that (1.9) and
(1.10) hold. Consequently all the conditions of Theorem 1.1 are fulfilled
for the system (1.16). O
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