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AN OPTIMAL CONDITION FOR THE UNIQUENESS

OF A PERIODIC SOLUTION FOR LINEAR

FUNCTIONAL DIFFERENTIAL SYSTEMS
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Abstract. Unimprovable effective efficient conditions are estab-
lished for the unique solvability of the periodic problem

u′

i(t) =

i+1∑

j=2

ℓi,j(uj)(t) + qi(t) for 1 ≤ i ≤ n − 1,

u′

n(t) =

n∑

j=1

ℓn,j(uj)(t) + qn(t),

uj(0) = uj(ω) for 1 ≤ j ≤ n,

where ω > 0, ℓij : C([0, ω]) → L([0, ω]) are linear bounded opera-
tors, and qi ∈ L([0, ω]).
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1. Statement of Problem and Formulation of Main

Results

Consider on [0, ω] the system

u′
i(t) =

i+1∑

j=2

ℓi,j(uj)(t) + qi(t) for 1 ≤ i ≤ n − 1,

u′
n(t) =

n∑

j=1

ℓn,j(uj)(t) + qn(t),

(1.1)

with the periodic boundary conditions

uj(0) = uj(ω) for 1 ≤ j ≤ n, (1.2)

where n ≥ 2, ω > 0, ℓi,j : C([0, ω]) → L([0, ω]) are linear bounded
operators and qi ∈ L([0, ω]).

By a solution of the problem (1.1), (1.2) we understand a vector

function u = (ui)
n
i=1 with ui ∈ C̃([0, ω]) (i = 1, n) which satisfies

system (1.1) almost everywhere on [0, ω] and satisfies conditions (1.2).
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Much work had been carried out on the investigation of the existence
and uniqueness of the solution for a periodic boundary value problem
for systems of ordinary differential equations and many interesting re-
sults have been obtained (see, for instance, [1–3,7–9,11,12,17] and the
references therein). However, an analogous problem for functional dif-
ferential equations, remains investigated in less detail even for linear
equations. In the present paper, we study problem (1.1) (1.2) under
the assumption that ℓn,1, ℓi,i+1 (i = 1, n − 1) are monotone linear oper-
ators. We establish new unimprovable integral conditions sufficient for
unique solvability of the problem (1.1),(1.2) which generalize the well-
known results of A. Lasota and Z. Opial (see Remark 1.1) obtained for
ordinary differential equations in [13], and on the other hand, extend
results obtained for linear functional differential equations in [5,14–16].
These results are new not only for the systems of functional differen-
tial equations (for reference see [2,4,6,10] ), but also for the system of
ordinary differential equations of the form

u′
i(t) =

i+1∑

j=2

pi,j(t)uj(t) + qi(t) for 1 ≤ i ≤ n − 1,

u′
n(t) =

n∑

j=1

pn,j(t)uj(t) + qn(t),

(1.3)

where qi, pi,j ∈ L([0, ω]) (see, for instance, [2, 7–9] and the references
therein). The method used for the investigation of the problem con-
sidered is based on that developed in our previous papers [14–16] for
functional differential equations.

The following notation is used throughout the paper: N(R) is the
set of all the natural (real) numbers; Rn is the space of n-dimensional
column vectors x = (xi)

n
i=1 with elements xi ∈ R (i = 1, n); R+ =

[0, +∞[; C([0, ω]) is the Banach space of continuous functions u :
[0, ω] → R with the norm ||u||C = max{|u(t)| : 0 ≤ t ≤ ω}; C([0, ω]; Rn)

is the space of continuous functions u : [0, ω] → Rn; C̃([0, ω]) is the
set of absolutely continuous functions u : [0, ω] → R; L([0, ω]) is the
Banach space of Lebesgue integrable functions p : [0, ω] → R with
the norm ‖p‖L =

∫ ω

0
|p(s)|ds; if ℓ : C([0, ω]) → L([0, ω]) is a linear

operator, then ‖ℓ‖ = sup0<||x||C≤1 ‖ℓ(x)‖L.

Definition 1.1. We will say that a linear operator ℓ : C([0, ω]) →
L([0, ω]) is nonnegative (nonpositive), if for any nonnegative x ∈
C([0, ω]) the inequality ℓ(x)(t) ≥ 0 (ℓ(x)(t) ≤ 0) for 0 ≤ t ≤ ω is
satisfied. We will say that an operator ℓ is monotone if it is either
nonnegative or nonpositive.
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Definition 1.2. With system (1.1) we associate the matrix A1 =

(a
(1)
i,j )n

i,j=1 defined by the equalities

a
(1)
1,1 = −1, a

(1)
n,1 =

1

4
||ℓn,1||, a

(1)
i,1 = 0 for 2 ≤ i ≤ n − 1,

a
(1)
i+1,i+1 = ||ℓi+1,i+1||−1, a

(1)
i,i+1 =

1

4
||ℓi,i+1|| for 1 ≤ i ≤ n−1, (1.4)

a
(1)
i,j = 0 for i + 2 ≤ j ≤ n, a

(1)
i,j = ||ℓi,j|| for 3 ≤ j + 1 ≤ i ≤ n.

and the matrices Ak = (a
(k)
i,j )n

i,j=1, (k = 2, n) given by the recurrence
relations

A2 = A1, (1.5)

a
(k+1)
i,j = a

(k)
i,j for i ≤ k or j 6∈ {k, k + 1}, (1.6)

a
(k+1)
i,j = a

(k)
i,j +

a
(k)
k,j

|a
(k)
k,k|

a
(k)
i,k for k +1 ≤ i ≤ n, k ≤ j ≤ k +1. (1.7)

Theorem 1.1. Let ℓn,1, ℓi,i+1 : C([0, ω]) → L([0, ω]) (i = 1, n − 1) be

linear monotone operators,
ω∫

0

ℓn,1(1)(s)ds 6= 0,

ω∫

0

ℓi,i+1(1)(s)ds 6= 0 for 1 ≤ i ≤ n − 1, (1.8)

and

a
(k)
k,k < 0 for 2 ≤ k ≤ n. (1.9)

where the matrices Ak are defined by relations (1.4)-(1.7). Let, more-

over,
∫ ω

0

|ℓn,1(1)(s)|ds

n−1∏

j=1

∫ ω

0

|ℓj,j+1(1)(s)|ds < 4n

n∏

j=2

|a
(j)
j,j |. (1.10)

Then problem (1.1), (1.2) has a unique solution.

Definition 1.3. For the system (1.3) we define the matrix A1 =

(a
(1)
i,j )n

i,j=1 by the equalities (1.4)-(1.7) with

ℓi,j(x)(t) = pi,j(t)x(t) for i, j ∈ 1, n, x ∈ C([0, ω]). (1.11)

Corollary 1.1. Let

0 ≤ σnpn,1(t) 6≡ 0, 0 ≤ σipi,i+1(t) 6≡ 0 for 1 ≤ i ≤ n − 1 (1.12)

where σi ∈ {−1, 1} (i = 1, n), the matrices Ak are defined by the

relations (1.5)-(1.7), (1.11) and

a
(k)
k,k < 0 for 2 ≤ k ≤ n. (1.13)
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Let, moreover,
∫ ω

0

|pn,1(s)|ds
n−1∏

j=1

∫ ω

0

|pj,j+1(s)|ds < 4n
n∏

j=2

|a
(j)
j,j |. (1.14)

Then problem (1.3), (1.2) has a unique solution.

Now, assume that

ℓ1,j ≡ 0 for j 6= 2, ℓi,j ≡ 0 for j 6∈ {i, i + 1}, i = 2, n − 1,

ℓn,j = 0 for j = 2, n − 1.
(1.15)

Then system (1.1) is of the following type

u′
1(t) = ℓ1,2(u2)(t) + q1(t),

u′
i(t) = ℓi,i(ui)(t) + ℓi,i+1(ui+1)(t) + qi(t) for 2 ≤ i ≤ n − 1,

u′
n(t) = ℓn,1(u1)(t) + ℓn,n(un)(t) + qn(t),

(1.16)

and from Theorem 1.1 we obtain

Corollary 1.2. Let ℓn,1, ℓi,i+1 (i = 1, n − 1) be linear monotone oper-

ators, the conditions (1.8) hold and
∫ ω

0

|ℓk,k(1)(s)|ds < 1 for 2 ≤ k ≤ n. (1.17)

Let, moreover,
∫ ω

0

|ℓn,1(1)(s)|ds

n−1∏

j=1

∫ ω

0

|ℓj,j+1(1)(s)|ds <

< 4n
n∏

j=2

(
1 −

∫ ω

0

|ℓj,j(1)(s)|ds
)
.

(1.18)

Then problem (1.16), (1.2) has a unique solution.

For the cyclic feedback system

u′
i(t) = ℓi(ui+1)(t) + qi(t) for 1 ≤ i ≤ n − 1,

u′
n(t) = ℓn(u1)(t) + qn(t),

(1.19)

Corollary 1.2 yields

Corollary 1.3. Let ℓi : C([0, ω]) → L([0, ω]) (i = 1, n) be linear mono-

tone operators,

||ℓi|| 6= 0 for i = 1, n, (1.20)

and
n∏

i=1

||ℓi|| < 4n. (1.21)

Then problem (1.19), (1.2) has a unique solution.
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Remark 1.1. The problem

u′′(t) = p(t)u(t) + q(t), u(0) = u(ω), u′(0) = u′(ω), (1.22)

is equivalent to the problem (1.19), (1.2) with n = 2, ℓ1(x)(t) =
x(t), ℓ2(x)(t) = p(t)x(t), q1 ≡ 0 and q2 ≡ q.

Then if p, q ∈ L([0, ω]), p(t) ≤ 0 and
∫ ω

0
p(s)ds 6= 0 from the corol-

lary 1.3 it follows that problem (1.19), (1.2) and therefore problem
(1.22), has a unique solution if the condition

∫ ω

0
|p(s)|ds < 16

ω
is ful-

filled. This follows from the well-known result of A. Lasota and Z.
Opial (see [13]).

Example 1.1. The example below shows that condition (1.21) in
Corollary 1.3 is optimal and cannot be replaced by the condition

n∏

i=1

||ℓi|| ≤ 4n. (1.211)

Define the function u0 ∈ C̃([0, 1]) on [0, 1/2], and extend it to [1/2, 1]
by the equalities

u0(t) =






1 for 0 ≤ t ≤ 1/8

sin π(1 − 4t) for 1/8 < t ≤ 3/8

−1 for 3/8 < t ≤ 1/2

,

u0(t) = u0(1 − t) for 1/2 < t ≤ 1.

Now let measurable functions τi : [0, 1] → [0, 1] and the linear non-
negative operators ℓi : C([0, 1]) → L([0, 1])(i = 1, n) be given by the
equalities

τi(t) =

{
1/8i for 0 ≤ u′

0(t)

1/2 − 1/8i for 0 > u′
0(t)

, ℓi(x)(t) = |u′
0(t)|x(τi(t)).

Then it is clear that u0(0) = u0(1), ℓi 6= ℓj if i 6= j, and ||ℓi|| =∫ 1

0
|ℓi(1)(s)|ds = 16π

∫ 1/4

1/8
cos π(1 − 4s)ds = 4 for i = 1, n. Thus, all

the assumptions of Corollary 1.3 are satisfied except (1.21), instead
of which condition (1.211) is fulfilled with ω = 1. On the other hand,
from the relations u′

0(t) = |u′
0(t)|u0(τi(t)) = ℓi(u0)(t) (i = 1, n), it

follows that the vector function (ui(t))
n
i=1 if ui(t) ≡ u0(t) (i = 1, n) is a

nontrivial solution of problem (1.1), (1.2) with ω = 1, q(t) ≡ 0, which
contradicts the conclusion of Corollary 1.3.
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2. Auxiliary Propositions

Lemma 2.1. Let the matrices Ak (k = 1, n) be defined by equalities

(1.4)-(1.7). Then the following relations hold:

a
(m)
i,j ≥ 0 for i 6= j, m = 1, n, (2.1m)

a
(1)
n,1 = a

(n)
n,1 (2.20)

a
(λ)
i,j ≤ a

(m)
i,j for i ≥ m ≥ 2, j ≥ m, λ ≤ m. (2.2m)

Proof. It immediately follows from the definition of A1, A2 that in-
equalities (2.11) and (2.22) are true. Now, we assume that (2.1m)
holds for m = 3, .., m0 (m0 < n) and prove (2.1m0+1). If i ≤ m0 or
j 6∈ {m0, m0 + 1}, relation (1.6) implies inequality (2.1m0+1), and if
i ≥ m0 + 1, j ∈ {m0, m0 + 1}, then (2.1m0+1) follows from (1.7).

Now we prove inequality (2.2m). First assume that j ≥ m + 1. Then
from (1.6) it is clear that

a
(λ)
i,j = a

(λ+1)
i,j = ... = a

(m)
i,j for j ≥ m + 1, i ≥ m, λ ≤ m. (2.3)

Now, let j = m. Then from (1.6) we get a
(λ)
i,m = a

(λ+1)
i,m = ... = a

(m−1)
i,m for

i ≥ m, λ ≤ m. By the last equalities and (2.1m), from (1.7) it follows

a
(m)
i,m = a

(m−1)
i,m +

a
(m−1)
m−1,m

|a
(m−1)
m−1,m−1|

a
(m−1)
i,m−1 ≥ a

(m−1)
i,m = a

(λ)
i,m for i ≥ m, λ ≤ m,

From this inequality and (2.3) we conclude that (2.2m) is fulfilled for
all j ≥ m and i ≥ m. Equality (2.20) follows immediately from (1.5)
and (1.6). �

Also we need the following simple lemma proved in the paper [17].

Lemma 2.2. Let σ ∈ {−1, 1} and σℓ : C([0, ω]) → L([0, ω]) be a

nonnegative linear operator. Then

−m|ℓ(1)(t)| ≤ σℓ(x)(t) ≤ M |ℓ(1)(t)| for 0 ≤ t ≤ ω, x ∈ C([0, ω]),

where m = − min
0≤t≤ω

{x(t)}, M = max
0≤t≤ω

{x(t)}.

Now, consider on [0, ω] the homogeneous problem

v′
i(t) =

i+1∑

j=2

ℓi,j(vj)(t) for 1 ≤ i ≤ n, (2.4i)

vj(0) = vj(ω) for 1 ≤ j ≤ n, (2.5)

where the operator ℓn,n+1 and function vn+1 are defined by the equal-
ities ℓn,n+1 ≡ ℓn,1 and vn+1 ≡ v1. Also define the functional ∆i :
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C([0, ω]; Rn) → R+ by the equality ∆i(v) = max
0≤t≤ω

{vi(t)}− min
0≤t≤ω

{vi(t)}

(i = 1, n) for any vector function v = (vi)
n
i=1 and put ∆n+1 ≡ ∆1.

Lemma 2.3. Let ℓi,i+1 : C([0, ω]) → L([0, ω]) (i = 1, n) be linear

monotone operators,
∫ ω

0

ℓi,i+1(1)(s)ds 6= 0 for 1 ≤ i ≤ n, (2.6)

the matrices Ak be defined by the equalities (1.4)-(1.7) and

a
(k)
k,k < 0 for 2 ≤ k ≤ n. (2.7)

Let, moreover v = (vi)
n
i=1 be a nontrivial solution of the problem ((2.4i))

n
i=1,

(2.5) for which there exists a k1 ∈ {2, ..., n} such that vk1 6≡ 0. Then if

k0 = min{k ∈ {2, ..., n} : vk 6≡ 0}, (2.8)

the inequalities

0 < ||vk||C ≤ ∆k(v) for k = 1, k0 ≤ k ≤ n, (2.9k)

0 ≤ a
(k)
k,k∆k(v) + a

(k)
k,k+1∆k+1(v) for k0 ≤ k ≤ n, (2.10k)

hold, where a
(1)
n,n+1 = a

(1)
n,1.

Proof. Define the numbers Mk, mk ∈ R, t′k, t
′′
k ∈ [0, ω] by the relations

Mk = vk(t
′
k) = max

0≤t≤ω
{vk(t)}, −mk = vk(t

′′
k) = min

0≤t≤ω
{vk(t)}, (2.11k)

and introduce the sets I
(1)
k = [t′k, t′′k], I

(2)
k = I \ I

(1)
k for t′k < t′′k. It is

clear from (2.8) that

vk0 6≡ 0. (2.12)

On the other hand, from (2.4k0−1) by (2.8) we obtain
∫ ω

0

ℓk0−1,k0(vk0)(s)ds = 0. (2.13)

Equality (2.13), in view of (2.6) and Lemma 2.2 guarantees the exis-
tence of a t0 ∈ [0, ω] such that vk0(t0) = 0. Then from (2.12) we get
(2.9k0).

Let the numbers Mk0 , mk0 ∈ R, t′k0
, t′′k0

∈ [0, ω] be defined by the
relations (2.11k0) and t′k0

< t′′k0
(the case t′′k0

< t′k0
can be considered

analogously). The integration of (2.4k0) on I
(r)
k0

, by virtue of (2.5) and
(2.8) results in

∆k0(v) = (−1)r
[ ∫

I
(r)
k0

ℓk0,k0(vk0)(s)ds +

∫

I
(r)
k0

ℓk0,k0+1(vk0+1)(s)ds
]

(2.14)
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for r = 1, 2. From the last equality, by virtue of (1.4), (2.7), (2.9k0) and
(2.2k0) with λ = 1, i = j = k0 we get

0 < −a
(k0)
k0,k0

∆k0(v) ≤ (−1)r

∫

I
(r)
k0

ℓk0,k0+1(vk0+1)(s)ds (2.15r)

for r = 1, 2. Assume that vk0+1 is a constant sign function. Then
in view of the fact that the operator ℓk0,k0+1 is monotone we get the
contradiction with (2.151) or (2.152), i.e., vk0+1 changes its sign. Then

Mk0+1 > 0, mk0+1 > 0, (2.16)

and the inequality (2.9k0+1) holds ((2.91) if k0 = n). If ℓk0,k0+1 is a non-
negative operator, from (2.15r) (r = 1, 2) in view of (2.16) by Lemma

2.2 we get 0 < −a
(k0)
k0,k0

∆k0(v) ≤ mk0+1

∫
I
(1)
k0

|ℓk0,k0+1(1)(s)|ds, 0 <

−a
(k0)
k0,k0

∆k0(v) ≤ Mk0+1

∫
I
(2)
k0

|ℓk0,k0+1(1)(s)|ds. By multiplying these es-

timates and applying the numerical inequality 4AB ≤ (A + B)2, in

view of the notations (1.4) we obtain 0 ≤ a
(k0)
k0,k0

∆k0(v) + 1
4
(Mk0+1 +

mk0+1)
( ∫

I
(1)
k0

|ℓk0,k0+1(1)(s)|ds+
∫

I
(2)
k0

|ℓk0,k0+1(1)(s)|ds
)

= a
(k0)
k0,k0

∆k0(v)+

a
(1)
k0,k0+1∆k0+1(v), (0 ≤ a

(n)
n,n∆n(v) + a

(1)
n,1∆1(v) if k0 = n), from which by

(2.20) if k0 = n and (2.2k0) with λ = 1, i = k0, j = k0 + 1 if k0 < n,
follows (2.10k0). Analogously, from (2.15r) we get (2.10k0) in the case
when the operator ℓk0,k0+1 is nonpositive.

Consequently, we have proved the proposition:
i. Let 2 ≤ k0 ≤ n, then the inequalities (2.9k0), (2.9k0+1) ((2.91) if

k0 = n) and (2.10k0) hold.
Now, we shall prove the following proposition:
ii. Let k1 ∈ {k0, ..., n−1} be such that the inequalities (2.9k),(2.10k)

for (k = k0, k1), and (2.9k1+1) hold. Then the inequalities (2.9k1+2) if
k1 ≤ n − 2, (2.91) if k1 = n − 1 and (2.10k1+1) hold too.

Define the numbers Mk1+1, mk1+1 ∈ R, t′k1+1, t
′′
k1+1 ∈ [0, ω] by the

relations (2.11k1+1) and let t′k1+1 < t′′k1+1 (the case t′′k1+1 < t′k1+1 can be

proved analogously). The integration of (2.4k1+1) on I
(r)
k1+1, by virtue

of (2.5) and (2.8) results in

∆k1+1(v) = (−1)r

k1+2∑

j=k0

∫

I
(r)
k1+1

ℓk1+1,j(vj)(s)ds (2.17)

for r = 1, 2. From this equality, by the conditions (1.4),(2.7),(2.9k) with
k = k0, ..., k1 + 1, and (2.2k0) with λ = 1, i = k1 + 1, j = k0, ..., k1 + 1
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we get

0 ≤
k1+1∑

j=k0

a
(k0)
k1+1,j∆j(v) + (−1)r

∫

I
(r)
k1+1

ℓk1+1,k1+2(vk1+2)(s)ds (2.18)

for r = 1, 2. By multiplying (2.10k) with a
(k)
k1+1,k/|a

(k)
k,k| for k ∈ {k0, ..., k1}

in view of the inequalities (2.7) we obtain

0 ≤ −a
(k)
k1+1,k∆k(v) +

a
(k)
k,k+1

|a
(k)
k,k|

a
(k)
k1+1,k∆k+1(v). (2.19k)

Now, summing (2.18) and (2.19k0) by virtue of (1.7) with k = k0, i =
k1 + 1, j = k0 + 1, we get

0 ≤ a
(k0+1)
k1+1,k0+1∆k0+1(v) +

k1+1∑

j=k0+2

a
(k0)
k1+1,j∆j(v)+

+(−1)r

∫

I
(r)
k1+1

ℓk1+1,k1+2(vk1+2)(s)ds,

from which by (2.2k0+1) with i = k1 + 1, j ≥ k0 + 2, λ = k0, we obtain

0 ≤

k1+1∑

j=k0+1

a
(k0+1)
k1+1,j∆j(v) + (−1)r

∫

I
(r)
k1+1

ℓk1+1,k1+2(vk1+2)(s)ds (2.20)

for r = 1, 2. Analogously, by summing (2.20) and the inequalities
(2.19k) for all k = k0 + 1, ..., k1 we get

0 < −a
(k1+1)
k1+1,k1+1∆k1+1(v) ≤ (−1)r

∫

I
(r)
k1+1

ℓk1+1,k1+2(vk1+2)(s)ds (2.21)

for r = 1, 2. In the same way as the inequality (2.9k0+1) and (2.10k0)
follow from (2.15r), the inequalities (2.9k1+2) ((2.91) if k0 = n− 1) and
(2.10k1+1) follow from (2.21).

From the propositions i. and ii. by the the method of mathematical
induction we obtain that the inequalities (2.91), (2.9k) and (2.10k)
(k = k0, n) hold. �

3. Proofs

Proof of Theorem 1.1. It is known from the general theory of boundary
value problems for functional differential equations that if ℓi,j (i, j =
1, n) are strongly bounded linear operators, then problem (1.1), (1.2)
has the Fredholm property (see [6]). Thus, problem (1.1), (1.2) is
uniquely solvable iff the homogeneous problem (2.4i)

n
i=1, (2.5) has only

the trivial solution.
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Assume that, on the contrary, the problem (2.4i)
n
i=1,(2.5) has a non-

trivial solution v = (vi)
n
i=1. Let

v1 6≡ 0, vi ≡ 0 for 2 ≤ i ≤ n. (3.1)

Thus from (2.41) and (2.4n) it follows that v′
1(t) ≡ 0 and ℓn,1(v1)(t) ≡

0, i.e., in view of the fact that the operator ℓn,1 satisfies (1.8) we
obtain that v1 ≡ 0, which contradicts (3.1). Consequently there exists
k0 ∈ {2, ..., n} such that vk0 6≡ 0. Then all the conditions of Lemma
2.3 are satisfied, from which it follows that 0 < ||v1||C ≤ ∆1(v), i.e.,
v1 6≡ Const and in view of the condition (2.5) the function v′

1 changes
its sign. Thus from (2.41) by the monotonicity of the operator ℓ1,2,
we get that v2 changes its sign too. Consequently if M2, m2 are the
numbers defined by the equalities (2.112) then

M2 > 0, m2 > 0, (3.2)

and if k0 is the number defined by the equality (2.8), then k0 = 2.
Thus from Lemma 2.3 it follows that the inequalities (2.91), (2.9k) and
(2.10k) (k = 2, n) hold.

Now, assume that the numbers M1, m1, and t′1, t
′′
1 ∈ [0, ω[ are defined

by the equalities (2.111) and t′1 < t′′1 (the case t′′1 < t′1 can be proved

analogously). By integration of (2.41) on the set I
(r)
1 we obtain

∆1(v) = (−1)r

∫

I
(r)
1

ℓ1,2(v2)(s)ds (3.3)

for r = 1, 2. First assume that the operator ℓ1,2 is nonnegative (the
case of nonpositive ℓ1,2 can be proved analogously), then from (3.3) by
(2.91), (3.2) and the Lemma 2.2 we obtain

0 < ∆1(v) ≤ m2

∫

I
(1)
1

|ℓ1,2(1)(s)|ds, 0 < ∆1(v) ≤ M2

∫

I
(2)
1

|ℓ1,2(1)(s)|ds.

By multiplying these estimates and applying the numerical equality

4AB ≤ (A+B)2 and the equalities (1.4) we get 0 ≤ a
(1)
1,1∆1(v)+ 1

4
(m2 +

M2)
( ∫

I
(1)
1

|ℓ1,2(1)(s)|ds +
∫

I
(2)
1

|ℓ1,2(1)(s)|ds
)

= a
(1)
1,1∆1(v) + a

(1)
1,2∆2(v),

i.e., all the inequalities (2.10k) (k = 1, n) are satisfied.
On the other hand from (1.4)–(1.6) and Lemma 2.1 it is clear that

a
(1)
1,1 = −1, a

(n)
n,1 = a

(1)
n,1, a

(k)
k,k+1 = a

(1)
k,k+1 =

1

4
||ℓk,k+1|| (3.4)

for 1 ≤ k ≤ n − 1. By multiplying all the estimates (2.10k) (k = 1, n)
and applying (3.4) we get the contradiction with condition (1.10). Thus
our assumption fails, and hence vi ≡ 0 (i = 1, n). �
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Proof of Corollary 1.1. From (1.11) and (1.12) it is clear that ℓn,1 and
ℓi,i+1 are monotone operators and (1.8) holds. Also, from (1.13) and
(1.14), the conditions (1.9) and (1.10) follow. Consequently all the
conditions of Theorem 1.1 are fulfilled for system (1.3). �

Proof of Corollary 1.2. From (1.4), (1.6), and (1.15) it is clear that

a
(k−1)
k,k = a

(k−2)
k,k = ... = a

(1)
k,k = ||ℓk,k|| − 1 for 2 ≤ k ≤ n, (3.5)

and

a
(k−i−1)
k,k−i = a

(k−i−2)
k,k−i = ... = a

(1)
k,k−i = 0 for 3 ≤ k − i ≤ n,

a
(1)
2,1 = 0.

(3.6)

From (1.7), (1.15) and the first equality of (3.6) we get

a
(k−1)
k,k−1 = a

(k−2)
k,k−1 +

a
(k−2)
k−2,k−1

|a
(k−2)
k−2,k−2|

a
(k−2)
k,k−2 =

a
(k−2)
k−2,k−1

|a
(k−2)
k−2,k−2|

a
(k−2)
k,k−2 =

=
a

(k−2)
k−2,k−1

|a
(k−2)
k−2,k−2|

a
(k−3)
k−3,k−2

|a
(k−3)
k−3,k−3|

a
(k−3)
k,k−3 = ... = a

(2)
k,2

k−2∏

j=2

a
(j)
j,j+1

|a
(j)
j,j |

= 0

(3.7)

for k ≥ 3. From (3.7) and the second equality of (3.6) it is clear that

a
(k−1)
k,k−1 = 0 for 2 ≤ k ≤ n (3.8)

Then from (1.7) by (3.5) and (3.8) we obtain

a
(k)
k,k = a

(k−1)
k,k + a

(k−1)
k−1,ka

(k−1)
k,k−1/|a

(k−1)
k−1,k−1| = ||ℓk,k|| − 1.

Thus from the conditions (1.17) and (1.18) it follows that (1.9) and
(1.10) hold. Consequently all the conditions of Theorem 1.1 are fulfilled
for the system (1.16). �
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