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Abstract. In this paper we study a non-homogeneous eigenvalue problem involving
variable growth conditions and a sign-changing potential. We prove that any λ > 0
sufficiently small is an eigenvalue of the nonhomogeneous eigenvalue problem{

−div(a(|∇u|)∇u) = λV(x)|u|q(x)−2u, in Ω,
u = 0, on ∂Ω.

The proofs of the main results are based on Ekeland’s variational principle.
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1 Introduction

Let Ω ⊂ RN(N ≥ 3) be a bounded domain with smooth boundary ∂Ω. We assume that the
function a : (0, ∞)→ R is such that the mapping φ : R→ R defined by

φ(t) =

{
a(|t|)t, for t 6= 0,

0, for t = 0,

is an odd, increasing homeomorphism from R onto R. We also suppose throughout this
paper that λ > 0, V is an indefinite sign-changing weight and q : Ω → (1, ∞) is a continuous
function. In this note we study the following nonlinear eigenvalue problem:{

−div(a(|∇u|)∇u) = λV(x)|u|q(x)−2u, in Ω,

u = 0, on ∂Ω.
(P)

The interest in analyzing this kind of problems is motivated by some recent advances in
the study of eigenvalue problems involving non-homogeneous operators in the divergence
form. We refer especially to the results in [5, 6, 11, 13–16, 18].
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Mihăilescu and Rădulescu, in [13], studied the same nonhomogeneous eigenvalue prob-
lem in the particular case when V(x) = 1. The authors proved, under the assumption
1 < infx∈Ω q(x) < p0, that there exists λ0 > 0 such that any λ ∈ (0, λ0) is an eigenvalue
for problem (P).

In order to go further we introduce the functional space setting where problem (P) will
be discussed. In this context we notice that the operator in the divergence form is not ho-
mogeneous and thus, we introduce an Orlicz–Sobolev space setting for problems of this type.
Orlicz–Sobolev spaces have been used in the last decades to model various phenomena. Chen,
Levine and Rao [3] proposed a framework for image restoration based on a variable exponent
Laplacian. A second application which uses variable exponent type Laplace operators is
modelling electrorheological fluids [9]. On the other hand, the presence of the continuous
functions s and q as exponents appeals to a suitable variable exponent Lebesgue space setting.
In the following, we give a brief description of the Orlicz–Sobolev spaces and of the variable
exponent Lebesgue spaces.

We first recall some basic facts about Orlicz spaces. Define

Φ(t) =
∫ t

0
φ(s)ds, Φ∗(t) =

∫ t

0
φ−1(s)ds, ∀t ∈ R.

We observe that Φ is a Young function, that is, Φ(0) = 0, Φ is convex, and limt→∞ Φ(t) = +∞.
Furthermore, since Φ(0) = 0 if and only if t = 0, limt→0

Φ(t)
t = 0, and limt→∞

Φ(t)
t = +∞, then

Φ is called an N-function. The function Φ∗ is called the complementary function of Φ and it
satisfies

Φ∗(t) = sup{st−Φ(s) : s ≥ 0}, ∀t ≥ 0.

We also observe that Φ∗ is also an N-function and the following Young’s inequality holds true:

st ≤ Φ(s) + Φ∗(t), ∀s, t ≥ 0.

The Orlicz spaces LΦ(Ω) defined by the N-function Φ (see [1,2,4]) is the space of measurable
functions u : Ω→ R such that

‖u‖LΦ = sup
{∫

Ω
uvdx :

∫
Ω

Φ∗(|v|)dx ≤ 1
}

< +∞.

Then (LΦ(Ω), ‖ · ‖LΦ) is a reflexive Banach space whose norm is equivalent to the Luxemburg
norm

‖u‖Φ = inf
{

µ > 0 :
∫

Ω
Φ
(

u
µ

)
dx ≤ 1

}
.

For Orlicz spaces, Hölder’s inequality reads as follows (see [17]):∫
Ω

uvdx ≤ 2‖u‖LΦ‖v‖LΦ∗ , ∀u ∈ LΦ(Ω), ∀v ∈ LΦ∗(Ω).

We denote by W1
0 LΦ(Ω) the corresponding Orlicz–Sobolev space for problem (P), equipped

with the norm
‖u‖ = ‖∇u‖Φ

(see [8]). The space W1
0 LΦ(Ω) is also a Banach space.

Throughout this paper we assume that

1 < lim inf
t→∞

tφ(t)
Φ(t)

≤ lim sup
t>0

tφ(t)
Φ(t)

< ∞ (1.1)
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and the function [0,+∞) 3 t → Φ(
√

t ) is convex. Due to assumption (1.1), we may define
the numbers

p0 = inf
t>0

tφ(t)
Φ(t)

and p0 = sup
t>0

tφ(t)
Φ(t)

.

Note that for a(|t|) = |t|p−2, p > 1, one has p0 = p0 = p.
On the other hand, the following relations hold true:

‖u‖p0 ≤
∫

Ω
Φ(|∇u|)dx ≤ ‖u‖p0 , ∀u ∈W1

0 LΦ(Ω) with ‖u‖ < 1, (1.2)

‖u‖p0 ≤
∫

Ω
Φ(|∇u|)dx ≤ ‖u‖p0

, ∀u ∈W1
0 LΦ(Ω) with ‖u‖ > 1 (1.3)

(see [12, Lemma 1]).
Let us now introduce the Orlicz–Sobolev conjugate Φ∗ of Φ, which is given by

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)

s
N+1

N
ds, (1.4)

(see [1]), where we suppose that

lim
t→0

∫ 1

t

Φ−1(s)

s
N+1

N
ds < +∞ and lim

t→∞

∫ t

1

Φ−1(s)

s
N+1

N
ds = ∞. (1.5)

In the case Φ(t) = 1
p |t|p, (1.5) holds if and only if p < N.

2 The main result and proof of the theorem

We say that λ ∈ R is an eigenvalue of problem (P) if there exists u ∈W1
0 LΦ(Ω)\{0} such that∫

Ω
a(|∇u|)∇u∇vdx− λ

∫
Ω

V(x)|u|q(x)−2uvdx = 0,

for all v ∈ W1
0 LΦ(Ω). We point out that if λ is an eigenvalue of problem (P), then the corre-

sponding eigenfunction v ∈W1
0 LΦ(Ω)\{0} is a weak solution of problem (P).

Our main result is given by the following theorem.

Theorem 2.1. Suppose that (1.5) and the following conditions hold:

H(q, s) : 1 < q(x) < p0 ≤ p0 < s(x), ∀x ∈ Ω.

H(Φ) : lim
t→∞

|t|
s−q+

S−−q+

Φ∗(kt) = 0, ∀k > 0.

H(V) : V ∈ Ls(x)(Ω) and there exists a measurable set Ω0 ⊂ Ω of positive measure such that
V(x) > 0, ∀x ∈ Ω0.

Then there exists λ0 > 0 such that any λ ∈ (0, λ0) is an eigenvalue of the problem (P).

Proof. In order to formulate the variational problem (P), let us introduce the functionals
F, G, ϕλ : W1

0 LΦ(Ω)→ R defined by

F(u) =
∫

Ω
Φ(|∇u|)dx, G(u) =

∫
Ω

V(x)
q(x)

|u|q(x)dx
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and
ϕλ(u) = F(u)− λG(u).

Denote by s′(x) the conjugate exponent of the function s(x) and put α(x) := s(x)q(x)
s(x)−q(x) . From

H(q, s), we have s′(x)q(x) < α(x), ∀x ∈ Ω, α(x) < s−q+
s−−q+ , ∀x ∈ Ω. Thus, by relation (1.5),

condition H(Φ) and Theorem 2.2 in [7], we deduce that W1
0 LΦ(Ω) is compactly embedded

in L
s−q+

s−−q+ (Ω). That fact combined with the continuous embedding of L
s−q+

s−−q+ (Ω) in Lα(x)(Ω)

ensures that W1
0 LΦ(Ω) is compactly embedded in Lα(x)(Ω). In an analogous way, we can show

that the embedding X ↪→ Ls′(x)q(x)(Ω) is compact.
The proof is divided into the following four steps.

Step 1. We will show that ϕλ ∈ C1(W1
0 LΦ(Ω), R).

Firstly, by Lemma 3.4 in [7] we deduce that F is a C1 convex functional, with Fréchet
derivative given by

〈F′(u), v〉 =
∫

Ω
a(|∇u|)∇u∇vdx.

Therefore, we only need to prove that G ∈ C1(W1
0 LΦ(Ω), R), that is, we show that for all

h ∈W1
0 LΦ(Ω),

lim
t↓0

G(u + th)− G(u)
t

= 〈dG(u), h〉,

and dG : W1
0 LΦ(Ω)→ (W1

0 LΦ(Ω))∗ is continuous, where we denote by (W1
0 LΦ(Ω))∗ the dual

space of W1
0 LΦ(Ω), 〈·, ·〉 is the pairing between (W1

0 LΦ(Ω))∗ and W1
0 LΦ(Ω).

For all h ∈W1
0 LΦ(Ω), we have

lim
t↓0

G(u + th)− G(u)
t

=
d
dt

G(u + th)
∣∣∣∣
t=0

=

(
d
dt

∫
Ω

V(x)
q(x)

|u + th|q(x)dx
) ∣∣∣∣

t=0

=
∫

Ω

d
dt

(
V(x)
q(x)

|u + th|q(x)
) ∣∣∣∣

t=0
dx

=
∫

Ω
V(x)|u + th|q(x)−2(u + th)h

∣∣
t=0dx

=
∫

Ω
V(x)|u|q(x)−2uhdx

= 〈dG(u), h〉.

The differentiation under the integral is allowed for t close to zero. Indeed, for |t| < 1,
using Hölder’s inequality and condition H(q, s), we have∫

Ω
|V(x)|u + th|q(x)−2(u + th)h|dx ≤

∫
Ω
|V(x)||u + th|q(x)−1|h|dx

≤
∫

Ω
|V(x)|(|u|+ |h|)q(x)−1|h|dx

≤ 3|V|s(x)
∣∣|u|+ |h|∣∣qi−1

q(x) |h|α(x)

< + ∞,

where i = + if
∣∣|u|+ |h|∣∣q(x) > 1 and i = − if

∣∣|u|+ |h|∣∣q(x) ≤ 1. Since W1
0 LΦ(Ω) ↪→ Lα(x)(Ω),

W1
0 LΦ(Ω) ↪→ Lq(x)(Ω) and V ∈ Ls(x)(Ω).
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On the other hand, since W1
0 LΦ(Ω) is continuously embedded in Lα(x)(Ω) it follows that

there exists positive constants c1 such that |h|α(x) ≤ c1‖h‖. Therefore, by condition H(q, s), we
have

|〈dG(u), h〉| =
∣∣∣∣∫Ω
|V(x)|u|q(x)−2uhdx

∣∣∣∣
≤
∫

Ω
|V(x)||u|q(x)−1|h|dx

≤
(

1
s−

+
q+

q+ − 1
+

1
α−

)
|V|s(x)

∣∣∣|u|q(x)−1
∣∣∣ q(x)

q(x)−1

|h|α(x)

≤
(

1
s−

+
q+

q+ − 1
+

1
α−

)
|V|s(x)|u|

qi−1
q(x) |h|α(x)

≤ c1

(
1

s−
+

q+

q+ − 1
+

1
α−

)
|V|s(x)|u|

qi−1
q(x) ‖h‖,

for any h ∈W1
0 LΦ(Ω).

Thus there exists c2 = c1
( 1

s− + q+
q+−1 +

1
α−
)
|V|s(x)|u|

qi−1
q(x) such that

|〈dG(u), h〉| ≤ c2‖h‖.

Using the linearity of dG(u) and the above inequality we deduce that dG(u) ∈ (W1
0 LΦ(Ω))∗

Note that map Lq(x)(Ω) 3 u 7→ |u|q(x)−2u ∈ L
q(x)

q(x)−1 (Ω) is continuous. For the Fréchet
differentiability, we conclude that G is Fréchet differentiable. Furthermore,

〈G′(u), v〉 =
∫

Ω
V(x)|u|q(x)−2uvdx,

for all u, v ∈W1
0 LΦ(Ω). The Step 1 is completed.

It is clear that (u, λ) is a solution of (P) if and only if F′(u) = λG′(u) in (W1
0 LΦ(Ω))∗.

Step 2. There exists λ0 > 0 such that for any λ ∈ (0, λ0) there exist τ, a > 0 such that
ϕλ(u) ≥ a > 0 for any u ∈W1

0 LΦ(Ω) with ‖u‖ = τ.
Since the embedding W1

0 LΦ(Ω) ↪→ Ls′(x)q(x)(Ω) is continuous, we can find a constant
c3 > 0 such that

|u|s′(x)q(x) ≤ c3‖u‖, ∀u ∈W1
0 LΦ(Ω). (2.1)

Let us fix τ ∈ (0, 1) such that τ < 1
c3

. Then relation (2.1) implies |u|s′(x)q(x) < 1, for all
u ∈W1

0 LΦ(Ω) with ‖u‖ = τ. Thus,

∫
Ω

V(x)|u|q(x)dx ≤ |V|s(x)
∣∣|u|q(x)∣∣

s′(x) ≤ |V|s(x)|u|
q−

q(x)s′(x), (2.2)

for all u ∈W1
0 LΦ(Ω) with ‖u‖ = τ.

Combining (2.1) and (2.2), we obtain

∫
Ω

V(x)|u|q(x)dx ≤ cq−
3 |V|s(x)‖u‖q− , (2.3)

for all u ∈W1
0 LΦ(Ω) with ‖u‖ = ρ.
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Taking into account relations (1.2) and (2.3) we deduce that for any u ∈ W1
0 LΦ(Ω) with

‖u‖ = τ < 1, we have

ϕλ(u) =
∫

Ω
Φ(|∇u|)dx− λ

∫
Ω

V(x)
q(x)

|u|q(x)dx

≥ ‖u‖p0 −
λcq−

3
q−
|V|s(x)‖u‖q−

= τq−
(

τp0−q− −
λcq−

3
q−
|V|s(x)

)
.

Putting

λ0 =
τp0−q−

2
q−

cq−
3 |V|s(x)

,

then for any λ ∈ (0, λ0) and u ∈ X with ‖u‖ = τ, there exists a = τp0

2 , such that

ϕλ(u) ≥ a > 0.

Step 3. There exists ξ ∈ W1
0 LΦ(Ω) such that ξ ≥ 0, ξ 6= 0 and ϕλ(tξ) < 0, for t > 0 small

enough.
In fact, assumption H(q, s) implies q(x) < p0, ∀x ∈ Ω0. In the sequel, we use the notation

q−0 = infΩ0 q(x) and q+0 = supΩ0
q(x). Thus, there exists ε0 > 0 such that q−0 + ε0 < p0.

Since q ∈ C(Ω0), there exists an open set Ω1 ⊂ Ω0 such that

|q(x)− q−0 | < ε0, ∀x ∈ Ω1.

Thus, we deduce
q(x) ≤ q−0 + ε0, ∀x ∈ Ω1. (2.4)

Take ξ ∈ C∞
0 (Ω0) such that Ω1 ⊂ supp(ξ), ξ(x) = 1 for x ∈ Ω1 and 0 < ξ < 1 in Ω0.

We also point out that there exists t0 ∈ (0, 1) such that for any t ∈ (0, t0) we have∥∥t|∇ξ|
∥∥ = t‖ξ‖ < 1. (2.5)

Using (1.3), (2.4) and (2.5), for all t ∈ (0, 1), we get the estimate

ϕλ(tξ) =
∫

Ω
Φ(t|∇ξ|)dx− λ

∫
Ω

tq(x)

q(x)
V(x)|ξ|q(x)dx

≤ tp0‖ξ‖p0 − λ
∫

Ω0

tq(x)

q(x)
V(x)|ξ|q(x)dx

≤ tp0‖ξ‖p0 − λ

q+0

∫
Ω1

tq(x)V(x)|ξ|q(x)dx

≤ tp0‖ξ‖p0 − λtq−0 +ε0

q+0

∫
Ω1

V(x)|ξ|q(x)dx.

Then, for any t < τ
1

p0−q−0 −ε0 with 0 < τ < min
{

1,
λ
∫

Ω1
V(x)|φ|q(x)dx

q+0 ‖ξ‖p0

}
, we conclude that

ϕλ(tξ) < 0.
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By Step 2, we have
inf

v∈∂Bρ(0)
ϕλ(v) > 0. (2.6)

On the other hand, by Step 3, there exists ξ ∈ W1
0 LΦ(Ω) such that ϕλ(tξ) < 0 for t > 0

small enough. Using (2.3), it follows that

ϕλ(u) ≥ ‖u‖p0 − λcq−
3 |V|s(x)‖u‖q− , ∀u ∈ Bρ(0).

Thus,
−∞ < cλ := inf

v∈Bρ(0)
ϕλ(v) < 0.

Now let ε be such that 0 < ε < infv∈∂Bρ(0) ϕλ(v) − infv∈Bρ(0) ϕλ(v). Then, by applying
Ekeland’s variational principle to the functional

ϕλ : Bρ(0)→ R,

there exists uε ∈ Bρ(0) such that

ϕλ(uε) ≤ inf
v∈Bρ(0)

ϕλ(v) + ε,

ϕλ(uε) < ϕλ(u) + ε‖u− uε‖, u 6= uε.

Since
ϕλ(uε) ≤ inf

v∈Bρ(0)
ϕλ(v) + ε ≤ inf

v∈Bρ(0)
ϕλ(v) + ε < inf

v∈∂Bρ(0)
ϕλ(v),

we deduce that uε ∈ Bρ(0).
Now, we define Tλ : Bρ(0)→ R by

Tλ(u) = ϕλ(u) + ε‖u− uε‖.

It is clear that uε is a minimum of Tλ. Therefore, for small t > 0 and v ∈ B1(0), we have

Tλ(uε + tv)− Tλ(uε)

t
≥ 0,

which implies that
ϕλ(uε + tv)− ϕλ(uε)

t
+ ε‖v‖ ≥ 0.

As t→ 0, we have
〈dϕλ(uε), v〉+ ε‖v‖ ≥ 0, ∀v ∈ B1(0).

Hence, ‖ϕ′λ(uε)‖X∗ ≤ ε. We deduce that there exists a sequence {un}∞
n=1 ⊂ Bρ(0) such that

ϕλ(un)→ cλ and ϕ′λ(un)→ 0. (2.7)

It is clear that {un}∞
n=1 is bounded in W1

0 LΦ(Ω). Since W1
0 LΦ(Ω) is reflexive, there exists a

subsequence, still denoted by {un}∞
n=1, and u ∈W1

0 LΦ(Ω) such that {un}∞
n=1 converges weakly

to u in W1
0 LΦ(Ω).

Step 4. We will show that un → u in W1
0 LΦ(Ω).

Claim:
lim
n→∞

∫
Ω

V(x)|un|q(x)−2un(un − u)dx = 0.
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In fact, from the Hölder type inequality, we have∫
Ω

V(x)|un|q(x)−2un(un − u)dx

≤ |V|s(x)

∣∣∣|un|q(x)−2un(un − u)
∣∣∣
s′(x)

≤ |V|s(x)

∣∣∣|un|q(x)−2un

∣∣∣ q(x)
q(x)−1

|un − u|α(x)

≤ |V|s(x)

(
1 + |un|q

+−1
q(x)

)
|un − u|α(x).

Since W1
0 LΦ(Ω) is continuously embedded in Lq(x)(Ω) and {un}∞

n is bounded in W1
0 LΦ(Ω),

so {un}∞
n is bounded in Lq(x)(Ω). On the other hand, since the embedding W1

0 LΦ(Ω) ↪→
Lα(x)(Ω) is compact, we deduce that |un − u|α(x) → 0 as n → +∞. Hence, the proof of the
claim is complete.

Moreover, since dϕλ(un)→ 0 and {un}∞
n is bounded in W1

0 LΦ(Ω), we have

|〈dϕλ(un), un − u〉|
≤ |〈dϕλ(un), un〉|+ |〈dϕλ(un), u〉|
≤ ‖dϕλ(un)‖(W1

0 LΦ(Ω))∗‖un‖+ ‖dϕλ(un)‖(W1
0 LΦ(Ω))∗‖u‖,

that is,
lim

n→+∞
〈dϕλ(un), un − u〉 = 0.

Using the previous claim and the last relation we deduce that

lim
n→+∞

∫
Ω

a(|∇un|)∇un∇(un − u)dx = 0. (2.8)

From (2.8) and the fact that un ⇀ u in W1
0 LΦ(Ω) it follows that

lim
n→→+∞

〈F′(un), un − u〉 = 0. (2.9)

Next, we show that un → u in W1
0 LΦ(Ω). Since {un} converges weakly to u in W1

0 LΦ(Ω)

it follows that {‖un‖} is a bounded sequence of real numbers. That fact and relations (1.2)
and (1.3) yield that the sequence {F(un)} is bounded. Then, up to a subsequence, we deduce
that F(un) → c. The function F being convex, from Mazur’s lemma, it is also weakly lower
semi-continuous. Hence

F(u) ≤ lim inf
n→∞

F(un) = c. (2.10)

On the other hand, since F is convex, we have

F(u) ≥ F(un) + 〈F′(un), u− un〉. (2.11)

Furthermore, relations (2.9), (2.10) and (2.11) imply

F(u) = c.

Taking into account that { un+u
2 } converges weakly to u in W1

0 LΦ(Ω) and using the above
method we find

c = F(u) ≤ F
(un + u

2

)
. (2.12)
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We assume by contradiction that {un} does not converge to u in W1
0 LΦ(Ω). Furthermore,

we deduce that { un−u
2 } does not converge to u in W1

0 LΦ(Ω). It follows that there exist ε > 0
and a subsequence {unk} of {un} such that∥∥∥un − u

2

∥∥∥ ≥ ε, ∀k ≥ 1. (2.13)

Thus, relations (1.2), (1.3) and (2.13) imply that there exists ε1 > 0

F
(un − u

2

)
≥ ε1, ∀k ≥ 1. (2.14)

Moreover, from hypotheses (1.1) we deduce that we can apply Lemma 2.1 in [10] in order
to obtain

1
2

[
Φ(|t|) + Φ(|s|)

]
≥ Φ

(
|t + s|

2

)
+ Φ

(
|t− s|

2

)
, ∀t, s ∈ R.

The above inequality yields

1
2

[
F(u) + F(v)

]
≥ F

(u + v
2

)
+ F

(u− v
2

)
, ∀u, v ∈W1

0 LΦ(Ω). (2.15)

Hence, from (2.14) and (2.16), we have

1
2

[
F(u) + F(unk)

]
− F

(unk + u
2

)
≥ F

(unk − u
2

)
≥ ε1, ∀k ≥ 1. (2.16)

Letting k→ ∞ in the above inequality we have

c− ε1 ≥ lim sup
k→∞

F
(unk + u

2

)
,

and that is a contradiction with (2.12). We conclude that un → u in W1
0 LΦ(Ω). Thus, in view

of (2.7), we obtain
ϕλ(u) = cλ < 0 and ϕ′λ(u) = 0. (2.17)

The proof is complete.
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