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Abstract. We are interested in the existence of positive solutions to initial-value prob-
lems for second-order nonlinear singular differential equations. Existence of solutions
is proven under conditions which are directly applicable and considerably weaker than
previously known conditions.
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1 Introduction

In recent years, the studies of singular initial value problems for second order differential
equation have attracted the attention of many mathematicians and physicists (see for example,
[1–22])

Agarwal and O’Regan [1] established the existence theorems for the positive solution of
the problems

(py′)′ + pqg(y) = 0, t ∈ [0, T)

y(0) = a > 0,

lim
t→0+

p(t)y′(t) = 0
(1.1)

and

(py′)′ + pqg(y) = 0, t ∈ [0, T)

y(0) = a > 0,

y′(0) = 0,

(1.2)

where 0 < T ≤ ∞, p ≥ 0, q ≥ 0 and g : [0, ∞)→ [0, ∞).
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Theorem 1.1 ([1]). Suppose the following conditions are satisfied

p ∈ C[0, T) ∩ C1(0, T) with p > 0 on (0, T) (1.3)

q ∈ L1
p[0, t∗] for any t∗ ∈ (0, T) with q > 0 on (0, T), (1.4)

where L1
r [0, a] is the space of functions u(t) with

∫ a
0 |u(t)| r(t)dt < ∞,

∫ t∗

0

1
p(s)

∫ s

0
p(x)q(x)dxds < ∞ for any t∗ ∈ (0, T) (1.5)

and

g : [0, ∞)→ [0, ∞) is continuous, nondecreasing on [0, ∞) and g(u) > 0 for u > 0. (1.6)

Let
H(z) =

∫ a

z

dx
g(x)

for 0 < z ≤ a

and assume ∫ t∗

0

1
p(s)

∫ s

0
p(x)q(x)τ(x)dxds < a for any t∗ ∈ (0, T), (1.7)

here

τ(x) = g
(

H−1
(∫ x

0

1
p(w)

∫ w

0
p(z)q(z)dzdw

))
.

Then (1.1) has a solution y ∈ C[0, T) with py′ ∈ C[0, T), (py′)′ ∈ L1
pq(0, T) and 0 < y(t) ≤ a for

t ∈ [0, T). In addition if either
p(0) 6= 0 (1.8)

or

p(0) = 0 and lim
t→0+

p(t)q(t)
p′(t)

= 0 (1.9)

holds, then y is a solution of (1.2).

The condition (1.7) makes this theorem difficult for application. We try to establish a more
general and applicable condition instead of (1.6) and (1.7).

2 Main results

Theorem 2.1. Suppose (1.3)–(1.5) hold. In addition we assume∫ t∗

0

1
p(s)

∫ s

0
p(x)q(x)g(a)dxds < a (2.1)

for any t∗ ∈ (0, T0). Then

a) (1.1) has a solution y ∈ C[0, T0) with py′ ∈ C[0, T0), (py′)′ ∈ L1
pq(0, T0) and 0 < y(t) ≤ a for

t ∈ [0, T0).

b) If
∫ T1

T0

1
p(s)

∫ s
0 p(x)q(x)g(T0)ds < y(T0), and conditions (1.3)–(1.6) satisfied then the solution can

be extended to the interval [0, T1).
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By monotonicity of g(x), it follows from (1.7) that∫ t∗

0

1
p(s)

∫ s

0
p(x)q(x)τ(x)dxds ≤

∫ t∗

0

1
p(s)

∫ s

0
p(x)q(x)g(a)dxds,

and therefore the condition (2.1) is stronger than condition (1.7) in the Theorem 1.1. But the
statement b) of the Theorem 2.1 allows to extend the condition to the new intervals [T0, T1),
[T1, T2), . . . and therefore this theorem can be considered as a generalization of the Theo-
rem 1.1.

For the existence of the inverse of the function H(z), the Theorem 1.1 proposes the condi-
tion q > 0 on (0, T) and g(u) > 0 for u > 0. Since we shall not deal with the function H(z),
we shall prove more general theorem.

Theorem 2.2. Suppose the following conditions are satisfied

p ∈ C[0, T0) ∩ C1(0, T0) with p > 0 on (0, T0) (2.2)

q ∈ L1
p[0, t∗] for any t∗ ∈ (0, T0) with q ≥ 0 on (0, T0), (2.3)

where L1
r [0, a] is the space of functions u(t) with

∫ a
0 |u(t)| r(t)dt < ∞,

∫ t∗

0

1
p(s)

∫ s

0
p(x)q(x)dxds < ∞ for any t∗ ∈ (0, T0), (2.4)

g : [0, ∞)→ [0, ∞) is nondecreasing on [0, ∞) with g(u) ≥ 0 for u > 0 (2.5)

and ∫ t∗

0

1
p(s)

∫ s

0
p(x)q(x)g(a)dx < a

for any t∗ ∈ (0, T0). Then

a) (1.1) has a solution y ∈ C[0, T0) with py′ ∈ C[0, T0), (py′)′ ∈ L1
pq(0, T0) and 0 < y(t) ≤ a for

t ∈ [0, T0).

b) If
∫ T1

T0

1
p(s)

∫ s
0 p(x)q(x)g(T0)ds < y(T0), and conditions (2.2)–(2.5) satisfied then solution can be

extended to the interval [0, T1).

In addition if either (1.8) and (1.9) holds, then y is a solution of (1.2).

Proof of Theorem 2.2. Let us take y0(t) ≡ a, and define y1(t), y2(t), . . . from the recurrence
relations

yn(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(yn−1(x))dxds, n = 1, 2, . . . (2.6)

For the sequence {yn(t)} we obtain

y1(t) ≤ y0(t) = a (2.7)

y2(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y1(x))dxds ≥ a−

∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y0(x))dxds = y1(t),

y3(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y2(x))dxds ≤ a−

∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y1(x))dxds = y2(t),

y3(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y2(x))dxds ≥ a−

∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(a)dxds = y1(t),
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y4(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y3(x))dxds ≥ a−

∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y2(x))dxds = y3(t),

y4(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y3(x))dxds ≤ a−

∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y1(x))dxds = y2(t),

...

That is, {y2n(t)} and {y2n+1(t)} are monotonically nonincreasing and nondecresing se-
quences, consecutively. Let us show that these sequences are equicontinuous. Indeed we
have

|yn(t)− yn(r)| =
∫ t

r

1
p(s)

∫ s

0
p(x)q(x)g(yn−1(x))dxds ≤ M

∫ t

r

1
p(s)

∫ s

0
p(x)q(x)dxds,

where
M = max{g(u) : 0 ≤ u ≤ a}

and it follows from (2.4) that the right-hand side can be taken < ε for |t− r| < δ, regardless
of the choice of t and r: the function ϕ(t) =

∫ t
0

1
p(s)

∫ s
0 p(x)q(x)dxds is (uniformly) continuous

on [0, t∗] for any t∗ < T0. That is, the bounded and equicontinuous sequences {y2n(t)} and
{y2n+1(t)} both have a limit. Denote by

lim
n→∞

y2n(t) ≡ u(t),

lim
n→∞

y2n+1(t) ≡ v(t).

Clearly we have u(t) ≥ v(t). Now Lebesgue’s dominated theorem guarantees that

u(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(v(x))dxds and

v(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(u(x))dxds.

(2.8)

If u(t) = v(t) we have that the function u(t) is the solution of the problem (1.1), indeed it
follows from

u(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(u(x))dxds

that

u′(t) = − 1
p(t)

∫ t

0
p(x)q(x)g(u(x))dx,

pu′ = −
∫ t

0
p(x)q(x)g(u(x))dx,(

pu′
)′
= −pqg(u).

So we suppose u(t) 6= v(t) and consider the operator N : C[0, T0)→ C[0, T0) defined by

Ny(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y(x))dxds. (2.9)

Next let
K = {y ∈ C[0, T0) : v(t) ≤ y(t) ≤ u(t) for t ∈ [0, T0)} .
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Clearly K is closed, convex, bounded subset of C[0, T0) and N : K → K. Let us show that
N : K → K is continuous and compact. Continuity follows from Lebesgue’s dominated con-
vergence theorem: if yn(t) → y(t), then Nyn(t) → Ny(t). To show that N is completely
continuous let y(t) ∈ K, t∗ < T0, then

|Ny(t)− Ny(r)| ≤ M
∣∣∣∣∫ t

r

1
p(x)

∫ x

0
p(z)q(z)dzds

∣∣∣∣ for t, r ∈ [0, t∗],

that is N completely continuous on [0, T0).
The Schauder–Tychonoff theorem guarantees that N has a fixed point w ∈ K, i.e. w is a

solution of (1.1).
Now if w(T0) > 0, and

∫ T1
T0

1
p(s)

∫ s
0 p(x)q(x)g(T0)ds < w(T0) = b we take

y0(t) =

{
w, if 0 ≤ t ≤ T0

b, if T0 ≤ t < T1

yn(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(yn−1(x))dxds, n = 1, 2, . . .

(2.10)

and in like manner we obtain the solution w of the problem (1.2) on the interval [0, T1). Clearly
we obtain for this solution

w(T0) = b = w(T0) = a−
∫ T0

0

1
p(s)

∫ s

0
p(x)q(x)g(w(x))dxds

and

w′(T0+) = lim
t→0+

w(T0 + t)− w(T0)

t

= − lim
t→0+

∫ T0+t
T0

1
p(s)

∫ s
0 p(x)q(x)g(w(x))dxds

t
.

Using L’Hôpital’s rule we obtain

w′(T0+) = − lim
t→0+

1
p(T0 + t)

∫ T0+t

0
p(x)q(x)g(w(x))dx

= − 1
p(T0)

∫ T0

0
p(x)q(x)g(w(x))dx = w′(T0−)

and therefore w′ ∈ C[0, T1). It is also clear that pw′ is differentiable and(
pw′
)′
= −pqg(w)

for all t ∈ [0, T1).
If (1.8) or (1.9) holds we easily have w′(0) = 0 and therefore w is the solution of (1.2).

Now we will prove the stronger result which generalizes the Theorems 1.1, 2.1 and 2.2.
Consider the problem

(py′)′ + p(t)h(t, y) = 0, t ∈ [0, T)

y(0) = a > 0,

lim
t→0+

p(t)y′(t) = 0
(2.11)
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or

(py′)′ + p(t)h(t, y) = 0, t ∈ [0, T)

y(0) = a > 0,

y′(0) = 0

(2.12)

and some preliminary problem

(pz′)′ + p(t)ϕ(t) = 0, t ∈ [0, T)

z(0) = a > 0,

lim
t→0+

p(t)z′(t) = 0
(2.13)

or

(pz′)′ + p(t)ϕ(t) = 0, t ∈ [0, T)

z(0) = a > 0,

z′(0) = 0.

(2.14)

Theorem 2.3. Suppose that p ∈ C[0, T0) ∩ C1(0, T0) with p > 0 on (0, T0) and p is integrable,

k(t) ≥ ϕ(t)− h(t, y) ≥ 0, t ∈ (0, T0) (2.15)

where p(t)k(t) and p(t)ϕ(t) are integrable with∫ t∗

0

1
p(s)

∫ s

0
p(t)k(x)dxds < ∞ and∫ t∗

0

1
p(s)

∫ s

0
p(t)ϕ(x)dxds < ∞ for any t∗ ∈ (0, T0),

(2.16)

ϕ(t) ∈ C(0, T0) and such that the problem (2.13) has nonnegative solution z(t), for each t ∈ (0, T0),
h(t, ·) is continuous, for each fixed y, h(·, y) is measurable on [0, T0], then the problem (2.11) has
nonnegative solution on [0, T0).

Note 2.4. Theorem 2.3 is the generalization of Theorem 2.2 in the following sense: since g(y)
in the Theorem 2.2 is nonincreasing we have that g(a) ≥ g(y) and therefore for the solution
of the problem (1.1) we have

y(t) = a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(y)dxds

= a−
∫ t

0

1
p(s)

∫ s

0
p(x)q(x) [g(y)− g(a)] dxds−

∫ t

0

1
p(s)

∫ s

0
p(x)q(x)g(a)dxds,

that is

y(t) = z(t) +
∫ t

0

1
p(s)

∫ s

0
[g(a)− g(y)] p(x)q(x)dxds,

where z(t) is the solution of the problem (2.13) with ϕ(t) = g(a). Thus Theorem 2.2 is a special
case of Theorem 2.3 with ϕ(t) = g(a) and k(t) = g(a)− g(y).

Note 2.5. Theorem 2.3 shows that the nondecreasing condition of g(y) in the statement of the
Theorem 2.2 can be omitted and therefore the scope of problems can be seriously extended.
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Proof of Theorem 2.3. It follows from the condition (2.16) that the problem (2.13) has nonnega-
tive solution:

z = a−
∫ t

0

1
p(s)

∫ s

0
p(x)ϕ(x))dxds (2.17)

on some interval [0, T0).
We will show that the problem (2.11) is equivalent to the (integral) equation:

y(t) = z(t) +
∫ t

0

1
p(s)

∫ s

0
p(x) [ϕ(x)− h(x, y)] dxds. (2.18)

Let us calculate the derivatives y′(t) and (py′(t))′ from (2.18) by using the Leibniz rule:

y′(t) = z′(t) +
1

p(t)

∫ t

0
p(x) [ϕ(x)− h(x, y(x))] dx,

p(t)y′(t) = p(t)z′(t) +
∫ t

0
p(x) [ϕ(x)− h(x, y(x))] dx,(

py′(t)
)′
=
(

pz′(t)
)′
+ p(t)ϕ(t)− p(t)h(t, y(t)),

and since (pz′)′ + p(t)ϕ(t) = 0 we obtain (py′(t))′ + p(t)h(t, y(t)) = 0. That is, the equation
(2.18) is equivalent to the problem (2.11). Let us consider the recurrence relations

y0(t) = z(t),

y1(t) = z(t) +
∫ t

0

1
p(s)

∫ s

0
p(x) [ϕ(x)− h(x, y0)] dxds, . . .

yn(t) = z(t) +
∫ t

0

1
p(s)

∫ s

0
p(x) [ϕ(x)− h(x, yn−1)] dxds, . . .

(2.19)

We have

|yn(t)− z(t)| ≤
∣∣∣∣∫ t

0

1
p(s)

∫ s

0
p(x) [ϕ(x)− h(x, yn−1)] dxds

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

1
p(s)

∫ s

0
p(x)k(x)dxds

∣∣∣∣
and

|yn(t)− z(t)− (yn(r)− z(r))| (2.20)

=

∣∣∣∣∫ t

r

1
p(s)

∫ s

0
p(x) [ϕ(x)− h(x, yn−1)] dxds

∣∣∣∣
≤
∫ t

r

1
p(s)

∫ s

0
p(x)k(x)dxds.

Thus, the sequence {yn(t)− z(t)} is uniformly bounded and equicontinuous on [0, t∗] for
any t∗ < T0 and therefore by Ascoli–Arzelà lemma, there exists a continuous w(t) such that
ynk(t)− z(t) → w(t) uniformly on [0, t∗]. Without loss of generality, say yn(t)− z(t) → w(t)
or yn(t)→ z(t) + w(t) ≡ y(t). Then we obtain

y(t) = z(t) + lim
n→∞

∫ t

0

1
p(s)

∫ s

0
p(x) [ϕ(x)− h(x, yn)] dxds

= z(t) +
∫ t

0

1
p(s)

∫ s

0
p(x) [ϕ(x)− h(x, y(x))] dxds

(2.21)

using the Lebesgue dominated convergence theorem. Thus y(t) ≥ 0 is the solution of the
problem (2.11).
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Example 2.6. The problem

(t−1/3y′)′ + t−1/3
(

1
2

t2,5

t3 + (y− 1)2

)
= 0, t ∈

[
0, 1

3√4

]
y(0) = 1,

lim
t→0+

p(t)y′(t) = 0

has a positive solution y = −t3/2 + 1. For h(t, y) we have

h(t, y) =
1
2

t2,5

t3 + (y− 1)2 ≤
1

2
√

t
≡ ϕ(t),

and
z(t) = −2t3/2 + 1 ≥ 0

is the solution of the problem

(t−1/3z′)′ + t−1/3ϕ(t) = 0,

z(0) = 1,

lim
t→0+

p(t)z′(t) = 0.

For the iteration sequence yn in (2.19) we obtain (by using standard Latex tools)

y0(t) = −2t3/2 + 1,

y1(t) = −2t3/2 + 1 +
∫ t

0
s1/3

∫ s

0
x−1/3

(
1

2x1/2 −
1
2

x2.5

x3 + 4x3

)
dxds

= −2t3/2 + 1 +
8
5

t3/2 = 1− 2
5

t
3
2 ,

y2(t) = 1− 50
29

t
3
2 , y3(t) = 1− 1682

3341
t

3
2 , y4(t) = 1− 1. 595 6t

3
2 ,

y5(t) = 1− 0.564 03t
3
2 , . . . ,

y17(t) = 1− 0.711 85t
3
2 , . . .
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