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Abstract

In this paper, we construct a Liapunov functional for a system of nonlinear

integral equations. From that Liapunov functional we are able to establish the

existence of periodic solutions to the system by applying some well-known fixed

point theorems for the sum of a nonlinear contraction mapping and compact

operator.
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1 Introduction

This paper is concerned with the existence of periodic solutions to the system of non-
linear integral equations

x(t) = h(t, x(t)) −
∫ t

−∞

D(t, s)g(s, x(s))ds (1.1)

where x(t) ∈ Rn, h : R × Rn → Rn, D : R × R → Rn×n, g : R × Rn → Rn are
continuous, and R = (−∞,∞).

The existence of periodic solutions of (1.1) or its differential form has been the
subject of extensive investigations for many years. Our interest here centers on the
use of Liapunov’s direct method and fixed point theorems of continuation type, which
are nonlinear alternatives of Leray-Schauder degree theory, to derive the existence of
periodic solutions. Continuation theorems, such as Schaefer’s [26] fixed point theorem
without actually calculating degree, require less restrictive growth conditions on the
functions involved. For the historical background and discussion of applications, we
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2 B. Zhang

refer the reader to, for example, the work of Burton [4], Burton, Eloe, and Islam [10],
Graef and Kong [12], Miller [24], O’Regan [25], Zeidler [28] and Zhang [29].

It is well-known that Liapunov’s direct method has been used very effectively for
differential equations. The method has not, however, been used with much success
on integral equations until recently. The reason for this lies in the fact that it is very
difficult to relate the derivative of a scalar function to the unknown non-differentiable
solution of an integral equation. In the present paper, we construct a Liapunov func-
tional for (1.1). From that Liapunov functional we are able to establish an a priori
bound for all possible T -periodic solutions of a companion system of (1.1), and then,
to prove the existence of a T -periodic solution to (1.1). As in the case for differential
equations, once the Liapunov function is constructed, we can take full advantage of
its simplicity in qualitative analysis. A good summary for recent development of the
subject may be found in Burton [8].

A continuous function x : R → Rn is called a solution of (1.1) on R if it satisfies
(1.1) on R. If x(t) is specified to be a certain initial function on an initial interval, say

x(t) = φ(t) for −∞ < t ≤ 0,

we are then looking for a solution of

x(t) = h(t, x(t)) −
∫ 0

−∞

D(t, s)g(s, φ(s))ds−
∫ t

0

D(t, s)g(s, x(s))ds

=: h̃(t, x(t)) −
∫ t

0

D(t, s)g(s, x(s))ds. (1.2)

Note that the initial function φ is absorbed into the forcing function term h̃(t, x(t)).

There is substantial literature on equations (1.1) and (1.2). Much of the literature
can be traced back to the pioneering work of Levin and Nohel ([18]-[21]) in the study
of asymptotic behavior of solutions of the scalar integral equation

x(t) = a(t) −
∫ t

0

D(t, s)g(x(s))ds (1.3)

and the integro-differential equation

x′(t) = a(t) −
∫ t

0

D(t, s)g(x(s))ds. (1.4)

These equations arise in problems related to evolutionary processes in biology, in nu-
clear reactors, and in control theory (see Corduneanu [11], Burton [7], Levin and Nohel
[20], Kolmanovskii and Myshkis [16]). It is often required that a ∈ C(R+, R) and

D(t, s) ≥ 0, Ds(t, s) ≥ 0, and Dst(t, s) ≤ 0, (1.5)

EJQTDE Spec. Ed. I, 2009 No. 32



Liapunov Functionals and Periodicity 3

with G(x) =
∫ x

0
g(s)ds → ∞ as |x| → ∞. When D(t, s) = D(t − s) is of convolution

type, (1.5) represents for t ∈ R+ = [0,∞)

D(t) ≥ 0, D′(t) ≤ 0, and D′′(t) ≥ 0. (1.6)

Levin’s work was based on (1.6) and the construction of a Liapunov functional for (1.4).
The method was further extended into a long line of investigation drawing together
such different notions of positivity as Liapunov functions, completely monotonic func-
tions, and kernels of positive type (see Corduneanu [11], Gripenberg et al [14], Levin
and Nohel [21], MacCamy and Wong [23]). In a series of papers ([4]-[6]), Burton ob-
tains results on boundedness and periodicity of solutions for a scalar equation in the
form of (1.1) without asking the growth condition on g. Liapunov functionals play an
essential role in his proofs.

Many investigators mentioned above frequently use the fact that (1.4) can be put
into the form of (1.3) by integration to study the existence and qualitative behavior
of solutions by applying fixed point theorems. We now consider the right-hand side
of (1.1) as a mapping Fx = Bx + Ax on a convex subset M of the Banach space
(PT , ‖ · ‖) of continuous T -periodic functions φ : R → Rn with the supremum norm,
where (Bx)(t) = h(t, x(t)) and Ax represents the integral term, with a view of showing
that B is a nonlinear contraction and A is compact. Observe that F in general is a
non-self map; that is, F may not necessarily map M into M . This presents a significant
challenge to investigators. A modern approach to such a problem is to use topological
degree theory or transversality method to prove the existence of fixed points. The
later requires the construction of a homotopy Uλ and uses conditions on Uλ which may
be less general, but more easily established in application (see Burton and Kirk [9],
Liu and Liu [22], Granas and Dugundji [13], Wu, Xia, and Zhang [27]). The following
formulation is from O’Regan [25].

Theorem 1.1 Let U be an open set in a closed, convex set C of a Banach space
(E, ‖ · ‖) with 0 ∈ U . Suppose that F : U → C is given by F = F1 + F2 and F (U) is a
bounded set in C. In addition, assume that F1 : U → C is continuous and completely
continuous and for F2 : U → C, there exists a continuous, nondecreasing function
φ : [0,∞) → [0,∞) satisfying φ(t) < t for t > 0 such that ‖F2(x)−F2(y)‖ ≤ φ(‖x−y‖)
for all x, y ∈ U . Then either
(A1) F has a fixed point in U , or
(A2) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λF (u).

We will apply Theorem 1.1 to show that F = B + A has a fixed point in M which
is a T -periodic solution of (1.1). This will be done in Section 2. Our proofs are by Lia-
punov functionals V . It is to be noted that the technique used allows us to prove that
V is bounded without ever asking a growth condition on g that makes the derivative
of V negative in any region. In Section 3, we discuss some special cases of (1.1) with
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illustrative examples to show application of the main result.

For x ∈ Rn, |x| denotes the Euclidean norm of x. Let C(X, Y ) denote the space of
continuous functions φ : X → Y . For an n × n matrix B = (bij)n×n, we denote the
norm of B by ‖B‖ = sup{|Bx| : |x| ≤ 1}. If B is symmetric, we use the convention
for self-adjoint positive operators to write B ≥ 0 whenever B is positive semi-definite.
Similarly, if B is negative semi-definite, then B ≤ 0. Also, if B ≥ 0, we denote its
square root by

√
B. Concerning the terminology of a completely continuous mapping,

we use the usual convention to mean the following: Let E be a Banach space and
P : X ⊆ E → E. If P (Y ) is relatively compact for every bounded set Y ⊆ X, we say
that P is completely continuous. In particular, X need not be bounded (see Agarwal,
Meehan and O’Regan [1, p. 56]).

2 The Main Result

In this section, we will apply Theorem 1.1 with F1 = A, F2 = B, U = M , and C =
E = PT to show that the mapping F = B + A has a fixed point in M = {x ∈ PT :
‖x‖ < µ} for some constant µ > 0, where

(Bx)(t) = h(t, x(t)) and (Ax)(t) = −
∫ t

−∞

D(t, s)g(s, x(s))ds (2.1)

for any x ∈ PT .

To show that F has a fixed point in M , we must prove that the alternative (A2)
does not hold and the homotopy Uλ(x) = λF (x) is fixed point free on ∂M for λ = 1.
This can be achieved by establishing the existence of an a priori bound for all possible
fixed points of λ(B + A) for 0 < λ ≤ 1. To accomplish this, we assume that

(H1) there exists a constant T > 0 such that D(t+ T, s+ T ) = D(t, s), h(t+ T, x) =
h(t, x), g(t+ T, x) = g(t, x) for all t, s ∈ R and all x ∈ Rn,

(H2) there exist constants K > 0 and η > 0 such that

gT (t, x)[x− λh(t, x)] ≥ η|g(t, x)| for all |x| ≥ K, t ≥ 0, and λ ∈ (0, 1] (2.2)

where gT is the transpose of g,

(H3) |h(t, x)−h(t, y)| ≤ ψ(|x−y|) for all t ∈ R and x, y ∈ Rn, where ψ is continuous,
nondecreasing with ψ(r) < r for all r > 0 and

lim
r→∞

(r − ψ(r)) = ∞, (2.3)
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(H4) Ds(t, s) ≥ 0 and Dst(t, s) ≤ 0 with Ds(t, s) and Dst(t, s) continuous in the matrix
norm for all t ≥ s ≥ 0,

(H5)

∫ t

−∞

(
‖D(t, s)‖ + ‖Ds(t, s)‖

)
ds and

∫ t

−∞

(
‖Ds(t, s)‖ + ‖Dst(t, s)‖

)
(t− s)2ds

are continuous in t with lim
s→−∞

(t− s)‖D(t, s)‖ = 0 for fixed t,

(H6) there exists a function Q ∈ C([0, T ], R+) with Q(0) = 0 such that

∫ t1

−∞

‖D(t1, s) −D(t2, s)‖ds ≤ Q(|t2 − t1|) for 0 ≤ t1 ≤ t2 ≤ T.

Remark 2.1 We observe that all of these conditions on D(t, s) can be verified if

D(t, s) = [(t− s) + 1]−kD̃

where D̃ = (dij)n×n is a positive definite matrix and k > 2. Also, (H1) implies that∫ t

−∞
D(t, s)g(s, x(s))ds is T -periodic whenever x ∈ PT . We also see that some of these

conditions are interconnected. For example, (H3) nearly implies (H2) if xTg(t, x) ≥
γ|x||g(t, x)| for all |x| ≥ K and a constant γ > 0. It is also to be noted that h(t, x)
satisfying (H3) is a nonlinear contraction in the sense of Boyd and Wong [3].

We now prove the following theorem by constructing a Liapunov functional which
has its roots in the work of Burton [4], Kemp [15], and Zhang [30]. The result here
generalizes a theorem of Burton [4] for scalar equations.

Theorem 2.1 If (H1)-(H6) hold, then (1.1) has a T -periodic solution.

Proof. Let A and B be defined in (2.1) for each x ∈ PT . A change of variable shows
that if φ ∈ PT , then (Aφ)(t+T ) = (Aφ)(t). Thus, A,B : PT → PT are well defined. By
(H3), B satisfies the conditions for F2 in Theorem 1.1. To establish that A : M → PT

is continuous and completely continuous, we need several steps which follow. Let us
first show that there exists a constant µ > 0 such that ‖x‖ < µ whenever x ∈ PT and
x = λ(Bx+ Ax) for λ ∈ (0, 1]. Suppose now that x ∈ PT satisfying

x(t) = λ

[
h(t, x(t)) −

∫ t

−∞

D(t, s)g(s, x(s))ds

]
(2.4)

and define

V (t, x(·)) = λ2

∫ t

−∞

(∫ t

s

g(v, x(v))dv

)T

Ds(t, s)

(∫ t

s

g(v, x(v))dv

)
ds.
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Then V (t, x(·)) is T -periodic and

V ′(t, x(·)) = λ2

∫ t

−∞

(∫ t

s

g(v, x(v))dv

)T

Dst(t, s)

(∫ t

s

g(v, x(v))dv

)
ds

+ 2λ2gT (t, x(t))

∫ t

−∞

Ds(t, s)

(∫ t

s

g(v, x(v))dv

)
ds.

If we integrate the last term by parts, we have

2λ2gT (t, x(t))

[
D(t, s)

∫ t

s

g(v, x(v))dv
∣∣∣
s=t

s=−∞
+

∫ t

−∞

D(t, s)g(s, x(s))ds

]
.

The first term vanishes at both limits by (H5); the first term of V ′ is not positive since
Dst(t, s) ≤ 0, and if we use (2.4) on the last term, then we obtain

V ′(t, x(·)) ≤ 2λ2gT (t, x(t))

∫ t

−∞

D(t, s)g(s, x(s))ds

= 2λgT (t, x(t))[−x(t) + λh(t, x(t))]. (2.5)

By (H2), we see that if |x(t)| ≥ K, then

V ′(t, x(·)) ≤ −λη|g(t, x(t))|. (2.6)

It is clear that V ′(t, x(·)) is bounded above for 0 ≤ |x(t)| ≤ K since g(t, x) and h(t, x)
are bounded for x bounded, and hence, there exists a constant L > 0 depending on K
such that

V ′(t, x(·)) ≤ −λη|g(t, x(t))| + ληL (2.7)

for all t ∈ R. By the Schwarz inequality, we have

λ2

∣∣∣∣
∫ t

−∞

Ds(t, s)

∫ t

s

g(v, x(v))dvds

∣∣∣∣
2

= λ2

∣∣∣∣
∫ t

−∞

√
Ds(t, s)

[√
Ds(t, s)

∫ t

s

g(v, x(v))dv

]
ds

∣∣∣∣
2

≤ λ2

∫ t

−∞

‖
√
Ds(t, s)‖2ds

∫ t

−∞

∣∣∣∣
√
Ds(t, s)

∫ t

s

g(v, x(v))dv

∣∣∣∣
2

ds

= λ2

∫ t

−∞

‖
√
Ds(t, s)‖2ds

∫ t

−∞

(∫ t

s

g(v, x(v))dv

)T

Ds(t, s)

(∫ t

s

g(v, x(v))dv

)
ds

≤
∫ t

−∞

‖Ds(t, s)‖ds V (t, x(·)) ≤ JV (t, x(·)) (2.8)
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where

J = sup
0≤t≤T

∫ t

−∞

‖Ds(t, s)‖ds.

We have just integrated the left side by parts, obtaining
∣∣∣∣
∫ t

−∞

D(t, s)g(s, x(s))ds

∣∣∣∣
2

=

∣∣∣∣
∫ t

−∞

Ds(t, s)

∫ t

s

g(v, x(v))dvds

∣∣∣∣
2

so that by (2.4) we now have

|x(t) − λh(t, x(t))|2 ≤ JV (t, x(·)). (2.9)

Since V is T -periodic, there exists a sequence {tn} ↑ ∞ with
V (tn, x(·)) ≥ V (s, x(·)) for s ≤ tn. Thus,

0 ≤ V (tn, x(·)) − V (s, x(·))

≤ −λη
∫ tn

s

|g(v, x(v))|dv + ληL(tn − s),

and so ∫ tn

s

|g(v, x(v))|dv ≤ L(tn − s).

Thus,

V (tn, x(·)) ≤ λ2

∫ tn

−∞

‖Ds(tn, s)‖
∣∣∣∣
∫ tn

s

g(v, x(v))dv

∣∣∣∣
2

ds

≤ λ2

∫ tn

−∞

‖Ds(tn, s)‖L2(tn − s)2ds ≤ γL2

where

γ = sup
0≤t≤T

∫ t

−∞

‖Ds(t, s)‖(t− s)2ds.

This implies that V (t, x(·)) ≤ γL2 for all t ∈ R, and therefore by (2.9) we obtain

|x(t) − λh(t, x(t))|2 ≤ JV (t, x(·)) ≤ γJL2. (2.10)

Observe that

|x(t) − h(t, x(t))| ≥ |x(t)| − |h(t, x(t)) − h(t, 0)| − |h(t, 0)|
≥ |x(t)| − ψ(|x(t)|) − h∗

where h∗ = sup{|h(t, 0)| : 0 ≤ t ≤ T} and ψ is defined in (H3). By (2.3), there exists
a constant µ > K such that r ≥ µ implies

r − ψ(r) − h∗ >
√
γJL2. (2.11)
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We now claim that |x(t)| < µ for all t ∈ [0, T ]. If for some t∗ ∈ [0, T ] such that
|x(t∗)| ≥ µ, then by (2.10) and (2.11), we have

γJL2 < (|x(t∗)| − ψ(|x(t∗)|) − h∗)2

≤ |x(t∗) − h(t∗, x(t∗))|2 ≤ JV (t∗, x(t∗)) ≤ γJL2,

a contradiction, and thus, ‖x‖ < µ whenever x is a solution of (2.4) for 0 < λ ≤ 1. We
now define

M = {x ∈ PT : ‖x‖ < µ}.
It is clear that M is an open subset of PT . By the argument above, if x = λ(Bx+Ax)
for 0 < λ ≤ 1, then ‖x‖ < µ. This implies x ∈M , and therefore, (A2) of Theorem 1.1
fails to hold.

Next, we show that A : M → PT is continuous and AM is contained in a compact
subset of PT . Let φ1, φ2 ∈M . Then for all t ∈ [0, T ], we have

|Aφ1(t) −Aφ2(t)| ≤
∫ t

−∞

‖D(t, s)‖|g(s, φ1(s)) − g(s, φ2(s))|ds. (2.12)

Since g is uniformly continuous on {(t, x) : 0 ≤ t ≤ T, |x| ≤ µ}, then for any ε > 0,
there exists a δ > 0 such that ‖φ1 − φ2‖ < δ implies |g(s, φ1(s)) − g(s, φ2(s))| < ε for
all s ∈ [0, T ]. It then follows from (2.12) that ‖Aφ1 − Aφ2‖ ≤ J∗ε, where

J∗ = sup
0≤t≤T

∫ t

−∞

‖D(t, s)‖ds.

Thus, A is continuous on M . Now if φ ∈M and 0 ≤ t1 ≤ t2 ≤ T , then

|Aφ(t1) − Aφ(t2)|

=

∣∣∣∣
∫ t1

−∞

D(t1, s)g(s, φ(s))ds−
∫ t2

−∞

D(t2, s)g(s, φ(s))ds

∣∣∣∣

≤
∫ t1

−∞

‖D(t1, s) −D(t2, s)‖|g(s, φ(s))|ds+

∫ t2

t1

‖D(t2, s)‖|g(s, φ(s))|ds

≤ g∗Q(|t2 − t1|) + g∗D∗|t2 − t1|
where D∗ = sup{‖D(t, s)‖ : 0 ≤ s ≤ t ≤ T} and g∗ = sup{|g(t, x)| : 0 ≤ t ≤ T, |x| ≤
µ}. Here we have used (H6) in the last inequality. This implies that AM is equi-
continuous. The uniform boundedness of AM follows from the following inequality

|Aφ(t)| ≤
∫ t

−∞

‖D(t, s)‖|g(s, φ(s))|ds ≤ g∗J∗

for all φ ∈M . So, by the Ascoli-Arzela Theorem, AM lies in a compact subset of PT ,
and therefore, A is completely continuous. Moreover, for each x ∈M , we have

|(Bx)(t)| = |h(t, x(t))| ≤ ψ(‖x‖) + |h(t, 0)|
≤ ‖x‖ + h∗ ≤ µ+ h∗.
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This implies that BM is bounded, and hence, F = B + A is bounded on M . By
Theorem 1.1, F has a fixed point x∗ ∈M . In this case, x∗ ∈ M and x∗ is a T -periodic
solution of (1.1). The proof is complete.

Remark 2.2 It is clear from (2.11) that Theorem 2.1 remains true if the condition
limr→∞(r − ψ(r)) = ∞ in (2.3) is replaced by

lim inf
r→∞

(r − ψ(r)) > ℓ (2.13)

where ℓ = h∗ + L
√
γJ . The constant L can be expressed as a function of K and η. In

fact, letting

gK = sup{|g(t, x)| : 0 ≤ t ≤ T, |x| ≤ K}
we see from (2.5) that if |x(t)| ≤ K, then

V ′(t, x(·)) ≤ 2λ
∣∣gT (t, x(t))

∣∣
[
|x(t)| + |h(t, x(t)) − h(t, 0)| + |h(t, 0)|

]

≤ 2λgK[|x(t)| + ψ(|x(t)|) + h∗]

≤ 2λgK[K + ψ(K) + h∗]

≤ −λη|g(t, x(t))| + ληgK [1 + 2(K + ψ(K) + h∗)/η]

Combining this with (2.6), we arrive at (2.7) with L = gK [1 + 2(K + ψ(K) + h∗)/η].

Remark 2.3 We observe that if (H1)-(H6) hold for a different norm of Rn, say | · |∗,
then Theorem 2.1 is still true. In this case, we choose ‖D(t, s)‖∗ to be the norm induced
by | · |∗ or any matrix norm that is compatible with | · |∗.

3 Special Equations and Examples

In this section, we discuss some special cases of (1.1) with examples and remarks con-
cerning conditions (H1)-(H6). These special equations not only have deep roots in
application, but possess rich properties that provide much needed insight for investi-
gation of highly nonlinear equations. We first consider the system

x(t) = a(t) −
∫ t

−∞

D(t, s)g(x(s))ds (3.1)

where x(t) ∈ Rn, a : R → Rn, D : R × R → Rn×n, g : Rn → Rn are continuous and
assume there exists a constant K > 0 such that

g(x) = (xm
1 , x

m
2 , · · ·, xm

n )T (3.2)

whenever |x| ≥ K. Here x = (x1, x2, · · ·, xn)
T ∈ Rn and m is an odd positive integer.
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We now apply the generalized arithmetic-mean and geometric-mean inequality (see
Beckenbach and Bellman [2])

ap1

1 a
p2

2 · ·apn

n ≤
(p1a1 + p2a2 + · · +pnan

p1 + p2 + · · +pn

)(p1+p2+··+pn)

(3.3)

where ak ≥ 0, pk > 0 for k = 1, 2, · · ·, n, to prove the following lemma.

Lemma 3.1 Let x = (x1, x2, · · ·, xn)T ∈ Rn and α > 0. Then
(

n∑

i=1

|xi|α
)(

n∑

j=1

|xj |
)

≤ n

(
n∑

i=1

|xi|α+1

)
. (3.4)

Proof. Using inequality (3.3) and the convexity of rα+1 for r ≥ 0, we obtain

|xi|α|xj | ≤
(α|xi| + |xj |

α + 1

)α+1

≤ α

α+ 1
|xi|α+1 +

1

α + 1
|xj |α+1,

and thus,
(

n∑

i=1

|xi|α
)(

n∑

j=1

|xj|
)

≤
n∑

j=1

[
n∑

i=1

(
α

α + 1
|xi|α+1 +

1

α + 1
|xj|α+1

)]

=
nα

α+ 1

n∑

i=1

|xi|α+1 +
n

α + 1

n∑

j=1

|xj|α+1.

This yields (3.4).

Theorem 3.1 Suppose that a ∈ PT and D(t+ T, s + T ) = D(t, s) for all t, s ∈ R. If
(H4)-(H6) hold, then (3.1) has a T -periodic solution .

Proof. We first observe that (3.1) is in the form of (1.1) with h(t, x) = a(t). Thus,
(H1) and (H3) are satisfied. To verify (H2), we start with the inequality

gT (x)
[
x− λa(t)

]
≥ gT (x)x− ‖a‖|g(x)|

= gT (x)x− ‖a‖

√√√√
n∑

j=1

|xj |2m

≥ gT (x)x− ‖a‖
n∑

j=1

|xj |m (3.5)

for |x| ≥ K and λ ∈ (0, 1], and apply (3.4) to obtain

gT (x)
[
x− λa(t)

]
≥

n∑

j=1

|xj|m+1 − ‖a‖
n∑

j=1

|xj |m
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≥ 1

n

(
n∑

i=1

|xi|m
)(

n∑

j=1

|xj|
)

− ‖a‖
n∑

j=1

|xj|m

=

(
n∑

j=1

|xj|m
)[

1

n

n∑

j=1

|xj | − ‖a‖
]

≥
(

n∑

j=1

|xj|m
)[

1

n
|x| − ‖a‖

]
≥ |g(x)|

[
1

n
|x| − ‖a‖

]
.

Letting K > n‖a‖, we see (H2) is satisfied. Thus, by Theorem 2.1, (3.1) has a T -
periodic solution. This completes the proof.

Remark 3.1 Theorem 3.1 is still valid if the function g in (3.2) is replaced by

g(x) =
(
x

1/m
1 , x

1/m
2 , · · ·, x1/m

n

)T

(3.6)

where m is an odd positive integer, or by the bounded function

g(x) =

(
x1

1 + |x| ,
x2

1 + |x| , · · ·,
xn

1 + |x|

)T

(3.7)

for x = (x1, x2, · · ·, xn)T ∈ Rn and |x| > K.

Next, we consider the system with a nonlinear contraction term

x(t) = h(t, x(t)) −
∫ t

−∞

D(t, s)g(s, x(s))ds (3.8)

where x(t) ∈ Rn, h : R × Rn → Rn, D : R × R → Rn×n, g : R × Rn → Rn are
continuous, and D(t+ T, s+ T ) = D(t, s) for all t, s ∈ R.

We now let

h(t, x) = α̃(x) + a(t) (3.9)

for all x ∈ Rn and t ∈ R, and for x = (x1, x2, · · ·, xn)
T ∈ Rn

g(t, x) = b(t)
(
x3

1, x
3
1, · · ·, x3

n

)T
(3.10)

whenever |x| ≥ K for some positive constant K, where a : R → Rn, b : R → R+ are
continuous and T -periodic, and

α̃(x) =
(
α(x1), α(x2), · · ·, α(xn)

)T

(3.11)

with

α(u) = u− u3

4(1 + u2)
for all u ∈ R. (3.12)
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It will be easier for us to verify (H1)-(H6) for (3.8) if we endow Rn with the norm

|x|∗ = max
1≤j≤n

|xj |, x = (x1, x2, · · ·, xn)
T ∈ Rn

and use the matrix norm ‖ · ‖∗ induced by | · |∗. Thus, if A = (aij)n×n, then

‖A‖∗ = max
1≤i≤n

n∑

j=1

|aij|

(see Lancaster and Tismenetsky [17, p. 365]).

Theorem 3.2 Under (3.9)-(3.12), if (H4)-(H6) hold with respect to the norm | · |∗, then
(3.8) has a T -periodic solution.

Proof. We first observe that for the function α defined in (3.12), it is a straightforward
calculation to obtain

|α(u) − α(v)| ≤ ψ(|u− v|) (3.13)

for all u, v ∈ R, where

ψ(r) =





61
64
r, r ≥

√
3

(1 − 1
64
r2) r, 0 ≤ r <

√
3.

(3.14)

It is clear that ψ is continuous, increasing with ψ(r) < r for all r > 0 and

lim
r→∞

(r − ψ(r)) = ∞.

We now proceed to verify that (H2) and (H3) hold. For any x = (x1, x2, ···, xn)
T , y =

(y1, y2, · · ·, yn)
T ∈ Rn, by the definition of h(t, x) in (3.9), we have

|h(t, x) − h(t, y)|∗ = |α̃(x) − α̃(y)|∗
= max

1≤j≤n
|α(xj) − α(yj)|

≤ max
1≤j≤n

ψ(|xj − yj|) ≤ ψ(|x− y|∗). (3.15)

Thus, h(t, x) satisfies (H3). To show (H2) holds, we first observe that by (3.10), there
exists K1 > 0 such that |x|∗ ≥ K1 implies

g(t, x) = b(t)
(
x3

1, x
3
1, · · ·, x3

n

)T
. (3.16)
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This implies |g(t, x)|∗ = b(t)|x|3∗ for all |x|∗ ≥ K1 so that

gT (t, x)[x− λh(t, x)]

= (1 − λ)gT (t, x)x+ λb(t)

n∑

j=1

x6
j

4(1 + x2
j )

− λgT (t, x)a(t)

≥ (1 − λ)gT (t, x)x+ λ|g(t, x)|∗
[ |x|3∗
4(1 + |x|2∗)

− n‖a‖
]

≥ (1 − λ)b(t)
1

n

(
n∑

i=1

|xi|3
)(

n∑

j=1

|xj|
)

+ λ|g(t, x)|∗
[
1

4
|x|∗ − (1 + n‖a‖)

]

≥ (1 − λ)
1

n
|g(t, x)|∗|x|∗ + λ|g(t, x)|∗

[
1

4
|x|∗ − (1 + n‖a‖)

]

≥ |g(t, x)|∗
[
min{ 1

n
,
1

4
}|x|∗ − (1 + n‖a‖)

]
.

Here we have used inequality (3.4). Now there exists K2 > 0 such that

gT (t, x)[x− λh(t, x)] ≥ |g(t, x)|∗
for all |x|∗ ≥ K2, t ∈ R, and λ ∈ (0, 1]. Thus, (H2) holds, and by Theorem 2.1, (3.8)
has a T -periodic solution.

Remark 3.2 We again point out that (H2) is a quite mild condition which allows
g(t, x) to be highly nonlinear and nearly independent of h(t, x). We also observe that
g(t, x) in (3.10) can take the form of (3.6) or (3.7), and Theorem 3.2 is still valid.

Remark 3.3 For h(t, x) defined in (3.9), the mapping (Bx)(t) = h(t, x(t)) for x ∈ PT

is almost a contraction, but fails near x = 0. Thus, we don’t expect to find a constant
0 < α < 1 satisfying ‖Bx− By‖ ≤ α‖x− y‖ for all x, y ∈ PT .

Finally, we wish to point out that the sign condition (H4) is essential for the exis-
tence of periodic solutions of (1.1). For example, the scalar equation

x(t) = 1 + sin t+

∫ t

−∞

e−(t−s)x(s)ds (3.17)

does not have a periodic solution. In fact, all solutions of (3.17) are unbounded. It is
clear that (H4) is not satisfied with D(t, s) = −e−(t−s).
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