CONVEX SOLUTIONS OF SYSTEMS ARISING FROM MONGE-AMPERE EQUATIONS

Haiyan Wang
Division of Mathematical and Natural Sciences
Arizona State University, Phoenix, AZ 85069, USA
e-mail: wangh@asu.edu

Honoring the Career of John Graef on the Occasion of His Sixty-Seventh Birthday

Abstract

We establish two criteria for the existence of convex solutions to a boundary value problem for weakly coupled systems arising from the Monge-Ampère equations. We shall use fixed point theorems in a cone.

Key words and phrases: Convex solutions, Monge-Ampère equations, cone.
AMS (MOS) Subject Classifications:34B15, 35J60

1 Introduction

In this paper we consider the existence of convex solutions to the Dirichlet problem for the weakly coupled system

$$
\begin{align*}
\left(\left(u_{1}^{\prime}(t)\right)^{N}\right)^{\prime} & =N t^{N-1} f\left(-u_{2}(t)\right) \quad \text { in } 0<t<1, \\
\left(\left(u_{2}^{\prime}(t)\right)^{N}\right)^{\prime} & =N t^{N-1} g\left(-u_{1}(t)\right) \quad \text { in } 0<t<1 \tag{1.1}\\
u_{1}^{\prime}(0)=u_{2}^{\prime}(0) & =0, \quad u_{1}(1)=u_{2}(1)=0
\end{align*}
$$

where $N \geq 1$. A nontrivial convex solution of (1.1) is negative on $[0,1)$. Such a problem arises in the study of the existence of convex radial solutions to the Dirichlet problem for the system of the Monge-Ampère equations

$$
\left\{\begin{array}{l}
\operatorname{det} D^{2} u_{1}=f\left(-u_{2}\right) \text { in } B, \tag{1.2}\\
\operatorname{det} D^{2} u_{2}=g\left(-u_{1}\right) \text { in } B, \\
u_{1}=u_{2}=0 \text { on } \partial B,
\end{array}\right.
$$

where $B=\left\{x \in \mathbb{R}^{N}:|x|<1\right\}$ and $\operatorname{det} D^{2} u_{i}$ is the determinant of the Hessian matrix $\left(\frac{\partial^{2} u_{i}}{\partial x_{m} \partial x_{n}}\right)$ of u_{i}. For how to reduce (1.2) to (1.1), one may see Hu and the author [5].

The Dirichlet problem for a single unknown variable Monge-Ampère equations

$$
\left\{\begin{array}{l}
\operatorname{det} D^{2} u=f(-u) \text { in } B, \tag{1.3}\\
u=0 \text { on } \partial B,
\end{array}\right.
$$

in general domains in \mathbb{R}^{n} may be found in Caffarelli, Nirenberg and Spruck [1]. Kutev [7] investigated the existence of strictly convex radial solutions of (1.3) when $f(-u)=$ $(-u)^{p}$. Delano [3] treated the existence of convex radial solutions of (1.3) for a class of more general functions, namely $\lambda \exp f(|x|, u,|\nabla u|)$.

The author [10] and Hu and the author [5] showed that the existence, multiplicity and nonexistence of convex radial solutions of (1.3) can be determined by the asymptotic behaviors of the quotient $\frac{f(u)}{u^{N}}$ at zero and infinity.

In this paper we shall establish the existence of convex radial solutions of the weakly coupled system (1.1) in superlinear and sublinear cases. First, introduce the notation

$$
f_{0}=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x^{N}}, \quad f_{\infty}=\lim _{x \rightarrow \infty} \frac{f(x)}{x^{N}}
$$

and

$$
g_{0}=\lim _{x \rightarrow 0^{+}} \frac{g(x)}{x^{N}}, \quad g_{\infty}=\lim _{x \rightarrow \infty} \frac{g(x)}{x^{N}} .
$$

We shall show that if (1.1) is superlinear, or $f_{0}=g_{0}=0$ and $f_{\infty}=g_{\infty}=\infty,(1.1)$ is sublinear, or $f_{0}=g_{0}=\infty$ and $f_{\infty}=g_{\infty}=0$, then (1.1) has a convex solution.

Our main results are:
Theorem 1.1 Assume $f, g:[0, \infty) \rightarrow[0, \infty)$ are continuous.
(a). If $f_{0}=g_{0}=0$ and $f_{\infty}=g_{\infty}=\infty$, then (1.1) has a convex solution.
(b). If $f_{0}=g_{0}=\infty$ and $f_{\infty}=g_{\infty}=0$, then (1.1) has a convex solution.

2 Preliminaries

With a simple transformation $v_{i}=-u_{i}, i=1,2$ (1.1) can be brought to the following equation

$$
\begin{cases}\left(\left(-v_{1}^{\prime}(r)\right)^{N}\right)^{\prime} & =N r^{N-1} f\left(v_{2}\right), \quad 0<r<1 \tag{2.4}\\ \left(\left(-v_{2}^{\prime}(r)\right)^{N}\right)^{\prime} & =N r^{N-1} g\left(v_{1}\right), \quad 0<r<1 \\ v_{i}^{\prime}(0)=v_{i}(1) & =0, \quad i=1,2\end{cases}
$$

Now we treat positive concave classical solutions of (2.4).
The following well-known result of the fixed point index is crucial in our arguments.
Lemma 2.1 ([2, 4, 6]). Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=\{u \in K:\|x\|<r\}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T x \neq x$ for $x \in \partial K_{r}=\{u \in K:\|x\|=r\}$.
(i) If $\|T x\| \geq\|x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=0
$$

(ii) If $\|T x\| \leq\|x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=1
$$

In order to apply Lemma 2.1 to (2.4), let X be the Banach space $C[0,1] \times C[0,1]$ and, for $\left(v_{1}, v_{2}\right) \in X$,

$$
\left\|\left(v_{1}, v_{2}\right)\right\|=\left\|v_{1}\right\|+\left\|v_{2}\right\|
$$

where $\left\|v_{i}\right\|=\sup _{t \in[0,1]}\left|v_{i}(t)\right|$. Define K to be a cone in X by

$$
K=\left\{\left(v_{1}, v_{2}\right) \in X: v_{i}(t) \geq 0, t \in[0,1], \min _{\frac{1}{4} \leq t \leq \frac{3}{4}} v_{i}(t) \geq \frac{1}{4}\left\|v_{i}\right\|, i=1,2\right\} .
$$

Also, define, for r a positive number, Ω_{r} by

$$
\Omega_{r}=\left\{\left(v_{1}, v_{2}\right) \in K:\left\|\left(v_{1}, v_{2}\right)\right\|<r\right\} .
$$

Note that $\partial \Omega_{r}=\left\{\left(v_{1}, v_{2}\right) \in K:\left\|\left(v_{1}, v_{2}\right)\right\|=r\right\}$.
Let $\mathbf{T}: K \rightarrow X$ be a map with components $\left(T^{1}, T^{2}\right)$, which are defined by

$$
\begin{align*}
& T^{1}\left(v_{1}, v_{2}\right)(r)=\int_{r}^{1}\left(\int_{0}^{s} N \tau^{N-1} f\left(v_{2}(\tau)\right) d \tau\right)^{\frac{1}{n}} d s, r \in[0,1] \tag{2.5}\\
& T^{2}\left(v_{1}, v_{2}\right)(r)=\int_{r}^{1}\left(\int_{0}^{s} N \tau^{N-1} g\left(v_{1}(\tau)\right) d \tau\right)^{\frac{1}{n}} d s, r \in[0,1] .
\end{align*}
$$

It is straightforward to verify that (2.4) is equivalent to the fixed point equation

$$
\mathbf{T}\left(v_{1}, v_{2}\right)=\left(v_{1}, v_{2}\right) \quad \text { in } \quad K .
$$

Thus, if $\left(v_{1}, v_{2}\right) \in K$ is a positive fixed point of \mathbf{T}, then $\left(-v_{1},-v_{2}\right)$ is a convex solution of (1.1). Conversely, if $\left(u_{1}, u_{2}\right)$ is a convex solution of (1.1), then $\left(-u_{1},-u_{2}\right)$ is a fixed point of \mathbf{T} in K.

The following lemma is a standard result due to the concavity of u. We prove it here only for completeness.

Lemma 2.2 Let $u \in C^{1}[0,1]$ with $u(t) \geq 0$ for $t \in[0,1]$. Assume that $u^{\prime}(t)$ is nonincreasing on $[0,1]$. Then

$$
u(t) \geq \min \{t, 1-t\}\|u\|, \quad t \in[0,1],
$$

where $\|u\|=\sup _{t \in[0,1]} u(t)$. In particular,

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq \frac{1}{4}\|u\| .
$$

Proof Since $u^{\prime}(t)$ is nonincreasing, we have for $0 \leq t_{0}<t<t_{1} \leq 1$,

$$
u(t)-u\left(t_{0}\right)=\int_{t_{0}}^{t} u^{\prime}(s) d s \geq\left(t-t_{0}\right) u^{\prime}(t)
$$

and

$$
u\left(t_{1}\right)-u(t)=\int_{t}^{t_{1}} u^{\prime}(s) d s \leq\left(t_{1}-t\right) u^{\prime}(t)
$$

from which, we have

$$
u(t) \geq \frac{\left(t_{1}-t\right) u\left(t_{0}\right)+\left(t-t_{0}\right) u\left(t_{1}\right)}{t_{1}-t_{0}}
$$

Considering the above inequality on $[0, \sigma]$ and $[\sigma, 1]$, we have

$$
u(t) \geq t\|u\| \quad \text { for } \quad t \in[0, \sigma],
$$

and

$$
u(t) \geq(1-t)\|u\| \quad \text { for } \quad t \in[\sigma, 1],
$$

where $\sigma \in[0,1]$ such that $u(\sigma)=\|u\|$. Hence,

$$
u(t) \geq \min \{t, 1-t\}\|u\|, \quad t \in[0,1] .
$$

Lemma 2.3 can be verified by the standard procedures.
Lemma 2.3 Assume $f, g:[0, \infty) \rightarrow[0, \infty)$ are continuous. Then $\mathbf{T}(K) \subset K$ and $\mathbf{T}: K \rightarrow K$ is a compact operator and continuous.

Let

$$
\Gamma=\frac{1}{4} \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\int_{\frac{1}{4}}^{s} N \tau^{N-1} d \tau\right)^{\frac{1}{N}} d s>0 .
$$

Lemma 2.4 Let $\left(v_{1}, v_{2}\right) \in K$ and $\eta>0$. If

$$
f\left(v_{2}(t)\right) \geq\left(\eta v_{2}(t)\right)^{N} \quad \text { for } \quad t \in\left[\frac{1}{4}, \frac{3}{4}\right]
$$

or

$$
g\left(v_{1}(t)\right) \geq\left(\eta v_{1}(t)\right)^{N} \quad \text { for } \quad t \in\left[\frac{1}{4}, \frac{3}{4}\right]
$$

then

$$
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| \geq \Gamma \eta\left\|v_{2}\right\|,
$$

or

$$
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| \geq \Gamma \eta\left\|v_{1}\right\|,
$$

respectively.

EJQTDE Spec. Ed. I, 2009 No. 26

Proof Note, from the definition of $\mathbf{T}\left(v_{1}, v_{2}\right)$, that $T^{i}\left(v_{1}, v_{2}\right)(0)$ is the maximum value of $T^{i}\left(v_{1}, v_{2}\right)$ on $[0,1]$. It follows that

$$
\begin{aligned}
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| & \geq \sup _{t \in[0,1]}\left|T^{1}\left(v_{1}, v_{2}\right)(t)\right| \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\int_{\frac{1}{4}}^{s} N \tau^{N-1} f\left(v_{2}(\tau)\right) d \tau\right)^{\frac{1}{N}} d s \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\int_{\frac{1}{4}}^{s} N \tau^{N-1}\left(\eta v_{2}(\tau)\right)^{N} d \tau\right)^{\frac{1}{N}} d s \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\int_{\frac{1}{4}}^{s} N \tau^{N-1}\left(\frac{\eta}{4}\left\|v_{2}\right\|\right)^{N} d \tau\right)^{\frac{1}{N}} d s \\
& =\Gamma \eta\left\|v_{2}\right\| .
\end{aligned}
$$

Similarly,

$$
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| \geq \sup _{t \in[0,1]}\left|T^{2}\left(v_{1}, v_{2}\right)(t)\right| \geq \Gamma \eta\left\|v_{1}\right\| .
$$

We define new functions $\hat{f}(t), \hat{g}(t):[0, \infty) \rightarrow[0, \infty)$ by

$$
\hat{f}(t)=\max \{f(v): 0 \leq v \leq t\}, \quad \hat{g}(t)=\max \{g(v): 0 \leq v \leq t\} .
$$

Note that $\hat{f}_{0}=\lim _{t \rightarrow 0} \frac{\hat{f}(t)}{t^{N}}, \hat{f}_{\infty}=\lim _{t \rightarrow \infty} \frac{\hat{f}(t)}{t^{N}}$ and $\hat{g}_{0}, \hat{g}_{\infty}$ can be defined similarly.
Lemma 2.5 [9] Assume $f, g:[0, \infty) \rightarrow[0, \infty)$ are continuous. Then

$$
\hat{f}_{0}=f_{0}, \quad \hat{f}_{\infty}=f_{\infty},
$$

and

$$
\hat{g}_{0}=g_{0}, \quad \hat{g}_{\infty}=g_{\infty} .
$$

Lemma 2.6 Assume $f, g:[0, \infty) \rightarrow[0, \infty)$ are continuous. Let $r>0$. If there exists an $\varepsilon>0$ such that

$$
\hat{f}(r) \leq(\varepsilon r)^{N}, \hat{g}(r) \leq(\varepsilon r)^{N},
$$

then

$$
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| \leq 2 \varepsilon\left\|\left(v_{1}, v_{2}\right)\right\| \text { for }\left(v_{1}, v_{2}\right) \in \partial \Omega_{r} .
$$

Proof From the definition of T, for $\left(v_{1}, v_{2}\right) \in \partial \Omega_{r}$, we have

$$
\begin{aligned}
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| & =\sum_{i=1}^{2} \sup _{t \in[0,1]}\left|T^{i}\left(v_{1}, v_{2}\right)(t)\right| \\
& \leq\left(\int_{0}^{1} N \tau^{N-1} f\left(v_{2}(\tau)\right) d \tau\right)^{\frac{1}{N}}+\left(\int_{0}^{1} N \tau^{N-1} g\left(v_{1}(\tau)\right) d \tau\right)^{\frac{1}{N}} \\
& \leq\left(\int_{0}^{1} N \tau^{N-1} \hat{f}(r) d \tau\right)^{\frac{1}{N}}+\left(\int_{0}^{1} N \tau^{N-1} \hat{g}(r) d \tau\right)^{\frac{1}{N}} \\
& \leq\left(\int_{0}^{1} N \tau^{N-1} d \tau\right)^{\frac{1}{N}} \varepsilon r+\left(\int_{0}^{1} N \tau^{N-1} d \tau\right)^{\frac{1}{N}} \varepsilon r \\
& \leq 2 \varepsilon\left\|\left(u_{1}, u_{2}\right)\right\| .
\end{aligned}
$$

3 Proof of Theorem 1.1

Proof Part (a). It follows from Lemma 2.5 that $\hat{f}_{0}=0, \hat{g}_{0}=0$. Therefore, we can choose $r_{1}>0$ so that $\hat{f}^{i}\left(r_{1}\right) \leq\left(\varepsilon r_{1}\right)^{N}, \hat{g}^{i}\left(r_{1}\right) \leq\left(\varepsilon r_{1}\right)^{N}$ where the constant $\varepsilon>0$ satisfies

$$
\varepsilon<\frac{1}{2} .
$$

We have by Lemma 2.6 that

$$
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| \leq 2 \varepsilon\left\|\left(v_{1}, v_{2}\right)\right\|<\left\|\left(v_{1}, v_{2}\right)\right\| \quad \text { for } \quad\left(v_{1}, v_{2}\right) \in \partial \Omega_{r_{1}} .
$$

Now, since $f_{\infty}=\infty, g_{\infty}=\infty$, there is an $\hat{H}>0$ such that

$$
f(v) \geq(\eta v)^{N}, g(v) \geq(\eta v)^{N}
$$

for $v \geq \hat{H}$, where $\eta>0$ is chosen so that

$$
\frac{1}{2} \Gamma \eta>1 .
$$

Let $r_{2}=\max \left\{2 r_{1}, 8 \hat{H}\right\}$. If $\left(v_{1}, v_{2}\right) \in \partial \Omega_{r_{2}}$, there exists one of $i=1$ or $i=2$ such that $\sup _{t \in[0,1]} v_{i} \geq \frac{1}{2} r_{2}$. Without loss of generality, assume that $\sup _{t \in[0,1]} v_{1} \geq \frac{1}{2} r_{2}$. Then

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} v_{1}(t) \geq \frac{1}{4} \sup _{t \in[0,1]} v_{1} \geq \frac{1}{8} r_{2} \geq \hat{H},
$$

which implies that

$$
g\left(v_{1}(t)\right) \geq\left(\eta v_{1}(t)\right)^{N} \text { for } \mathrm{t} \in\left[\frac{1}{4}, \frac{3}{4}\right] .
$$

It follows from Lemma 2.4 that

$$
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| \geq \Gamma \eta\left\|v_{1}\right\|>\frac{1}{2} \Gamma \eta r_{2} \geq r_{2}=\left\|\left(v_{1}, v_{2}\right)\right\| .
$$

By Lemma 2.1,

$$
i\left(\mathbf{T}, \Omega_{r_{1}}, K\right)=1 \text { and } i\left(\mathbf{T}, \Omega_{r_{2}}, K\right)=0
$$

It follows from the additivity of the fixed point index that

$$
i\left(\mathbf{T}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1
$$

Thus, $i\left(\mathbf{T}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right) \neq 0$, which implies \mathbf{T} has a fixed point $\left(v_{1}, v_{2}\right) \in \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$ by the existence property of the fixed point index. The fixed point $\left(-v_{1},-v_{2}\right) \in \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$ is the desired positive solution of (1.1).

Part (b). since $f_{0}=\infty, g_{0}=\infty$, there is an $H>0$ such that

$$
f(v) \geq(\eta v)^{N}, g(v) \geq(\eta v)^{N}
$$

for $0<v \leq H$, where $\eta>0$ is chosen so that

$$
\Gamma \eta>1 .
$$

If $\left(v_{1}, v_{2}\right) \in \partial \Omega_{r_{1}}$, then

$$
f\left(v_{2}(t)\right) \geq\left(\eta v_{2}\right)^{N}, \quad g\left(v_{1}(t)\right) \geq\left(\eta v_{1}\right)^{N} \text { for } t \in[0,1] .
$$

Lemma 2.4 implies that

$$
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| \geq \Gamma \eta\left\|\left(v_{1}, v_{2}\right)\right\|>\left\|\left(v_{1}, v_{2}\right)\right\| \quad \text { for } \quad\left(v_{1}, v_{2}\right) \in \partial \Omega_{r_{1}} .
$$

We now determine $\Omega_{r_{2}}$. It follows from Lemma 2.5 that $\hat{f}_{\infty}=0$ and $\hat{g}_{\infty}=0$. Therefore there is an $r_{2}>2 r_{1}$ such that

$$
\hat{f}^{i}\left(r_{2}\right) \leq\left(\varepsilon r_{2}\right)^{N}, \quad \hat{g}^{i}\left(r_{2}\right) \leq\left(\varepsilon r_{2}\right)^{N},
$$

where the constant $\frac{1}{2}>\varepsilon>0$. Thus, we have by Lemma 2.6 that

$$
\left\|\mathbf{T}\left(v_{1}, v_{2}\right)\right\| \leq 2 \varepsilon\left\|\left(v_{1}, v_{2}\right)\right\|<\left\|\left(v_{1}, v_{2}\right)\right\| \quad \text { for } \quad\left(v_{1}, v_{2}\right) \in \partial \Omega_{r_{2}} .
$$

By Lemma 2.1,

$$
i\left(\mathbf{T}, \Omega_{r_{1}}, K\right)=0 \quad \text { and } \quad i\left(\mathbf{T}, \Omega_{r_{2}}, K\right)=1
$$

It follows from the additivity of the fixed point index that $i\left(\mathbf{T}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$. Thus, \mathbf{T} has a fixed point $\left(v_{1}, v_{2}\right)$ in $\Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$. And $\left(-v_{1},-v_{2}\right)$ is the desired convex solution of (1.1).

4 Acknowledgement

The author would like thank the reviewer for careful reading of the paper and useful suggestions, which helped to improve the presentation of this paper.

References

[1] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), 369-402.
[2] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[3] Ph. Delano, Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations, J. Differential Equations 58 (1985), 318-344.
[4] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988.
[5] S. Hu and H. Wang, Convex solutions of boundary value problems arising from Monge-Ampère equations, Discrete and Continuous Dynamical Systems 16 (2006), 705-720.
[6] M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[7] N. D. Kutev, Nontrivial solutions for the equations of Monge-Ampère type, J. Math. Anal. Appl. 132 (1988), 424-433.
[8] P. L. Lions, Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl. 142 (4) (1985), 263-275 (1986).
[9] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003) 287-306.
[10] H. Wang, Convex Solutions of boundary value problems, J. Math. Anal. Appl. 318 (2006) 246-252.

