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Abstract

Using the method of upper and lower solutions, we prove that the singular
boundary value problem,

−u′′ = f(u) u−α in (0, 1), u′(0) = 0 = u(1) ,

has a positive solution when 0 < α < 1 and f : R → R is an appropriate
nonlinearity that is bounded below; in particular, we allow f to satisfy the semi-
positone condition f(0) < 0. The main difficulty of this approach is obtaining a
positive subsolution, which we accomplish by piecing together solutions of two
auxiliary problems. Interestingly, one of these auxiliary problems relies on a novel
fixed–point formulation that allows a direct application of Schauder’s fixed–point
theorem.
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1 Introduction

We are interested here in the existence of positive solutions to the singular boundary
value problem (BVP)

−u′′ = f(u) u−α in (0, 1), u′(0) = 0 = u(1) , (1)

where α > 0 is a given exponent and f : R → R is a continuous function that is
bounded below. By a positive solution, we mean a suitable function u that satisfies
u > 0 on (0, 1).
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Since the lower bound on f may be negative, we allow f to satisfy the semipositone
condition

f(0) < 0 . (2)

By reflection across the origin, a positive solution u of (1) yields a positive symmetric
solution w of the BVP

−w′′ = f(w) w−α in (−1, 1), w(−1) = 0 = w(1) .

Our interest in problem (1) stems from its relation to elliptic partial differential
equations of the form

−∆pu = f(u)u−α in Ω, u = 0 on ∂Ω , (3)

where p > 1, Ω ⊂ R
N is a bounded region with smooth boundary ∂Ω, and ∆p is the p-

Laplacian. More precisely, problem (1) is the one–dimensional analogue of problem (3)
when p = 2, Ω is the unit ball, and one seeks radial solutions. Progress on this simplified
case therefore provides some insight into what can happen in the more complicated
higher–dimensional problem (3). Note that [8] establishes the existence of positive
radial solutions of problem (3) for various exponents p and dimensions N when f is
nonsingular; the present paper employs different methods to extend the results of [8]
to the singular case.

Furthermore, the analysis of positive solutions to BVPs is of significance due to the
fact that when natural phenomena are modelled via BVPs, only positive solutions to
the problem will make physical sense.

Since we rely on the well–known method of upper and lower solutions to obtain pos-
itive solutions of (1), we briefly recall the relevant facts for the reader’s convenience.
See Chapter 2 of [6], for example, for a much more general development of such tech-
niques for two-point BVPs. For our purposes, a function u ∈ C2[0, 1] is called a lower
solution of (1) if

u′′ + f( u ) u−α ≥ 0 in (0, 1), u′(0) = 0 ≥ u(1) , (4)

while a function u ∈ C2[0, 1] that satisfies the reversed inequalities is termed an upper
solution of (1). The following result will be fundamental (cf. Theorem 1.3, p. 77 of
[6]).

Theorem 1.1 Let u and u be lower and upper solutions, respectively, of (1) such that
u ≤ u. Then there exists a solution u of (1) such that u ≤ u ≤ u.

To find a positive solution of a semipositone problem via the method of upper and
lower solutions, it is well–known that the principal difficulty is identifying a positive
lower solution. Doing so is the objective of the following section, while Section 3 uses its
results to establish the existence of a positive solution of (1) for certain nonlinearities
f .
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For recent works on positive symmetric solutions of two–point boundary value prob-
lems involving singular and/or semipositone nonlinearities, we refer the reader to [1]
– [4], [7], [10] – [14] and the references therein. Contrary to these works, we adopt
a different fixed–point formulation of our auxiliary problem to which the Schauder
Fixed Point Theorem applies directly (cf. Lemma 2.1 below). Finally, we remark that
much less is known about such boundary value problems in higher dimensions, but a
recent preprint by Chhetri and Robinson [5] provides some interesting results in this
direction.

2 Constructing Positive Lower Solutions

In this section, we consider the auxiliary BVP

−u′′ = σ(u)u−α on (0, 1), u′(0) = 0 = u(1) , (5)

where the exponent α ∈ (0, 1) is given and the function σ : R → R is defined by

σ(t) :=

{

K, for t > 1 ,
L, for t < 1 ,

for constants K > 0 and L < 0. We will see in Section 3 that a positive solution of (5)
yields a positive subsolution of (1); we will solve (5) by concatenating solutions of two
related problems. First, given any constant L < 0, we show in Section 2.1 that there
exist ρ ∈ (0, 1) and v > 0 such that

−v′′ = Lv−α on (ρ, 1), v(ρ) = 1, v(1) = 0 . (6)

Having found ρ, Section 2.2 determines a corresponding K > 0 such that

−w′′ = Kw−α on (0, ρ), w′(0) = 0, w(ρ) = 1 (7)

has a solution w ≥ 1 with w′(ρ) = v′(ρ). With v and w in hand, the function u defined
by

u(r) :=

{

w(r), for 0 ≤ r ≤ ρ ,

v(r), for ρ ≤ r ≤ 1 ,
(8)

is a solution of (5). To complement these results, Section 2.5 shows that problem (6)
cannot have a positive solution if α ≥ 1.

Before solving (6), we note that a natural ansatz for its solution is

v(r) := c (1 − r)β
. (9)

One easily finds that this ansatz yields a solution of the differential equation in (6)
when

β :=
2

1 + α
and c :=

(

−L
β(β − 1)

)1/(1+α)

.
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It follows that v(ρ) = 1 when

ρ := 1 −
(

1

c

)1/β

,

and this value of ρ belongs to (0, 1) if and only if c > 1, i.e.,

−L > β(β − 1) . (10)

Thus, problem (6) only has a solution of the form (9) if |L| is sufficiently large. In
contrast, we show that (6) has a solution for any L < 0; even when (10) holds, the
solution of (6) produced below cannot be of the form (9). As a result, one expects to
find multiple positive solutions of both problems (6) and (5), and it would be interesting
to determine precisely how many positive solutions these problems have.

2.1 Existence for Problem (6)

Suppose that v > 0 is a decreasing solution of (6); since

v′′ = (−L)v−α ,

multiplying both sides of this equation by 2v′ and integrating yields

(v′)
2

=
−2L

1 − α
v1−α + d ,

for an integration constant d to be specified. Since v′ < 0, we have

v′ = −
(

−2L

1 − α
v1−α + d

)1/2

, (11)

and integrating from r to 1 gives

v(r) =

∫ 1

r

(

−2L

1 − α
(v(s))1−α + d

)1/2

ds .

This preliminary calculation motivates the following definition: for a given constant
d > 1, let Td : C[0, 1] → C[0, 1] be the operator

(Tdv) (r) :=

∫ 1

r

(

−2L

1 − α
(v(s))1−α + d

)1/2

ds for v ∈ C[0, 1] . (12)

This operator is clearly completely continuous. Moreover, if v ∈ C[0, 1] satisfies 0 ≤
v(r) ≤M for all r ∈ [0, 1], then it follows that

√
d ≤

(

−2L

1 − α
(v(r))1−α + d

)1/2

≤
(

−2L

1 − α
M1−α + d

)1/2
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and hence that

√
d (1 − r) ≤ (Tdv)(r) ≤

(

−2L

1 − α
M1−α + d

)1/2

(1 − r) (13)

for any r ∈ [0, 1]. Since L < 0 and 0 < 1 − α < 1, it is possible to choose an Md > 0
such that

(

−2L

1 − α
M1−α

d + d

)1/2

≤Md . (14)

For such an Md, the bounds in (13) guarantee that the set D ⊂ C[0, 1] defined by

D := { v ∈ C[0, 1] : 0 ≤ v ≤Md } (15)

is invariant under Td, i.e., T (D) ⊂ D. As D is clearly bounded, closed and convex, the
Schauder Fixed Point Theorem [9] pp.25–26 applies and yields the following result.

Lemma 2.1 Let d > 1 be given, and suppose that Md > 0 satisfies (14). Then there
is a function v ∈ C[0, 1] such that 0 ≤ v ≤Md and Tdv = v.

A fixed point v ∈ D of Td is automatically decreasing, vanishes at r = 1, and is
therefore positive on (0, 1). Since v ≥ 0 and d > 1,

v(0) =

∫ 1

0

(

−2L

1 − α
v1−α + d

)1/2

ds ≥
√
d > 1 ,

and we conclude that there must be a point ρ ∈ (0, 1) such that

v(ρ) =

∫ 1

ρ

(

−2L

1 − α
v1−α + d

)1/2

ds = 1 .

We thus obtain the following result.

Corollary 2.1 Let L < 0 and α ∈ (0, 1) be given. There is a point ρ ∈ (0, 1) such that
the singular boundary value problem

−v′′ = Lv−α on (ρ, 1), v(ρ) = 1, v(1) = 0

has a positive solution v.

2.2 Existence for Problem (7)

Lemma 2.2 Let α ∈ (0, 1), ρ ∈ (0, 1) and K > 0 be given. Problem (7),

−w′′ = Kw−α on (0, ρ), w′(0) = 0, w(ρ) = 1 ,

has a solution w satisfying w ≥ 1.
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Proof. Direct calculations show that w ≡ 1 is a lower solution of (7), while the unique
solution wK of

−w′′

K = K on (0, ρ), w′

K(0) = 0, wK(ρ) = 1 (16)

is an upper solution of (7); note that

wK(r) =
K

2

(

ρ2 − r2
)

+ 1 . (17)

It follows from Theorem 1.1 that there is a solution w of the problem such that
1 ≤ w ≤ wK .

The main result of this paper, Theorem 2.1, relies on finding a solution w of problem
(7) with a prescribed slope at ρ. The following sequence of lemmas shows that this can
be done.

Lemma 2.3 Let α ∈ (0, 1), ρ ∈ (0, 1), and m < 0 be given. There exists a constant
K > 0 such that problem (7) has a solution w with m < w′(ρ) < 0.

Proof. Lemma 2.2 guarantees that, for any K > 0, problem (7) has a decreasing
solution w satisfying 1 ≤ w ≤ wK . Consequently,

1 ≤ w(0) ≤ wK(0) = 1 +
K

2
ρ2 ,

and the calculations used earlier to define the operator Td show that

(w′(ρ))
2

=
−2K

1 − α
+

2K

1 − α
(w(0))1−α

. (18)

It follows that decreasing K yields a solution w whose slope at ρ is as small (in absolute
value) as desired.

Lemma 2.4 Let α ∈ (0, 1), ρ ∈ (0, 1), and m < 0 be given. There exists a constant
K > 0 such that problem (7) has a solution w with w′(ρ) < m.

Proof. Let wK1
denote the function defined by (17); we know that

1 ≤ wK1
≤ 1 +

K1

2
ρ2 ,

from which we obtain

(wK1
)−α ≥

(

1 +
K1

2
ρ2

)

−α

.
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It then follows by direct calculation that wK1
will be a lower solution of (7) if K > 0

satisfies

K ≥ K1

(

1 +
K1

2
ρ2

)α

. (19)

Since wK provides an upper solution as in the proof of Lemma 2.2, there exists a
solution w of (7) such that wK1

≤ w ≤ wK . In particular,

w(0) ≥ wK1
(0) = 1 +

K1

2
ρ2 .

By taking K1 sufficiently large, choosing a K that satisfies (19), and then using identity
(18), we see that there exists a K such that (7) has a solution with arbitrarily large
slope at ρ.

Lemma 2.5 Let α ∈ (0, 1), ρ ∈ (0, 1), and m < 0 be given. There exists a constant
K > 0 such that problem (7) has a solution w satisfying w′(ρ) = m.

Proof. Using the two previous lemmas, there exist positive constants K < K and
corresponding solutions w ≤ w of problem (7) such that w′(ρ) < m < w′(ρ). Let
K be any constant between K and K; since w and w are distinct lower and upper
solutions, respectively, of problem (7) with coefficient K, there must exist a solution
wK of this problem that lies between w and w. Since we can use wK as an upper
or lower solution for problem (7) with other coefficients, we thus obtain a family of
solutions F :=

{

wK : K ≤ K ≤ K
}

with wK1
≤ wK2

if K1 ≤ K2.

To see that w′

K(ρ) varies continuously with K, fix a constant K∗ between K and K,
let Kn be an increasing sequence that converges to K∗, let wn ∈ F denote the solution
corresponding to Kn, and let w∗ ∈ F be the solution corresponding to K∗. The set of
functions {wn } is clearly uniformly bounded (by wK∗(0)), and the calculations leading
to (11) and (18) show that these functions are equicontinuous. The Arzelà-Ascoli
Theorem therefore guarantees that some subsequence converges uniformly; relabeling
as necessary, we find that the functions wn converge uniformly to some function w.
Combining these convergence results with a fixed point characterization of problem (7)
(obtained by, e.g., proceeding as in Section 2.1) shows that w solves problem (7) with
coefficient K∗. w and w∗ are therefore the unique positive solutions of the initial value
problem

−v′′ = K∗v−α , v(0) = v0 , v′(0) = 0 ,

with v0 = w(0) and v0 = w∗(0), respectively. The uniqueness of trajectories and the
fact that w(ρ) = w∗(ρ) = 1 force w(0) = w∗(0), and it then follows from (18) that
both wK(0) and w′

K(ρ) depend continuously on the parameter K. Having verified this
continuous dependence on K, the remainder of the proof is a direct application of the
Intermediate Value Theorem.
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2.3 Existence for Problem (5)

Combining the preceding results provides a proof of existence for problem (5):

Theorem 2.1 Let L < 0 and α ∈ (0, 1) be given. There exists a corresponding K > 0
such that the singular boundary value problem

−u′′ = σ(u)u−α on (0, 1), u′(0) = 0 = u(1) ,

has a positive solution u.

Proof. Given L < 0 and α ∈ (0, 1), Corollary 2.1 yields ρ ∈ (0, 1) and a positive
solution v of

−v′′ = Lv−α on (ρ, 1), v(ρ) = 1, v(1) = 0 .

The lemmas of the preceding section then provide a constant K > 0 and a solution w

of
−w′′ = Kw−α on (0, ρ), w′(0) = 0, w(ρ) = 1

such that w′(ρ) = v′(ρ); defining u by (8) provides the desired solution.

2.4 Solutions for Fixed L < 0

A closer inspection of the results just established reveals more about the structure of
the positive solutions of problem (5). For a fixed L < 0, there exist ρd ∈ (0, 1) and a
positive solution vd of (6) (with ρ = ρd) for every d > 1, and the proofs in Section 2.1
show that ρd increases as d increases. When one considers problem (7) for ρ = ρ1 and
ρ = ρ2, where ρ1 < ρ2, one finds that the corresponding K1 and K2 satisfy K1 < K2.
Thus, once a solution of problem (5) has been found for a particular K > 0, the
problem will have a solution for any larger value of K.

2.5 Nonexistence for α ≥ 1

Let α > 1, and suppose that (6) has a positive solution v. Calculating as above shows
that

(v′(r))
2

=
−2L

1 − α
(v(r))1−α + d , (20)

for some integration constant d. Since α > 1 and L < 0,

−2L

1 − α
< 0 .

As r → 1, v(r) → 0 and the right-hand side of (20) approaches −∞, while the left-hand
side is clearly nonnegative. This inconsistency shows that (6) cannot have a solution
if α > 1.
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If α = 1 and v is a positive solution of (6), then

v′′ =
−L
v
.

Multiplying both sides by 2v′ and integrating now gives

(v′)2 = −2L log(v) + d (21)

for some integration constant d. As r → 1, v again approaches 0 and we obtain the
same contradiction as in the case α > 1.

3 Applications

As indicated earlier, a positive solution of problem (5) will be a positive subsolution of
(1) for appropriate nonlinearities f . Under additional assumptions on f , it is easy to
find a larger supersolution and thereby obtain a positive solution of (1), as illustrated
in our final result.

Theorem 3.1 Let L < 0 be given, and let K > 0 be a corresponding value such that
(5) has a positive solution ψ. Let M be the maximum of ψ, suppose that the constants
a and b satisfy

0 < a < bα+1 ,

and let f : R → R be a continuous function such that

1. f(t) > bα+1K for b ≤ t ≤ Mb,

2. f(γ) < 0 at some point γ > Mb, and

3. f(t) > aL for all t .

For a given exponent α ∈ (0, 1), there is a positive solution u of the singular problem

−u′′ = f(u)u−α in (0, 1), u′(0) = 0 = u(1) . (22)

Proof. First, define u1 := bψ. Combining the fact that ψ solves (5) with the hypothe-
ses on f , a direct computation shows that u1 is a positive subsolution of (22). Next,
define u2 ≡ γ. Since γ > Mb, u1 < u2, and it is easy to see that u2 is a supersolution of
(22). By Theorem 1.1, there is a solution u of (22) such that u1 < u < u2, completing
the proof.
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