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Abstract

We consider the existence of a solution to the second order nonlinear differ-
ential equation

(p(t)u′(t))′ = f(t, u(t), u′(t)), a. e. in (0,∞),

that satisfies the boundary conditions

u′(0) = 0, lim
t→∞

u(t) = 0,

where f : [0,∞)×R
2 → R is Carathéodory with respect to Lr[0,∞), r > 1. The

main technique used in this note is the Leray-Schauder Continuation Principle.
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1 Introduction and Preliminaries

We study the second order nonlinear differential equation

(p(t)u′(t))′ = f(t, u(t), u′(t)), a. e. in (0,∞), (1)

satisfying
u′(0) = 0, lim

t→∞

u(t) = 0. (2)

We assume that the right side of (1) satisfies the Carathéodory conditions with respect
to Lr[0,∞) with r > 1.

In Section 1, we discuss several recent results in the theory of boundary value prob-
lems on unbounded domains. In Section 2, we provide the definitions and techniques
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that will be used in the proof of the main result. In particular, we use the Leray-
Schauder continuation principle based on a priori estimates which we also derive in
Section 2. In Section 3 we state and prove the existence theorem.

The topological degree approach and the method of upper and lower solutions were
used in [2] to obtain multiplicity results under the assumption of the boundedness of
a solution. The Leray-Schauder continuation principle was applied to boundary value
problems on unbounded domains in several recent papers [3, 4]. In [5], the authors
studied the boundary value problem

x′′(t) + f(t, x(t), x′(t)) = 0, 0 < t < ∞,

x(0) = αx(η), lim
t→∞

x′(t) = 0,

where α 6= 1 and η > 0. The authors showed the existence of at least one solution where
tf(t, ·, ·) is L1-Carathéodory on [0,∞). In this work we introduce new a priori estimates
on the positive half-line pertinent to the case of Lr-Carathéodory inhomogeneous term
with r > 1. In [6], the boundary value problem (1) (2) is considered in the case
of an L1-Carathéodory inhomogeneous term. The existence result in our paper is
complementary to that in [6].

2 Technical Results

The following definition gives Carathéodory’s conditions imposed on a map with respect
to the Lebesgue space Lr[0,∞), r > 1.

Definition 2.1 We say that the map f : [0,∞) × R
n → R, (t, z) 7→ f(t, z) is Lr-

Carathéodory, if the following conditions are satisfied:

(i) for each z ∈ R
n, the mapping t 7→ f(t, z) is Lebesgue measurable;

(ii) for a. e. t ∈ [0,∞), the mapping z 7→ f(t, z) is continuous on R
n;

(iii) for each R > 0, there exists an αR ∈ Lr[0,∞) such that, for a. e. t ∈ [0,∞) and
every z such that |z| ≤ R, we that |f(t, z)| ≤ αR(t).

The assumptions on p(t) are the following:

(P1) p ∈ C[0,∞) ∩ C1(0,∞) and p(t) > 0 for all t ∈ [0,∞);

(P2)
1

p(t)
= O(t−2).

Let AC[0,∞) denote the space of absolutely continuous functions on the interval
[0,∞). Define the Sobolev space

W [0,∞) = {u: [0,∞) → R : u, pu′ ∈ AC[0,∞), u satisfies (2) and (pu′)′ ∈ Lr[0,∞)}.
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The underlying Banach space is

X = {u ∈ C1[0,∞) : u(t) and u′(t) are bounded on [0,∞)}

endowed the norm ‖u‖ = max{‖u‖∞, ‖u′‖∞}, where ‖u‖∞ = supt∈[0,∞) |u(t)|. We also
need the Lebesgue space Z = Lr[0,∞) with the usual norm denoted by ‖ · ‖r.

The Nemetski operator N : X → Z is defined by

Nu(t) = f(t, u(t), u′(t)), t ∈ [0,∞).

We state the Leray-Schauder continuation principle (see, e. g., [7]).

Theorem 2.1 Let X be a Banach Space and T : X → X be a compact map. Suppose
that there exists an R > 0 such that if u = λTu for λ ∈ (0, 1), then ‖u‖ ≤ R. Then T

has a fixed point.

In applying Theorem 2.1 we establish the compactness of a certain integral operator
associated with (1), (2). This is done by means of the following compactness criterion
[1].

Theorem 2.2 Let X be the space of all bounded continuous vector-valued functions
on [0,∞) and S ⊂ X. Then S is relatively compact in X if the following conditions
hold:

(i) S is bounded in X;

(ii) the functions from S are equicontinuous on any compact interval of [0,∞);

(iii) the functions from S are equiconvergent, that is, given ǫ > 0, there exists a
T = T (ǫ) > 0 such that ‖v(t) − v(∞)‖Rn < ǫ, for all t > T and all v ∈ S.

Define the function

φ(t) =

∫

∞

t

dτ

p(τ)

and set q =
p

p − 1
. Note that by assumptions (P1) and (P2) the expressions

A = sup
t∈[0,∞)

(

t
1

q φ(t) +

(
∫

∞

t

φq(s) ds

)1/q
)

, B = sup
t∈[0,∞)

t
1

q

p(t)
(3)

are positive constants.

The first technical lemma provides the solution to the linear analogue of (1) satis-
fying (2).
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Lemma 2.1 Let g ∈ Lr[0,∞). Then the unique solution of the differential equation

(p(t)u′(t))′ = g(t), a. e. in (0,∞),

subject to the boundary conditions (2) is

u(t) = −

∫

∞

t

dτ

p(τ)

∫ t

0

g(s) ds −

∫

∞

t

(
∫

∞

s

dτ

p(τ)

)

g(s) ds. (4)

The following are the a priori estimates for the solution (4) in terms of the constants
(3).

Lemma 2.2 Let g ∈ Lr[0,∞). Then the solution (4) satisfies

‖u‖∞ ≤ A‖g‖r and ‖u′‖∞ ≤ B‖g‖r.

Proof: From (4),

u(t) = −

∫

∞

t

dτ

p(τ)

∫ t

0

g(s) ds−

∫

∞

t

(
∫

∞

s

dτ

p(τ)

)

g(s) ds

for t ∈ [0,∞). By Hölder’s inequality,

|u(t)| ≤ φ(t)

∫ t

0

|g(s)| ds +

∫

∞

t

φ(s)|g(s)| ds

≤ φ(t)

(
∫ t

0

1q ds

)

1

q

(
∫ t

0

|g(s)|rds

)

1

r

+

(
∫

∞

t

φq(s) ds

)
1

q

(
∫

∞

t

|g(s)|r ds

)
1

r

≤

(

t
1

q φ(t) +

(
∫

∞

t

φq(s) ds

)1/q
)

‖g‖r

Then
‖u‖∞ ≤ A‖g‖r.

For all t ∈ [0,∞) we have

|u′(t)| ≤
1

p(t)

∫ t

0

|g(s)| ds

≤
1

p(t)

(
∫ t

0

1qds

)

1

q

(
∫ t

0

|g(s)|r ds

)

1

r

=
t

1

q

p(t)
‖g‖r,

so that
‖u′‖∞ ≤ B‖g‖r.
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We introduce the integral mapping T : X → X defined by

Tu(t) = −

∫

∞

t

dτ

p(τ)

∫ t

0

f(s, u(s), u′(s)) ds −

∫

∞

t

(
∫

∞

s

dτ

p(τ)

)

f(s, u(s), u′(s))ds

= −

∫

∞

t

dτ

p(τ)

∫ t

0

Nu(s)ds −

∫

∞

t

(
∫

∞

s

dτ

p(τ)

)

Nu(s) ds (5)

for all t ∈ [0,∞).
The last technical result of this section establishes the desired properties of the

operator (5).

Lemma 2.3 The mapping T : X → X is compact.

Proof: Employing the estimates identical to those in the proof of Lemma 2.2 one
can easily show that T is well-defined. It is also clear that T : X → X. The continuity
of T follows readily from the dominated convergence theorem in view of f satisfying
the Carathéodory conditions. It remains to show that the image under T of a bounded
set in X is relatively compact in X.

Let S ⊂ X be bounded, that is, there exists an R > 0 such that R = sup{‖u‖ : u ∈
S}. Since the function f : [0,∞)×R

2 → R is Lr-Carathéodory, there exists a function
αR ∈ Lr[0,∞) such that, for all u ∈ S and a. e. s ∈ [0,∞),

|Nu(s)| = |f(s, u(s), u′(s)| ≤ |αR(s)|.

Then for u ∈ S we obtain

‖Tu‖∞ ≤ A‖αR‖r and ‖(Tu)′‖∞ ≤ B‖αR‖r;

that is, the set T (S) is bounded in X.
Let L1, L2 ∈ [0,∞), [t1, t2] ⊂ [L1, L2] and u ∈ S. Then

|(Tu)′(t2) − (Tu)′(t1)| =

∣

∣

∣

∣

1

p(t2)

∫ t2

0

Nu(s) ds −
1

p(t1)

∫ t1

0

Nu(s) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

p(t2)
−

1

p(t1)

∣

∣

∣

∣

∫ t2

0

|Nu(s)| ds +
1

p(t1)

∫ t2

t1

|Nu(s)| ds

≤

∣

∣

∣

∣

1

p(t2)
−

1

p(t1)

∣

∣

∣

∣

∫ L2

0

|Nu(s)| ds +
1

p(t1)

∫ t2

t1

|Nu(s) ds

≤

∣

∣

∣

∣

1

p(t2)
−

1

p(t1)

∣

∣

∣

∣

L
1

q

2 ‖αR‖r +
(t2 − t1)

1

q

p(t1)
‖αR‖r.

In addition, for some ξ ∈ (t1, t2),

|(Tu)(t2) − (Tu)(t1)| ≤ |(Tu)′(ξ)||t2 − t1| ≤ B‖αR‖r|t2 − t1|.
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The last two inequalities show that the set T (S) is equicontinuous on every compact
subinterval of [0,∞).

For u ∈ S, it follows from (P2) that

lim
t→∞

Tu(t) = 0 and lim
t→∞

(Tu)′(t) = 0.

To show that T (S) is an equiconvergent set, note that

|Tu(t) − lim
t→∞

Tu(t)| =

∣

∣

∣

∣

−

∫

∞

t

dτ

p(τ)

∫ t

0

Nu(s) ds −

∫

∞

t

(
∫

∞

s

dτ

p(τ)

)

Nu(s) ds

∣

∣

∣

∣

≤

∫

∞

t

dτ

p(τ)

∫ t

0

|αR(s)| ds +

∫

∞

t

(
∫

∞

s

dτ

p(τ)

)

|αR(s)| ds

≤

∫

∞

t

dτ

p(τ)
t

1

q ‖αR‖r +

∫

∞

t

φ(s)|αR(s)| ds

and

|(Tu)′(t) − lim
t→∞

(Tu)′(t)| ≤
1

p(t)

∫ t

0

|Nu(s)|ds

≤
t

1

q

p(t)
‖αR‖r.

In view of (P2) and φαR ∈ L1[0,∞), the expressions in the right sides of the above
inequalities can be made arbitrarily small independently on u ∈ S. Hence the set T (S)
is equiconvergent. The set T (S) is relatively compact in X by Theorem 2.2.

3 Existence of a Solution

Theorem 3.1 Assume that f : [0,∞) × R
2 → R is Lr-Carathéodory. Suppose that

there exist functions ρ, σ, γ : [0,∞) → [0,∞), α, ρ, σ ∈ Lr[0,∞) such that

|f(t, z1, z2)| ≤ ρ(t)|z1| + σ(t)|z2| + γ(t), a. e. in (0,∞), (6)

and
A‖ρ‖r + B‖σ‖r < 1, (7)

where the constants A and B are given by (3).
Then the boundary value problem (1), (2) has at least one solution for every γ ∈

Lr[0,∞).

Proof: We consider for λ ∈ (0, 1),

(p(t)u′(t))′ = λf(t, u(t), u′(t)), a. e. in (0,∞), (8)

EJQTDE Spec. Ed. I, 2009 No. 21



A Note on the Second Order 7

subject to the boundary conditions (2).
We show that the set of all possible solutions of (8), (2) is a priori bounded in X

by a constant independent of λ ∈ (0, 1).
Using Lemma 2.2 and (3), we obtain from the condition (6), for u ∈ W [0,∞),

‖(pu′)′‖r = λ‖f(t, u, u′)‖r

≤ ‖ρ‖r‖u‖∞ + ‖σ‖r‖u
′‖∞ + ‖γ‖r

≤ A ‖ρ‖r‖(pu
′)′‖r + B ‖σ‖r‖(pu

′)′‖r + ‖γ‖r.

Hence, by (7),

‖(pu′)′‖r ≤
‖γ‖r

1 − A ‖ρ‖r − B ‖σ‖r
,

that is, the solution set of (8), (2) is a priori bounded on Lr[0,∞) by a constant
independent of λ ∈ (0, 1). By Lemma 2.2 and the above inequality, the solution set is
bounded in X by a constant independent of λ ∈ (0, 1) since

‖u‖ ≤ max{A, B}‖(pu′)′‖r ≤
max{A, B}‖γ‖r

1 − A ‖ρ‖r − B ‖σ‖r
.

It can be easily shown that the boundary value problem (1), (2) has a solution if and
only if it is a fixed point of the mapping (5). In view of (2.2), the mapping T is
compact. By the above inequality, the a priori estimate condition for Theorem 2.1 is
satisfied, the assertion follows from Theorem 2.1.
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