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Abstract. In this work, we investigate the existence and multiplicity results for positive
solutions to a singular (p1, p2)-Laplacian system with coupled integral boundary condi-
tions and a parameter (µ, λ) ∈ R3

+. Using sub-super solutions method and fixed point
index theorems, it is shown that there exists a continuous surface C which separates
R2

+× (0, ∞) into two regions O1 and O2 such that the problem under consideration has
two positive solutions for (µ, λ) ∈ O1, at least one positive solution for (µ, λ) ∈ C, and
no positive solutions for (µ, λ) ∈ O2.
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1 Introduction

Nonlocal boundary conditions appear when the information on the boundary are connected
to values inside the domain. Various types of boundary value problems involving nonlocal
conditions have been extensively studied by various methods such as fixed point theorems on
cones and the Leray–Schauder alternative, etc. We refer the reader to [11, 14, 15, 24, 30–33, 37]
and the references therein.

For example, Ma [24] considered
u′′(t) = g1(t, u(t), u′(t)) + e(t), a.e. t ∈ (0, 1),

u′(0) = 0, u(1) =
m

∑
i=1

αiu(ξi),

where g1 : [0, 1]×R2 → R is continuous, e ∈ C[0, 1], m ∈ N, ξi ∈ (0, ∞) with 0 < ξ1 < · · · <
ξm < 1, and αi ∈ (0, ∞). Using the Leray–Schauder alternative, the existence of at least one
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solution is obtained for two cases:
m

∑
i=1

αi 6= 1 (Nonresonance)

and
m

∑
i=1

αi = 1 (Resonance).

Webb and Infante [31, 32] studied the existence of multiple positive solutions of nonlinear
differential equations of the form

−u′′(t) = w1(t)g2(t, u(t)), a.e. t ∈ (0, 1)

with various nonlocal boundary conditions involving linear functionals on C[0, 1] including
the following conditions: either

u(0) = α1[u], u(1) = α2[u] or u(0) = α1[u], u′(1) = α2[u].

Here, w1 ∈ L1((0, 1), R+), R+ := [0, ∞), g2 : [0, 1]×R→ R+ is continuous, and for i ∈ {1, 2},
αi is bounded linear functionals on C[0, 1] involving Stieltjes integrals with signed measures.
Recently, Zhang and Feng [37] studied the following one-dimensional singular p-Laplacian
problems of the form{

λ(ϕp(u′(t)))′ + w2(t)g3(t, u(t)) = 0, t ∈ (0, 1),

au(0)− bu′(0) =
∫ 1

0 w3(t)u(t)dt, u′(1) = 0,

where λ is a positive parameter, ϕp(s) = |s|p−2s, p > 1, a, b > 0, and w2, w3 ∈ L1((0, 1), R+).
Using fixed point index theory on cones of Banach spaces, they obtained several results about
the existence, multiplicity, and nonexistence of positive solutions under various assumptions
on the nonlinearity g3(t, s) which satisfies L1-Carathéodory condition.

The systems of differential equations equipped with a variety of boundary conditions have
been extensively studied by many authors, see, e.g., [2–7, 10, 19, 21, 23, 25, 26, 34]. For example,
in [25], do Ó et al. considered a class of system of second-order differential equations of the
form 

−u′′ = g4(t, u, v, a, b), in (0, 1),

−v′′ = g5(t, u, v, a, b), in (0, 1),

u(0) = u(1) = v(0) = v(1) = 0,

(1.1)

where the nonlinearities g4 and g5 are superlinear at the origin as well as at infinity, and
a, b ∈ R+. Using fixed point theorems of cone expansion/compression type, the upper-lower
solutions method and degree argument, it was shown that there exists a continuous curve Γ
which splits the positive quadrant of the (a-b)-plane into disjoint sets S1 and S2 such that (1.1)
has at least two positive solutions in S1, has at least one positive solution on the boundary
of S1, and has no positive solutions in S2. The result was applied to establish the existence
and multiplicity of positive radial solutions for a certain class of semilinear elliptic systems in
annular domains.

We are concerned with the existence of positive solutions to the following singular (p1, p2)-
Laplacian system with coupled integral boundary conditions{

(Φ(u′(t)))′ + λh(t) • f (t, u(t)) = θ, t ∈ (0, 1),

u(0) = α[u], u(1) = µ,
(Pλ,µ)
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where Φ(s1, s2) = (ϕp1(s1), ϕp2(s2)), ϕpi(s) := |s|pi−2s with pi > 1 for i ∈ {1, 2}, θ is the
origin of R2, α : C[0, 1] × C[0, 1] → R2 is a linear transformation which is defined by, for
u ∈ C[0, 1]× C[0, 1],

α[u] :=
∫ 1

0
u(s)k(s)ds

and k = (kij)2×2 with kij ∈ L1((0, 1), R+) for i, j ∈ {1, 2}, (µ, λ) = (µ1, µ2, λ) ∈ R3
+ is a

parameter, and • denotes the entrywise product, i.e., (a1, a2) • (b1, b2) := (a1b1, a2b2).
Throughout this paper, we assume the following hypotheses are satisfied unless otherwise

stated:

(H1) f = ( f1, f2) : [0, 1] ×R2 → (0, ∞)2 with fi ∈ C([0, 1] ×R2, (0, ∞)) and h = (h1, h2) :
(0, 1)→ (0, ∞)2 with hi ∈ C((0, 1), (0, ∞)) satisfying hi ∈ Ai for i ∈ {1, 2}, where

Ai =

{
ĥ :
∫ 1

2

0
ϕ−1

pi

(∫ 1
2

s
ĥ(τ)dτ

)
ds +

∫ 1

1
2

ϕ−1
pi

(∫ s

1
2

ĥ(τ)dτ

)
ds < ∞

}
;

(H2) for i ∈ {1, 2},
∫ 1

0 (1− s)kii(s)ds ∈ [0, 1);

(H3) det K > 0, where

K := I −
(∫ 1

0
(1− s)k(s)ds

)
and I is the identity matrix of size 2.

For convenience, we identify (a, b) ∈ R2 with the 1-by-2 matrix
(
a b

)
if necessary. Con-

sequently, α[u] is well defined for u ∈ C[0, 1]× C[0, 1].
The main purpose of this paper is to study the existence and multiplicity results for posi-

tive solutions to problem (Pλ,µ) using sub-super solutions method and fixed point index theo-
rems. For sub-super solutions method concerning semilinear problems with nonlocal bound-
ary conditions, we refer to [27–29]. It seems not obvious that sub-super solutions method can
be applicable to our problem with (p1, p2)-Laplacian due to the coupled integral boundary
condition in (Pλ,µ). Thus we prove a theorem for sub-super solutions (see Theorem 2.12), and
it is shown that there exists a continuous surface C which separates R2

+ × (0, ∞) into two
regions O1 and O2 such that (Pλ,µ) has two positive solutions for (µ, λ) ∈ O1, at least one
positive solution for (µ, λ) ∈ C, and no positive solutions for (µ, λ) ∈ O2 (see Theorem 3.10).

Deng and Li [9] considered a semilinear elliptic problem of the form
∆u + A(x)uq = 0 in Ω1,

u > 0 in Ω1, u ∈ H1
loc(Ω1) ∩ C(Ω̄1),

u|∂Ω1 = 0, u→ µ1 > 0 as |x| → ∞,

(1.2)

where Ω1 = RN\ω is an exterior domain in RN , ω ⊂ RN is a bounded domain with smooth
boundary, N > 2, and q > 1. Among other results, when q = (N + 2)/(N − 2) and 0 ≤ A ∈
L1(Ω1) satisfies certain additional conditions, it was shown that there exists µ∗ > 0 such that
(1.2) has at least two positive solutions for µ1 ∈ (0, µ∗), exactly one positive solution for µ1 =

µ∗, and no positive solutions for µ1 ∈ (µ∗, ∞). The existence, multiplicity and nonexistence of
positive radial solutions to p-Laplacian problems similar to (1.2) were studied in [16–18].
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As applications, we study existence results for positive radial solutions to p-Laplacian
systems defined in an exterior domain as follows:{

div
(
|∇z1|p−2∇z1

)
+ λK1(|x|) f̂1(|x|, z1, z2) = 0 in Ω,

div
(
|∇z2|p−2∇z2

)
+ λK2(|x|) f̂2(|x|, z1, z2) = 0 in Ω,

(1.3)

subject to coupled integral boundary conditions{
z1(x) =

∫
Ω[l11(|y|)z1(y) + l21(|y|)z2(y)]dy on |x| = r0,

z2(x) =
∫

Ω[l12(|y|)z1(y) + l22(|y|)z2(y)]dy on |x| = r0,
(1.4)

or {
z1(x) =

∫
Ω[l11(|y|)z1(y) + l21(|y|)z2(y)]dy as |x| → ∞,

z2(x) =
∫

Ω[l12(|y|)z1(y) + l22(|y|)z2(y)]dy as |x| → ∞,
(1.5)

where Ω = {x ∈ RN : |x| > r0}, r0 > 0, N > p > 1, Ki ∈ C((r0, ∞), (0, ∞)), lij ∈
L1((r0, ∞), R+), and f̂i ∈ C([r0, ∞)×R2

+, (0, ∞)) for i, j ∈ {1, 2}.
Using the main result (Theorem 3.10), we investigate the existence, multiplicity and nonex-

istence of positive solutions z = (z1, z2) to (1.3)+(1.4) (resp. (1.3)+(1.5)) satisfying z(x) → µ as
|x| → ∞ (resp. z(x) = µ on |x| = r0) for given µ ∈ R2

+ and λ ∈ (0, ∞) (see Corollary 4.1).
For u, v ∈ R2, u ≤ v (resp. u < v) means ui ≤ vi (resp. ui < vi) for all i ∈ {1, 2}, where

ui and vi are i-th coordinates of u and v, respectively. For functions w1, w2 : [0, 1] → Rn with
n ∈ {1, 2}, w1 ≤ w2 (resp. w1 < w2) also means w1(t) ≤ w2(t) (resp. w1(t) < w2(t)) for
t ∈ [0, 1]. We also denote θ the zero function from [0, 1] to R2 as well as the origin of R2.

This paper is organized as follows. In Section 2, well-known theorems such as generalized
Picone identity and a fixed point index theorem are recalled, and a solution operator and a
theorem for sub-super solutions related to problem (Pλ,µ) are also introduced. In Section 3,
the main result in this paper is given (see Theorem 3.10). Finally, in Section 4, applications for
problem (1.3)+(1.4) or (1.3)+(1.5) are given (see Corollary 4.1).

2 Preliminaries

For semilinear problems, we usually use integration by parts twice in order to obtain the
useful information for solutions such as a block for parameters λ and a priori estimates for
solutions. However, it is not effective for the p-Laplacian problem. The following generalized
Picone identity can be used to overcome the difficulty (see Lemma 3.1 and Lemma 3.3). The
identity can be verified by straightforward differentiation, but for completeness, we give the
proof of it.

Theorem 2.1 (generalized Picone identity, see, e.g., [13, 20]). Let us define

lp[y] = (ϕp(y′))′ + b1(t)ϕp(y),

Lp[z] = (ϕp(z′))′ + b2(t)ϕp(z),

where ϕp(s) = |s|p−2s, s ∈ R, p > 1 and b1, b2 are continuous functions on an interval I. Let y and
z be functions such that y, z, ϕp(y′), ϕp(z′) are differentiable on I and z(t) 6= 0 for t ∈ I. Then the
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generalized Picone identity can be written as

d
dt

{ |y|p ϕp(z′)
ϕp(z)

− yϕp(y′)
}

= (b1 − b2)|y|p

−
[
|y′|p + (p− 1)

∣∣∣∣yz′

z

∣∣∣∣p − py′ϕp

(
yz′

z

)]
− ylp[y] +

|y|p
ϕp(z)

Lp[z]. (2.1)

Proof. By straightforward differentiation,

d
dt

( |y|p ϕp(z′)
ϕp(z)

)
=

(|y|p ϕp(z′))′ϕp(z)− |y|p ϕp(z′)(ϕp(z))′

(ϕp(z))2

=
py′ϕp(y)ϕp(z′) + |y|p(Lp[z]− b2(t)ϕp(z))

ϕp(z)
− (p− 1)

∣∣∣∣yz′

z

∣∣∣∣p
= py′ϕp

(
yz′

z

)
+
|y|p

ϕp(z)
Lp[z]− b2(t)|y|p − (p− 1)

∣∣∣∣yz′

z

∣∣∣∣p (2.2)

and
d
dt
(yϕp(y′)) = |y′|p + y(lp[y]− b1(t)ϕp(y)). (2.3)

Then subtracting (2.3) from (2.2) yields the identity (2.1).

Remark 2.2. By Young’s inequality,

y′ϕp

(
yz′

z

)
≤ |y

′|p
p

+

(
1− 1

p

) ∣∣∣∣yz′

z

∣∣∣∣p ,

and the equality holds if and only if sgn y′ = sgn(yz′/z) and |y′|p = |yz′/z|p. Thus,

|y′|p + (p− 1)
∣∣∣∣yz′

z

∣∣∣∣p − py′ϕp

(
yz′

z

)
≥ 0,

which implies, by (2.1),

d
dt

{ |y|p ϕp(z′)
ϕp(z)

− yϕp(y′)
}
≤ (b1 − b2)|y|p − ylp[y] +

|y|p
ϕp(z)

Lp[z]. (2.4)

Now we recall a well-known theorem for the existence of a global continuum of solutions
by Leray and Schauder [22] and a fixed point index theorem:

Theorem 2.3 (see, e.g., [35, Corollary 14.12]). Let X be a Banach space with X 6= {0} and let P be
an order cone in X. Consider

x = H(λ, x), (2.5)

where λ ∈ R+ and x ∈ P . If H : R+ × P → P is completely continuous and H(0, x) = 0 for all
x ∈ P , then C+(P), the component of the solution set of (2.5) containing (0, 0), is unbounded.

Theorem 2.4 (see, e.g., [12]). Let X be a Banach space, P be a cone in X and O be a bounded open set
containing θ in X, where θ is the origin of X. Let A : P ∩O → P be completely continuous. Suppose
that Ax 6= νx for all x ∈ P ∩ ∂O and all ν ≥ 1. Then i(A,O ∩P ,P) = 1.
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2.1 Solution operator

In this subsection, we define an operator related to problem (Pλ,µ) and prove the complete
continuity of it.

Denote X := C[0, 1]× C[0, 1] with norm ‖(u1, u2)‖X := ‖u1‖∞ + ‖u2‖∞, and P := {u =

(u1, u2) ∈ X : u1, u2 ∈ K}. Then (X, ‖ · ‖X) is a Banach space and P is a cone in X. Here, C[0, 1]
denotes the Banach space of continuous functions u defined on [0, 1] with usual maximum
norm ‖u‖∞ := maxt∈[0,1] |u(t)| and K := {u ∈ C[0, 1] : u is a nonnegative concave function}.

By (H3), det K > 0 and

K−1 =
1

det K

1−
∫ 1

0
(1− s)k22(s)ds

∫ 1

0
(1− s)k12(s)ds∫ 1

0
(1− s)k21(s)ds 1−

∫ 1

0
(1− s)k11(s)ds

 .

Then all entries of K−1 are nonnegative by (H2) and nonnegativity of kij for i, j ∈ {1, 2}.
Define β : R2

+ × X → R2 by, for (µ, v) ∈ R2
+ × X,

β[µ, v] := (β1[µ, v], β2[µ, v]) :=
∫ 1

0
(v(s) + µs)k(s)K−1ds.

Then β[µn, vn] → β[µ0, v0] in R2 as (µn, vn) → (µ0, v0) in R2
+ × X, and β[µ, v] ∈ R2

+ for all
(µ, v) ∈ R2

+ ×P .
Consider the following problem

{
(Φ(v′(t)− β[µ, v] + µ))′ + λh(t) • F(µ, v)(t) = θ, t ∈ (0, 1),

v(0) = v(1) = θ,
(P̂λ,µ)

where F := (F1, F2) : R2
+ × X → X is defined by, for (µ, v) ∈ R2

+ × X,

F(µ, v)(t) := f (t, v(t) + (1− t)β[µ, v] + tµ), t ∈ [0, 1]. (2.6)

Then F(µ, v) > θ, since f (t, s) > θ for all (t, s) ∈ [0, 1]×R2.
For i = 1, 2, define continuous transformations Li : R2

+ × X → X by, for t ∈ [0, 1] and
(µ, u), (µ, v) ∈ R2

+ × X,

L1(µ, u)(t) := (L1
1(µ, u), L1

2(µ, u))(t) := u(t)− ((1− t)α[u] + tµ) (2.7)

and

L2(µ, v)(t) := (L2
1(µ, v), L2

2(µ, v))(t) := v(t) + ((1− t)β[µ, v] + tµ). (2.8)

With the above transformations (2.7) and (2.8), we have the following lemma.

Lemma 2.5. Assume that (H3) holds. Then α[u] = β[µ, L1(µ, u)] for (µ, u) ∈ R2
+×X and β[µ, v] =

α[L2(µ, v)] for (µ, v) ∈ R2
+ × X.
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Proof. We only show that α[u] = β[µ, L1(µ, u)], since the other case can be proved in a similar
manner. For (µ, u) ∈ R2

+ × X,

β[µ, L1(µ, u)] =
∫ 1

0
(L1(µ, u)(s) + µs)k(s)K−1ds

=
∫ 1

0
(u(s)− (1− s)α[u]) k(s)K−1ds

=
∫ 1

0
u(s)k(s)K−1ds− α[u]

∫ 1

0
(1− s)k(s)K−1ds

= α[u]
(

I −
∫ 1

0
(1− s)k(s)ds

)
K−1 = α[u],

and the proof is complete.

By a non-negative solution (resp. a positive solution) u to problem (Pλ,µ) or (P̂λ,µ), we mean
u = (u1, u2) is a solution to problem (Pλ,µ) or (P̂λ,µ) which satisfies ui(t) ≥ 0 (resp. ui(t) > 0)
for all t ∈ (0, 1) and all i ∈ {1, 2}.

Remark 2.6. (1) Let v = (v1, v2) be a solution to problem (P̂λ,µ). Then for i ∈ {1, 2}, v′i is
decreasing in (0, 1), and vi is concave on (0, 1). Since v(0) = v(1) = θ, v ∈ P . Moreover, v is
a positive solution to problem (P̂λ,µ) if λ > 0, and v = θ only if λ = 0. Similarly, let u be a
non-negative solution to problem (Pλ,µ). Then u ∈ P , and u is a positive solution to problem
(Pλ,µ) if λ > 0.

(2) By Lemma 2.5, for fixed (λ, µ) ∈ R3
+, if v is a (non-negative) solution to problem (P̂λ,µ),

then u = L2(µ, v) is a non-negative solution to problem (Pλ,µ), and conversely if u is a solution
to problem (Pλ,µ), then v = L1(µ, u) is a (non-negative) solution to problem (P̂λ,µ).

Lemma 2.7. Assume that (H1)–(H3) hold. For fixed (λ, µ, v) ∈ (0, ∞)×R2
+×X with µ = (µ1, µ2)

and i ∈ {1, 2}, there exists a unique constant Mi = Mi(λ, µ, v) ∈ (0, 1) satisfying

(βi[µ, v]− µi)Mi +
∫ Mi

0
ϕ−1

pi

(
ϕpi(µi − βi[µ, v]) + λ

∫ Mi

s
hi(τ)Fi(µ, v)(τ)dτ

)
ds

= −(βi[µ, v]− µi)(1−Mi)

+
∫ 1

Mi

ϕ−1
pi

(
ϕpi(−µi + βi[µ, v]) + λ

∫ s

Mi

hi(τ)Fi(µ, v)(τ)dτ

)
ds.

(2.9)

Proof. Let (λ, µ, v) ∈ (0, ∞) ×R2
+ × X with µ = (µ1, µ2) and i ∈ {1, 2} be fixed. Define a

continuous function xi = xi(λ, µ, v) : (0, 1)→ R by

xi(t) = βi[µ, v]− µi + x1
i (t) + x2

i (t), t ∈ (0, 1),

where

x1
i (t) =

∫ t

0
ϕ−1

pi

(
ϕpi(µi − βi[µ, v]) + λ

∫ t

s
hi(τ)Fi(µ, v)(τ)dτ

)
ds

and

x2
i (t) =

∫ 1

t
ϕ−1

pi

(
ϕpi(µi − βi[µ, v])− λ

∫ s

t
hi(τ)Fi(µ, v)(τ)dτ

)
ds.

We claim that xi is strictly increasing in (0, 1). Indeed, by (H1), limt→0+ x1
i (t) = limt→1− x2

i (t) =
0, limt→1− x1

i (t) > µi − βi[µ, v], and limt→0+ x2
i (t) < µi − βi[µ, v]. Consequently,

lim
t→0+

xi(t) < 0 and lim
t→1−

xi(t) > 0.
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For 0 < t1 < t2 < 1, one has

x1
i (t2)− x1

i (t1) >
∫ t2

t1

ϕ−1
pi

(
ϕpi(µi − βi[µ, v]) + λ

∫ t2

s
hi(τ)Fi(µ, v)(τ)dτ

)
ds

and

x2
i (t2)− x2

i (t1) > −
∫ t2

t1

ϕ−1
pi

(
ϕpi(µi − βi[µ, v]) + λ

∫ t1

s
hi(τ)Fi(µ, v)(τ)dτ

)
ds

> −
∫ t2

t1

ϕ−1
pi

(
ϕpi(µi − βi[µ, v]) + λ

∫ t2

s
hi(τ)Fi(µ, v)(τ)dτ

)
ds.

Thus, xi(t2)− xi(t1) > 0 for 0 < t1 < t2 < 1, and there exists a unique Mi = Mi(λ, µ, v) ∈ (0, 1)
such that xi(Mi) = 0. Consequently, Mi satisfies (2.9).

For i = 1, 2, define Ti : R3
+ × X → C[0, 1] by, for (λ, µ, v) ∈ R3

+ × X,

Ti(λ, µ, v)(t) :=



(βi[µ, v]− µi)t +
∫ t

0 ϕ−1
pi

(
ϕpi(µi − βi[µ, v])

+λ
∫ Mi

s hi(τ)Fi(µ, v)(τ)dτ
)

ds, 0 ≤ t ≤ Mi,

−(βi[µ, v]− µi)(1− t) +
∫ 1

t ϕ−1
pi

(
ϕpi(−µi + βi[µ, v])

+λ
∫ s

Mi
hi(τ)Fi(µ, v)(τ)dτ

)
ds, Mi ≤ t ≤ 1,

where Mi = Mi(λ, µ, v) ∈ (0, 1) is a constant satisfying (2.9) for λ > 0 and Mi may be taken
arbitrary number in (0, 1) for λ = 0, since Ti(0, µ, v) = 0 for all (µ, v) ∈ R2

+ × X.
For i ∈ {1, 2}, by Lemma 2.7, we can see that Ti is well-defined, ‖Ti(λ, µ, v)‖∞ =

Ti(λ, µ, v)(Mi), and (Ti(λ, µ, v))′(Mi) = 0. Moreover, since hi(t) fi(t, s) ≥ 0 for all (t, s) ∈
[0, 1]×R2, (Ti(λ, µ, v))′ is decreasing in (0, 1) for all (λ, µ, v) ∈ R3

+ × X. Since Ti(λ, µ, v)(0) =
Ti(λ, µ, v)(1) = 0, Ti(R

3
+ × X) ⊆ K.

Define T : R3
+ × X → P by T(λ, µ, v) := (T1(λ, µ, v), T2(λ, µ, v)) for (λ, µ, v) ∈ R3

+ × X.
Then T is well defined, and by standard argument we have the following lemma.

Lemma 2.8. Assume that (H1)–(H3) hold. Let (λ, µ) ∈ R3
+ be fixed. Then problem (P̂λ,µ) has a

(non-negative) solution v if and only if T(λ, µ, ·) has a fixed point v in P . Moreover, if θ is a solution
to problem (P̂λ,µ), then λ = 0, and if λ = 0, then θ is a unique solution to problem (P̂λ,µ).

To show the complete continuity of T, we first prove the following lemma.

Lemma 2.9. Assume that (H1)–(H3) hold, let {(λn, µn, vn)} be a bounded sequence in R3
+ × X and

let i ∈ {1, 2} be fixed. If Mn
i = Mi(λ

n, µn, vn) → 0 (or 1) as n → ∞, then ‖Ti(λ
n, µn, vn)‖∞ → 0

as n→ ∞.

Proof. We only prove the case Mn
i → 0, since the other case can be proved in a similar manner.

Since {(λn, µn, vn)} is a bounded sequence in R3
+ × X, there exists C > 0 such that µn

i +

λn‖Fi(µ
n, vn)‖∞ + |βi[µ

n, vn]| ≤ C for all n ∈N. Here, µn
i is the i-th component of µn. Then

‖Ti(λ
n, µn, vn)‖∞ = Ti(λ

n, µn, vn)(Mn
i )

= (βi[µ
n, vn]− µn

i )Mn
i

+
∫ Mn

i

0
ϕ−1

pi

(
ϕpi(µ

n
i − βi[µ

n, vn]) + λn
∫ Mn

i

s
hi(τ)Fi(µ

n, vn)(τ)dτ

)
ds

≤ CMn
i + γ 1

pi−1

∫ Mn
i

0

(
C + ϕ−1

pi
(C)ϕ−1

pi

( ∫ Mn
i

s
hi(τ)dτ

))
ds,
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where γq =max{1, 2q−1} for q>0. It follows from hi ∈ A that, as n→∞, ‖Ti(λn, µn, vn)‖∞ → 0,
and thus the proof is complete.

Combining Lemma 2.9 with the standard arguments (see, e.g., [1, Lemma 3] and [14,
Lemma 2.4]), we have the following lemma. We omit the proof of it.

Lemma 2.10. Assume that (H1)–(H3) hold. Then T : R3
+ × X → P is completely continuous.

2.2 Sub-super solutions theorem

In this subsection, we give a theorem for sub-super solutions to problem (Pλ,µ).

Definition 2.11. Let λ > 0 and µ ∈ R2
+ be given. We say that ζ = (ζ1, ζ2) is a supersolution to

problem (Pλ,µ) if ζi ∈ C1(0, 1) with ϕpi(ζ
′
i) absolutely continuous for i = 1, 2, and{

(Φ(ζ ′(t)))′ + λh(t) • f (t, ζ(t)) ≤ θ, t ∈ (0, 1),

ζ(0) ≥ α[ζ], ζ(1) ≥ µ.

We also say that ψ = (ψ1, ψ2) is a subsolution to problem (Pλ,µ) if ψi ∈ C1(0, 1) with ϕpi(ψ
′
i)

absolutely continuous for i = 1, 2, and it satisfies the reverse of the above inequalities.

To get a theorem for sub-super solutions to problem (Pλ,µ), we make the following hy-
potheses:

(H′2) max
i∈{1,2}

{∫ 1

0
(1− s)[k1i(s) + k2i(s)]ds

}
=: Ck ∈ [0, 1);

(F1) For fixed (t, u) ∈ [0, 1] × R+, f1 = f1(t, u, v) is quasi-monotone nondecreasing with
respect to v, i.e., f1(t, u, v1) ≤ f1(t, u, v2) whenever 0 ≤ v1 ≤ v2. For fixed (t, v) ∈
[0, 1]×R+, f2 = f2(t, u, v) is quasi-monotone nondecreasing with respect to u.

Note that (H′2) implies (H2).
Now, a theorem for sub-super solutions for the problem (Pλ,µ) is given as follows.

Theorem 2.12. Let λ > 0 and µ ∈ R2
+ be fixed. Assume that (H1), (H′2), (H3) and (F1) hold, and

that there exist ψ and ζ, respectively, a subsolution and a supersolution to problem (Pλ,µ) such that
ψ ≤ ζ. Then problem (Pλ,µ) has at least one solution u such that ψ ≤ u ≤ ζ.

Proof. Define γ : [0, 1]×R2 → R2
+ by, for t ∈ [0, 1] and u = (u1, u2) ∈ R2,

γ(t, u) := (γ1(t, u1), γ2(t, u2)),

where, for i ∈ {1, 2}, γi : [0, 1]×R→ R+ by

γi(t, s) :=


ζi(t), s ≥ ζi(t),

s, ψi(t) ≤ s ≤ ζi(t),

ψi(t), s ≤ ψi(t).

Let λ > 0 and µ ∈ R2
+ be fixed, and consider the following modified problem{

(Φ(u′(t)))′ + λh(t) • f (t, γ(t, u(t))) = θ, t ∈ (0, 1),

u(0) = αγ[u], u(1) = µ,
(2.10)
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where αγ[u] :=
∫ 1

0 γ(s, u(s))k(s)ds.
For given v ∈ X, define gv : R2 → R2 by

gv(x) :=
∫ 1

0
γ(s, v(s) + (1− s)x + sµ)k(s)ds.

Then gv is a contraction mapping on (R2, | · |R2). Here, for (x1, x2) ∈ R2, |(x1, x2)|R2 :=
max(|x1|, |x2|). Indeed, since |γi(t, s)− γi(t, τ)| ≤ |s− τ| for any s, τ ∈ R and t ∈ [0, 1], for
v̄ = (v̄1, v̄2), ṽ = (ṽ1, ṽ2) ∈ R2,

|γ(t, v̄)− γ(t, ṽ)|R2 = max{|γ1(t, v̄1)− γ1(t, ṽ1)|, |γ2(t, v̄2)− γ2(t, ṽ2)|}
≤ max{|v̄1 − ṽ1|, |v̄2 − ṽ2|} = |v̄− ṽ|R2 .

Then, for s ∈ [0, 1] and x, y ∈ R2,

|γ(s, v(s) + (1− s)x + sµ)− γ(s, v(s) + (1− s)y + sµ)|R2 ≤ (1− s)|x− y|R2 ,

and |gv(x)− gv(y)|R2 ≤ Ck|x− y|R2 . Then gv is a contraction mapping on (R2, | · |R2) by (H′2).
Thus, for given v ∈ X, there is a unique solution βγ[v] ∈ R2 of the equation x = gv(x), in
other words, it is the unique element of R2 which satisfies that

βγ[v] =
∫ 1

0
γ(s, v(s) + (1− s)βγ[v] + sµ)k(s)ds.

From this fact, it follows that
αγ[u] = βγ[v]

under the transformations

u(t) := v(t) + (1− t)βγ[v] + tµ, v(t) := u(t)− ((1− t)αγ[u] + tµ). (2.11)

Thus (2.10) can be equivalently rewritten as follows:{
(Φ(v′(t)− βγ[v] + µ))′ + λh(t) • Fγ(v)(t) = θ, t ∈ (0, 1),

v(0) = v(1) = θ,
(2.12)

where Fγ := (Fγ
1 , Fγ

2 ) : X → X is defined by, for v ∈ X,

Fγ(v)(t) := f (t, γ(t, v(t) + (1− t)βγ[v] + tµ)), t ∈ [0, 1].

Consequently, v is a solution to problem (2.12) if and only if u is a solution to problem (2.10)
under the transformations (2.11), respectively.

Now, define Tγ = (Tγ
1 , Tγ

2 ) : X → P by, for each i = 1, 2 and v ∈ X,

Tγ
i (v)(t) :=



(β
γ
i [v]− µi)t +

∫ t
0 ϕ−1

pi

(
ϕpi(µi − β

γ
i [v])

+λ
∫ Mγ

i
s hi(τ)Fγ

i (v)(τ)dτ
)

ds, 0 ≤ t ≤ Mγ
i ,

−(β
γ
i [v]− µi)(1− t) +

∫ 1
t ϕ−1

pi

(
ϕpi(−µi + β

γ
i [v])

+λ
∫ s

Mγ
i

hi(τ)Fγ
i (v)(τ)dτ

)
ds, Mγ

i ≤ t ≤ 1,
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where Mγ
i = Mγ

i (v) is the constant satisfying

(β
γ
i [v]− µi)Mγ

i +
∫ Mγ

i

0
ϕ−1

pi

(
ϕpi(µi − β

γ
i [v]) + λ

∫ Mγ
i

s
hi(τ)Fγ

i (v)(τ)dτ

)
ds

= −(β
γ
i [v]− µi)(1−Mγ

i ) +
∫ 1

Mγ
i

ϕ−1
pi

(
ϕpi(−µi + β

γ
i [v]) + λ

∫ s

Mγ
i

hi(τ)Fγ
i (v)(τ)dτ

)
ds.

Then v is a fixed point of Tγ in X if and only if v is a solution to problem (2.12). It follows that
Tγ is completely continuous on X and Tγ(X) is bounded in X. Then, by Theorem 2.4, Tγ has
a fixed point v, and consequently (2.10) has a solution u under the first transformation (2.11).
Now if we prove that ψ ≤ u ≤ ζ, then, by the definition of γ, (Pλ,µ) has a solution u such that
ψ ≤ u ≤ ζ and the proof is complete. In order to show u ≤ ζ, assume on the contrary that
u1 6≤ ζ1 or u2 6≤ ζ2. We only consider the case u1 6≤ ζ1, since the case u2 6≤ ζ2 can be dealt in a
similar manner. Set X1(t) := u1(t)− ζ1(t) for t ∈ [0, 1]. Then, since X1(0) = u1(0)− ζ1(0) ≤∫ 1

0 ∑2
i=1[γi(s, ui(s))− ζi(s)]ki1(s)ds ≤ 0 and X1(1) = u1(1)− ζ1(1) ≤ 0, there exists σ ∈ (0, 1)

such that X1(σ) = maxt∈[0,1] X1(t) > 0. Then X′1(σ) = 0 and we may assume that there is
a ∈ (σ, 1) such that X′1(t) < 0 and X1(t) > 0 for t ∈ (σ, a], which imply that

u′1(σ) = ζ ′1(σ), u′1(t) < ζ ′1(t), and u1(t) > ζ1(t) for t ∈ (σ, a]. (2.13)

By the quasi-monotonicity of f1 and (2.13), for t ∈ (σ, a],

−(ϕp1(u
′
1(t)))

′ = λh1(t) f1(t, γ1(t, u1(t)), γ2(t, u2(t)))

= λh1(t) f1(t, ζ1(t), γ2(t, u2(t)))

≤ λh1(t) f1(t, ζ1(t), ζ2(t)) ≤ −(ϕp1(ζ
′
1(t)))

′.

For t ∈ (σ, a], integrating this inequality from σ to t, we get

ϕp1(u
′
1(t)) ≥ ϕp1(ζ

′
1(t)), for t ∈ (σ, a].

Since ϕp1 is monotone increasing, u′1(t) ≥ ζ ′1(t) for t ∈ (σ, a], and it contradicts (2.13). Thus
u1 ≤ ζ1, and we can show that u ≤ ζ. In a similar manner, it is shown that ψ ≤ u, and thus
the proof is complete.

3 Main results

First, we give a hypothesis which will be used in this section:

(F∞) For each i ∈ {1, 2}, there exists an interval Ii := [θi
1, θi

2] ⊂ (0, 1) with θi
1 < θi

2 such that

f ∞
i := lim

|s1|+|s2|→∞

fi(t, s1, s2)

spi−1
i

= ∞ uniformly in t ∈ Ii.

Set
mh := min

t∈I1∪I2
{h1(t), h2(t)} > 0. (3.1)

Now we give a priori estimates for solutions as follows.

Lemma 3.1. Assume that (H1)–(H3) and (F∞) hold. Let α ∈ (0, ∞) be given. Then there exists
M = M(α) > 0 such that ‖u‖X < M for any non-negative solutions u to problem (Pλ,µ) for all
λ ∈ [α, ∞) and µ ∈ R2

+.
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Proof. Assume, on the contrary, that there exists a sequence {(λn, µn, un)} ⊆ [α, ∞)×R2
+ × X

such that un = (un
1 , un

2) is a positive solution of (Pλ,µ) with λ = λn and µ = µn satisfying
‖un‖X → ∞ as n→ ∞. Without loss of generality, we may assume that ‖un

1‖∞ → ∞ as n→ ∞.
Set Aα := 1

αmh

( πp1
θ1

2−θ1
1

)p1 + 1, where θ1
1 , θ1

2 are the constants defined in (F∞), mh is the constant
defined in (3.1) and

πp1 =
2π(p1 − 1)

1
p1

p1 sin
(

π
p1

) .

By (F∞), there exists M = M(α) > 0 such that

f1(t, s1, s2) > Aαsp1−1
1 for (t, s1, s2) ∈ I1 × [θM, ∞)×R+, (3.2)

where θ = min{θ1
1 , 1− θ1

2} > 0. For large n, ‖un
1‖∞ > M and it follows from the concavity of

un
1 that

un
1(t) ≥ θ‖un

1‖∞ ≥ θM, t ∈ I1.

Combining this with (3.2), (ϕp1((u
n
1)
′(t)))′ + αAαmh ϕp1(u

n
1(t)) ≤ 0, t ∈ I1. It is easy to check

that w1(t) = Sq1

( πp1
θ1

2−θ1
1
(t− θ1

1)
)

is a solution of

(ϕp1(w
′
1(t)))

′ +
(

πp1
θ1

2−θ1
1

)p1
ϕp1(w1(t)) = 0, t ∈ I1,

w1(θ
1
1) = w1(θ

1
2) = 0,

where Sq1 is the q1-sine function with 1
p1

+ 1
q1

= 1 (e.g., see [8, 36]). Applying y = w1,
z = un

1 , b1 =
( πp1

θ1
2−θ1

1

)p1 and b2 = αAαmh in (2.4) and integrating it from θ1
1 to θ1

2 , we have∫ θ1
2

θ1
1

(( πp1
θ1

2−θ1
1

)p1 − αAαmh
)
|w1|p1 dt ≥ 0. Thus Aα ≤ 1

αmh

( πp1
θ1

2−θ1
1

)p1 . This contradicts the choice
of Aα.

Remark 3.2. (1) By Lemma 3.1, for any fixed α ∈ (0, ∞), there exist a positive constant M
such that (Pλ,µ) has no positive solutions if λ ∈ [α, ∞) and µ = (µ1, µ2) with |µ1|+ |µ2| ≥ M.

(2) Combining Lemma 3.1 with Remark 2.6, for a fixed α ∈ (0, ∞), there exists M1 =

M1(α) ∈ (0, ∞) such that ‖v‖X < M1 for any non-negative solutions v to problem (P̂λ,µ) with
λ ∈ [α, ∞) and |µ|R2 ≤ α.

By (F∞), there exists b0 > 0 such that, for i = 1, 2,

fi(t, s) > b0spi−1
i for (t, s) ∈ Ii ×R2

+ with s = (s1, s2).

By similar arguments as in the proof of Lemma 3.1, we have the following lemma. We omit
the proof of it.

Lemma 3.3. Assume that (H1)–(H3) and (F∞) hold. Then there exists a positive constant λ̄ > 0 such
that problem (Pλ,µ) (or (P̂λ,µ)) has no non-negative solutions for all λ > λ̄ and all µ ∈ R2

+.

Theorem 3.4. Assume that (H1)–(H3) and (F∞) hold. For fixed µ ∈ R2
+, there exists λ(µ) ∈ (0, λ̄)

such that (Pλ,µ) has two positive solutions ūµ
λ and uµ

λ for λ ∈ (0, λ(µ)). Moreover, ‖ūµ
λ‖X → ∞ and

uµ
λ → L2[µ, θ] in X as λ→ 0+. Here, L2 is the transformation defined in (2.8).
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λ
*
(µ) λ λ

X

Figure 3.1: A possible bifurcation diagram of Cµ(P) when µ is fixed in R2
+.

Proof. Let µ ∈ R2
+ be fixed. Define Hµ(λ, v) = T(λ, µ, v), then by Lemma 2.10, Hµ : R+×P →

P is completely continuous and Hµ(0, v) = θ for all v ∈ P . By Theorem 2.3, there exists an
unbounded continuum Cµ(P), the component of the solution set of Hµ(λ, v) = v containing
(0, θ) ∈ R+ ×X. Since Hµ(λ, v) 6= θ for λ > 0, for any solutions (λ, v) in Cµ(P), v is a positive
solution to problem (P̂λ,µ) if λ > 0. By Remark 3.2 (2) and Lemma 3.3, (P̂λ,µ) has at least two
positive solutions v̄µ

λ and vµ
λ for small λ > 0 satisfying that ‖v̄µ

λ‖X → ∞ and vµ
λ → θ in X as

λ→ 0+ (see Figure 3.1). By Remark 2.6, the proof is complete.

Define λ∗ : R2
+ → (0, ∞) by, for µ ∈ R2

+,

λ∗(µ) = sup{λ > 0 : (Pλ,µ) has a positive solution }. (3.3)

Then, by Lemma 3.3 and Theorem 3.4, λ∗ is well defined and λ∗(µ) ∈ (0, ∞) for all µ ∈ R2
+.

Theorem 3.5. Assume that (H1), (H′2), (H3), (F1) and (F∞) hold. Let µ ∈ R2
+ be fixed. Then (Pλ,µ)

has at least two positive solutions for λ ∈ (0, λ(µ)), has one positive solution for λ ∈ [λ(µ), λ∗(µ)],
and has no positive solutions for λ > λ∗(µ).

Proof. Let µ = (µ1, µ2) ∈ R2
+ be fixed. Clearly, there is no positive solutions for λ > λ∗(µ).

Now we prove that (P̂λ,µ) with λ = λ∗(µ) has a positive solution v∗(µ). By definition of
λ∗(µ), there is a sequence {λn} ⊂ R+ such that (P̂λ,µ) with λ = λn has a positive solution
vn, i.e., T(λn, µ, vn) = vn in P and λn → λ∗(µ). By Lemma 3.1, ‖vn‖X < C for some C > 0.
By compactness of T, {vn} has a convergent subsequence converging to, say v∗(µ) and by
continuity of T, we see that v∗(µ) is a positive solution to problem (P̂λ,µ) with λ = λ∗(µ),
since λ∗(µ) > 0. Then u∗(µ) = L2(µ, v∗(µ)) is a positive solution to problem (Pλ,µ) with
λ = λ∗(µ). Since u∗(µ) is a supersolution and θ is a trivial subsolution to problem (Pλ,µ) for
λ ∈ (0, λ∗(µ)], by Theorem 2.12, (Pλ,µ) has at least one positive solution for λ ∈ (0, λ∗(µ)], and
thus the proof is complete in view of Theorem 3.4.

Lemma 3.6. Assume that (H1), (H′2), (H3), (F1) and (F∞) hold. Then:

(1) if µ1 ≤ µ2 in R2, then 0 < λ∗(µ2) ≤ λ∗(µ1);

(2) λ∗(µ)→ 0 as |µ|R2 → ∞;

(3) if µn → µ0 in R2
+, then lim supn→∞ λ∗(µn) ≤ λ∗(µ0).



14 J. Jeong, C.-G. Kim and E. K. Lee

Proof. (1) Let µ1 ≤ µ2 in R2. Then it suffices to show that (Pλ,µ) has a positive solution for λ =

λ∗(µ2) and µ = µ1. Let u2 be a positive solution of (Pλ,µ) with µ = µ2 and λ = λ∗(µ2), then u2

is a supersolution and θ is a trivial subsolution of (Pλ,µ) with µ = µ1 and λ = λ∗(µ2). Then,
by Theorem 2.12, (Pλ,µ) has a positive solution u1 satisfying θ ≤ u1 ≤ u2 for λ = λ∗(µ2) > 0
and µ = µ1. Consequently, λ∗(µ2) ≤ λ∗(µ1) by (3.3).

(2) From Remark 3.2 (1), it follows that λ∗(µ)→ 0 as |µ|R2 → ∞.
(3) Let µn → µ0 in R2

+ as n → ∞. By (1), {λ∗(µn)} is a bounded sequence in R+. Then
there exists a subsequence of {λ∗(µn)}, denote it again {λ∗(µn)}, such that, as n → ∞,
λ∗(µn) → lim supn→∞ λ∗(µn) > 0, and there exists a sequence {vn} such that vn is a posi-
tive solution to problem (P̂λ,µ) with λ = λ∗(µn) and µ = µn, that is, T(λ∗(µn), µn, vn) = vn. By
Lemma 3.1, {(λ∗(µn), µn, vn)} is a bounded sequence in R3

+ ×P . Then, by the complete con-
tinuity T, there exists a subsequence of {(λ∗(µn), µn, vn)}, denote it again {(λ∗(µn), µn, vn)},
such that, as n → ∞, vn = T(λ∗(µn), µn, vn) → V in X and T

(
lim supn→∞ λ∗(µn), µ0, V

)
= V.

Thus, V is a positive solution to problem (P̂λ,µ) with λ = lim supn→∞ λ∗(µn) > 0 and µ = µ0,
and by definition of λ∗, the proof is complete.

Lemma 3.7. Assume that (H1), (H3), (F1) and (F∞) hold. Assume in addition that

(H′′2 ) 0 ≤ max
i∈{1,2}

{∫ 1

0
[k1i(s) + k2i(s)]ds

}
≤ 1.

Let µ0 ∈ R2
+ be fixed. Then for any λ ∈ (0, λ∗(µ0)), there exists a positive constant δ = δ(λ, µ0)

such that ζ = u∗ + (δ, δ) is a supersolution to problem (Pλ,µ) with µ = µδ. Here µδ = µ0 + (δ, δ) and
u∗ is a positive solution to problem (Pλ,µ) with λ = λ∗(µ0) and µ = µ0.

Proof. Note that (H′′2 ) implies (H′2). Let µ0 ∈ R2
+ and λ0 ∈ (0, λ∗(µ0)) be fixed. Let u∗ be a

positive solution to problem (Pλ,µ) with λ = λ∗(µ0) and µ = µ0. Put

ε =

(
λ∗(µ0)

λ0
− 1
)

min
t∈[0,1]

{ f1(t, u∗(t)), f2(t, u∗(t))} > 0. (3.4)

Then there exists δ = δ(λ0, µ0) > 0 such that, for i = 1, 2,

| fi(t, u + (δ, δ))− fi(t, u)| < ε for t ∈ [0, 1] and u ∈ [0, ‖u∗‖X]× [0, ‖u∗‖X]. (3.5)

Set ζ := u∗ + (δ, δ). Then, by (3.4) and (3.5), for i ∈ {1, 2},

(ϕpi(ζ
′
i(t)))

′ + λ0hi(t) fi(t, ζ(t))

= −λ∗(µ0)hi(t) fi(t, u∗(t)) + λ0hi(t) fi(t, ζ(t))

< −λ∗(µ0)hi(t) fi(t, u∗(t)) + λ0hi(t)[ fi(t, u∗(t)) + ε]

= −λ0hi(t)
[(

λ∗(µ0)

λ0
− 1
)

fi(t, u∗(t))− ε

]
≤ 0,

which implies
(Φ(ζ ′(t)))′ + λ0h(t) f (t, ζ(t)) < θ, t ∈ (0, 1). (3.6)

By (H′′2 ), ζ(0) =
∫ 1

0 u∗(s)k(s)ds + (δ, δ) ≥
∫ 1

0 ζ(s)k(s)ds, and since ζ(1) = µ + (δ, δ) > µ, ζ is a
supersolution to problem (Pλ,µ) with λ = λ0 and µ = µδ. Thus the proof is complete.
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Remark 3.8. (1) If we assume that

(H′′′2 ) 0 ≤ max
i∈{1,2}

{∫ 1

0
[k1i(s) + k2i(s)]ds

}
< 1

holds in Lemma 3.7 instead of (H′′2 ), then the supersolution ζ satisfies ζ(0) >
∫ 1

0 ζ(s)k(s)ds.
(2) Assume (H′′′2 ) holds. Then (H′′2 ) and (H3) are satisfied. In fact, clearly (H′′2 ) is satisfied.

Since

1−
∫ 1

0
(1− s)k11(s)ds ≥ 1−

∫ 1

0
k11(s)ds >

∫ 1

0
k21(s)ds

and

1−
∫ 1

0
(1− s)k22(s)ds ≥ 1−

∫ 1

0
k22(s)ds >

∫ 1

0
k12(s)ds,

(H3) is also satisfied.
On the other hand, if k11 ≡ k22 ≡ 0 and∫ 1

0
k12(s)ds = 1 and 0 ≤

∫ 1

0
k21(s)ds < 1,

then (H′′2 ) and (H3) are satisfied, but (H′′′2 ) is not satisfied.

Proposition 3.9. Assume that (H1), (H′′2 ), (H3), (F1) and (F∞) hold. Then λ∗ : R2
+ → (0, ∞) is

a continuous function satisfying 0 < λ∗(µ2) ≤ λ∗(µ1) for any µ1 ≤ µ2 in R2
+ and λ∗(µ) → 0 as

|µ|R2
+
→ ∞ (see, e.g., Figure 3.2).

Proof. Let µ0 ∈ R2
+ be fixed and let m ∈ N be fixed such that λm = λ∗(µ0)− 1/m > 0. Then

by Lemma 3.7, there exists δm = δ(λm, µ0) > 0 such that problem (Pλ,µ) has an upper solution
u(δm) for λ = λm and µ = µδm . Here, µδm = µ0 + (δm, δm). Let {µn} be a sequence in R2

+

such that µn → µ0 in R2
+ as n → ∞. For sufficiently large n, µn ≤ µδm , and u(δm) is also a

supersolution to problem (Pλ,µ) with λ = λm and µ = µn. Since θ is a trivial subsolution to
problem (Pλ,µ) for all λ ∈ (0, ∞) and µ ∈ R2

+, by Theorem 2.12, (Pλ,µ) has at least one positive
solution for λ = λm and µ = µn. Thus λm ≤ λ∗(µn) for all large n and

λ∗(µ0)− 1
m

= λm ≤ lim inf
n→∞

λ∗(µn).

Letting m → ∞, λ∗(µ0) ≤ lim infn→∞ λ∗(µn). Combining this with Lemma 3.6 (3), it follows
that λ∗ : R2

+ → (0, ∞) is a continuous function. Thus the proof is complete in view of
Lemma 3.6 (1) and (2).

Let C := λ∗(R2
+). Then, by Proposition 3.9, C is a continuous surface in R3

+, and it separates
R3

+ into two regions

O1 := {(µ, λ) ∈ R3
+ : λ ∈ (0, λ∗(µ)), µ ∈ R2

+}
and

O2 := {(µ, λ) ∈ R3
+ : λ > λ∗(µ), µ ∈ R2

+}.

Moreover, by Theorem 3.5, (Pλ,µ) has at least one positive solutions for (µ, λ) ∈ O1 ∪ C and no
positive solution for (µ, λ) ∈ O2.

Finally we give the main result in this paper.
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λ∗(θ)

C(l)

λ

Figure 3.2: A possible graph of λ∗ on C(l), where C(l) = {(x, lx) : x ≥ 0}
for l ∈ R+ and C(∞) = {(0, y) : y ≥ 0}.

Theorem 3.10. Assume that (H1), (H′′2 ), (H3), (F1) and (F∞) hold. Then (Pλ,µ) has two positive
solutions for (µ, λ) ∈ O1, at least one positive solution for (µ, λ) ∈ C, and no positive solutions for
(µ, λ) ∈ O2.

Proof. For fixed µ ∈ R2
+, we will show that (Pλ,µ) has at least two positive solutions for λ ∈

(0, λ∗(µ)), and thus the proof is complete by Theorem 3.5.
Let µ ∈ R2

+ be fixed. Define Tµ : R+ ×P → P by, for (λ, u) ∈ R+ ×P and t ∈ [0, 1],

Tµ(λ, u)(t) := T(λ, µ, L1(µ, u))(t) + (1− t)α[u] + tµ.

Here, L1 : R2
+ × X → X is the continuous mapping defined in (2.7), and it maps bounded sets

in R+ × X into bounded sets in X. Then Tµ is completely continuous, Tµ(λ, u)(0) = α[u] and
Tµ(λ, u)(1) = µ. Moreover, by Lemma 2.5 and Remark 2.6, Tµ(λ, u) = u in P if and only if u
is a non-negative solution to problem (Pλ,µ).

Let λ0 ∈ (0, λ∗(µ)) be fixed and u∗ be a positive solution to problem (Pλ,µ) with λ = λ∗(µ).
Then, by Lemma 3.7, there exists δ1 ∈ (0, 1) such that ζ = u∗ + (δ1, δ1) is a supersolution to
(Pλ,µ) with λ = λ0. Moreover, by (3.6), ζ satisfies{

(Φ(ζ ′(t)))′ + λ0h(t) • f (t, ζ(t)) < θ, t ∈ (0, 1),

ζ(0) = u∗(0) + (δ1, δ1) ≥ α[ζ], ζ(1) = µ + (δ1, δ1) > µ.
(3.7)

Consider the following problem{
(Φ(u′(t)))′ + λ0h(t) • f (t, γ(t, u(t))) = θ, t ∈ (0, 1),

u(0) = αγ[u], u(1) = µ,
(3.8)

where αγ[u] and γ are defined in the same way as in the proof of Theorem 2.12 with ψ = θ

and ζ = u∗ + (δ1, δ1). Then if u is a solution to problem (3.8), then θ ≤ u ≤ ζ by the same
argument as in the proof of Theorem 2.12, and γ(t, u(t)) = u(t) for t ∈ (0, 1). Thus u must be
a positive solution to problem (Pλ,µ) with λ = λ0.

Set Γ = {u ∈ X : −(δ1, δ1) < u < ζ}. Then Γ is an open set containing θ in X. Now we will
show that if u is a solution to problem (3.8), then u ∈ Γ ∩ P . Let u be a solution to problem
(3.8). First, we show that u(t) < ζ(t) for t ∈ (0, 1]. If not, since u(1) = µ < µ + (δ1, δ1) = ζ(1),
there exist t0 ∈ (0, 1) and j ∈ {1, 2} such that uj(t0) = ζ j(t0), u′j(t0) = ζ ′j(t0) and uj(t) < ζ j(t)
for t ∈ (t0, 1]. We take j = 1 for convenience. By (3.7), for fixed t′0 ∈ (t0, 1),

max
t∈[t0,t′0]

{(ϕp1(ζ
′
1(t)))

′ + λ0h1(t) f1(t, ζ(t))} =: −ε1 < 0. (3.9)
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Since f1 is uniformly continuous on [0, 1]× [0, ‖u∗1‖∞ + 1]× [0, ‖u∗2‖∞ + 1], there exists δ2 > 0
such that if |v− w|R2 < δ2 and v, w ∈ [0, ||ζ1||∞]× [0, ||ζ2||∞], then

| f1(t, v)− f1(t, w)| < ε2, (3.10)

where ε2 = ε1
(
λ0 maxt∈[t0,t′0]

h1(t)
)−1

> 0. Then there exists t1 ∈ (t0, t′0) such that −δ2 <

u1(t)− ζ1(t) < 0 for t ∈ [t0, t1] and u′1(t1) < ζ ′1(t1), which imply

ϕp1(u
′
1(t0))− ϕp1(ζ

′
1(t0)) = 0, ϕp1(u

′
1(t1))− ϕp1(ζ

′
1(t1)) < 0. (3.11)

By (F1) and (3.10), for t ∈ [t0, t1],

f1(t, u(t))− f1(t, ζ(t)) ≤ f1(t, u1(t), ζ2(t))− f1(t, ζ1(t), ζ2(t)) < ε2, (3.12)

since u2 ≤ ζ2. By (3.9), (3.11), (3.12) and the choice of ε2,

0 > ϕp1(u
′
1(t1))− ϕp1(ζ

′
1(t1))− ϕp1(u

′
1(t0)) + ϕp1(ζ

′
1(t0)),

=
∫ t1

t0

{
(ϕp1(u

′
1(t)))

′ − (ϕp1(ζ
′
1(t)))

′} dt

=
∫ t1

t0

[
−λ0h1(t) f1(t, u(t))− (ϕp1(ζ

′
1(t)))

′] dt

>
∫ t1

t0

[
−λ0h1(t)( f1(t, ζ(t)) + ε2)− (ϕp1(ζ

′
1(t)))

′] dt

=
∫ t1

t0

(
−λ0h1(t)ε2 −

[
(ϕp1(ζ

′
1(t)))

′ + λ0h1(t) f1(t, ζ(t))
])

dt

≥
∫ t1

t0

(−λ0h1(t)ε2 + ε1)dt ≥ 0.

This is a contradiction, and thus u(t) < ζ(t) for t ∈ (0, 1].
Now we show that u(0) < ζ(0). We only show that u1(0) < ζ1(0), since the case u2(0) <

ζ2(0) can be proved in a similar manner. If k11 ≡ k21 ≡ 0, u(0) = 0 < δ = ζ1(0). If k11 6≡ 0 or
k21 6≡ 0, then

u1(0)− ζ1(0) =
∫ 1

0
[(u1(s)− ζ1(s))k11(s) + (u2(s)− ζ2(s))k21(s)]ds < 0.

Thus u ∈ Γ ∩ P for any solution u to problem (3.8).
Define Tγ : P → P by, for u ∈ P and t ∈ [0, 1],

Tγ
(u)(t) = Tγ(L1

γ(u))(t) + (1− t)αγ[u] + tµ,

where Tγ is the operator with λ = λ0 defined in the proof of Theorem 2.12 and L1
γ is an

operator defined by L1
γ(u)(t) := u(t)− ((1− t)αγ[u] + tµ). Then Tγ is completely continuous

on P , and Tγ has a fixed point in P if and only if u is a non-negative solution to problem (3.8).
Moreover, there exists a positive constant R such that Tγ

(u) < R for all u ∈ P and Γ ⊂ BR,
where BR is an open ball with center θ and radius R in X. Applying Theorem 2.4 with O = BR,
i(Tγ, BR ∩ P ,P) = 1. Since all fixed points of Tγ are contained in Γ, by the excision property,
i(Tγ, Γ ∩ P ,P) = i(Tγ, BR ∩ P ,P) = 1. Since problem (Pλ,µ) with λ = λ0 is equivalent to
problem (3.8) on Γ∩P , (Pλ,µ) has a positive solution in Γ∩P for λ = λ0 ∈ (0, λ∗(µ)). Assume
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that Tµ(λ0, ·) has no fixed points in ∂Γ ∩ P , otherwise we get second positive solution to
problem (Pλ,µ) with λ = λ0 and the proof is done. In that case,

i(Tµ(λ0, ·), Γ ∩ P ,P) = i(Tγ, Γ ∩ P ,P) = 1. (3.13)

On the other hand, by Lemma 3.3, there is λ1(> λ0) such that (Pλ,µ) has no positive
solution at λ = λ1. This implies that Tµ(λ1, ·) has no fixed point in P . Thus for any open set
U in X, we have

i(Tµ(λ1, ·),U ∩ P ,P) = 0. (3.14)

By Lemma 3.1, we may choose R1 > 0 such that Γ ⊂ BR1 and all possible solutions u of
(Pλ,µ) for any λ ∈ [λ0, λ1] satisfy u ∈ BR1 . Here, BR1 is an open ball with center θ and radius
R1 in X. Define a homotopy g : [0, 1]× (BR1 ∩ P) → P by g(τ, u) = Tµ(τλ1 + (1− τ)λ0, u).
Then g is completely continuous on [0, 1]×P . Furthermore, by Lemma 3.1, g(τ, u) 6= u for all
(τ, u) ∈ [0, 1]× (∂BR1 ∩ P). Thus by homotopy invariance property and (3.14), we have

i(Tµ(λ0, ·), BR1 ∩ P ,P) = i(Tµ(λ1, ·), BR1 ∩ P ,P) = 0. (3.15)

Combining (3.13) and (3.15) with the additive property, we have

i(Tµ(λ0, ·), (BR1 \ Γ) ∩ P ,P) = −1.

Consequently (Pλ,µ) has another positive solution in (BR1 \ Γ)∩P for any λ = λ0 ∈ (0, λ∗(µ)),
and this completes the proof.

4 Applications

In this section, we investigate the existence of infinitely many positive radial solutions to
problems (1.3) + (1.4) or (1.3) + (1.5).

We assume the following assumptions hold in this section.

(A1) For i ∈ {1, 2}, there exists α > p− 1 such that
∫ ∞

r0

rαKi(r)dr < ∞.

(A2) 0 ≤ max
i∈{1,2}

{∫
Ω
[l1i(|x|) + l2i(|x|)]dx

}
< 1.

(F̂1) For fixed (r, u) ∈ [r0, ∞) ×R+, f̂1 = f̂1(r, u, v) is quasi-monotone nondecreasing with
respect to v, i.e., f̂1(r, u, v1) ≤ f̂1(r, u, v2) whenever 0 ≤ v1 ≤ v2. For fixed (r, v) ∈
[r0, ∞)×R+, f̂2 = f̂2(r, u, v) is quasi-monotone nondecreasing with respect to u.

(F̂∞) For each i ∈ {1, 2}, there exists a non-degenerate compact interval Ji ⊂ (r0, ∞) such that

lim
|s1|+|s2|→∞

f̂i(r, s1, s2)

sp−1
i

= ∞ uniformly in r ∈ Ji.

By applying consecutive changes of variables, r = |x|, w(r) = z(x) and t = 1 −
( r

r0

)−N+p
p−1 ,

u(t) = w(r), problem (1.3) + (1.4) with z(x) = (z1(x), z2(x)) → µ ∈ R2
+ as |x| → ∞ is
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equivalently transformed into problem (Pλ,µ) with p1 = p2 = p > 1. Here fi, hi and kij for
i, j ∈ {1, 2} are given by

fi(t, s1, s2) = f̂i

(
r0(1− t)

−(p−1)
N−p , s1, s2

)
,

hi(t) =
(

p− 1
N − p

)p

rp
0 (1− t)

−p(N−1)
N−p Ki

(
r0(1− t)

−(p−1)
N−p

)
,

kij(t) = wN

(
p− 1
N − p

)
rN

0 (1− t)
−p(N−1)

N−p lij

(
r0(1− t)

−(p−1)
N−p

)
,

where wN is the surface area of unit sphere in RN .
Assume that (A1), (A2), (F̂1) and (F̂∞) hold. Then (H1), (H′′2 ), (H3) and (F∞) hold. In fact,

if Ki (i = 1, 2) satisfies (A1), then there exists β < p− 1 such that∫ 1

0
(1− s)βhi(s)ds < ∞,

which implies that hi ∈ Ai, and thus (H1) holds. Since∫
Ω

lij(|x|)dx = wN

∫ ∞

r0

lij(r)rN−1dr =
∫ 1

0
kij(s)ds,

if we assume (A2) is satisfied, then (H′′′2 ) is satisfied, and (H′′2 ) and (H3) are satisfied by
Remark 3.8. If we assume (F̂1) and (F̂∞) are satisfied, then (F1) and (F∞) are satisfied.

In a similar manner, by applying consecutive changes of variables, r = |x|, w(r) = z(x)

and t =
( r

r0

)−N+p
p−1 , u(t) = w(r), problem (1.3) + (1.5) with z(x) = (z1(x), z2(x)) = µ ∈

R2
+ on |x| = r0 is equivalently transformed into problem (Pλ,µ) with p1 = p2 = p > 1. Here,

fi, hi and kij are given by

fi(t, s1, s2) = f̂i

(
r0t

−(p−1)
N−p , s1, s2

)
hi(t) =

(
p− 1
N − p

)p

rp
0 t
−p(N−1)

N−p Ki

(
r0t

−(p−1)
N−p

)
,

kij(t) = wN

(
p− 1
N − p

)
rN

0 t
−p(N−1)

N−p lij

(
r0t

−(p−1)
N−p

)
,

Then if (A1), (A2), (F̂1) and (F̂∞) hold, then (H1), (H′′2 ), (H3), (F1) and (F∞) hold by similar
arguments as above.

By Proposition 3.9, λ∗ : R2
+ → (0, ∞) is a continuous function satisfying λ∗(µ1) ≥ λ∗(µ2)

for µ1 ≤ µ2 and λ∗(µ) → 0 as |µ|R2 → ∞ (see, e.g., Figure 3.2). Thus the inverse image
(λ∗)−1({λ}) is a nonempty connected component in R2

+ for all λ ∈ (0, λ∗(θ)), and we denote
it E(λ). Then the connected component E(λ) separates R2

+ into a bounded region U1(λ) and
an unbounded region U2(λ) which are open relative to R2

+, and by Theorem 3.10, (Pλ,µ) has
at least two positive solutions for µ ∈ U1(λ), at least one positive solution for µ ∈ C(λ), and
no positive solutions for µ ∈ U2(λ) (see, e.g., Figure 4.1). Moreover, U1(λ2) ⊂ U1(λ1) for
0 < λ1 < λ2 < λ∗(θ). Thus we have the following corollary.

Corollary 4.1. Assume that (A1), (A2), (F̂1) and (F̂∞) hold. Then the following statements hold.
(1) For λ ∈ (0, λ∗(θ)), E(λ) is a connected component in R2

+ which separates R2
+ into a bounded

region U1(λ) and an unbounded region U2(λ) which are open relative to R2
+ such that the followings

hold:
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(i) problem (1.3) + (1.4) (resp. (1.3) + (1.5)) has infinitely many positive radial solutions z̄µ
λ, zµ

λ

with z̄µ
λ 6= zµ

λ satisfying

lim
|x|→∞

z̄µ
λ(x) = lim

|x|→∞
zµ

λ = µ (resp. z̄µ
λ(x) = zµ

λ = µ for |x| = r0) for µ ∈ U1(λ);

(ii) problem (1.3) + (1.4) (resp. (1.3) + (1.5)) has infinitely many positive radial solutions zµ
λ

satisfying
lim
|x|→∞

zµ
λ(x) = µ (resp. zµ

λ(x) = µ for |x| = r0) for µ ∈ Cλ;

(iii) problem (1.3) + (1.4) (resp. (1.3) + (1.5)) has no positive radial solutions zµ
λ satisfying

lim
|x|→∞

zµ
λ(x) = µ (resp. zµ

λ(x) = µ for |x| = r0)) for µ ∈ U2(λ);

(iv) moreover, U1(λ2) ⊂ U1(λ1) for 0 < λ1 < λ2 < λ∗(θ).
(2) For λ = λ∗(θ), problem (1.3) + (1.4) (resp. (1.3) + (1.5)) has at least one positive radial

solution z∗ satisfying

lim
|x|→∞

z∗(x) = θ (resp. z∗(x) = θ for |x| = r0).

(3) For λ > λ∗(θ), problem (1.3) + (1.4) (resp. (1.3) + (1.5)) has no positive radial solutions z
satisfying

lim
|x|→∞

z(x) = µ (resp. z(x) = µ for |x| = r0) for any µ ∈ R2
+.

µ1

µ2

u1(λ)

u2(λ)

E(λ)

Figure 4.1: A possible picture of E(λ), U1(λ) and U2(λ) for λ ∈ (0, λ∗(θ)).

Finally, we give the examples satisfying the hypotheses (A1), (A2), (F̂1) and (F̂∞) to illus-
trate Corollary 4.1.

Example 4.2. Let r0 = 1 and Ω = {x ∈ RN : |x| > 1}, where N > p > 1. For i ∈ {1, 2},
let Ki(r) = rβi for r ∈ [1, ∞), where βi < −p. Then p − 1 < −βi − 1, and there exists α

such that p− 1 < α < min{−β1,−β2} − 1. Consequently, α + βi < −1, and
∫ ∞

1 rαKi(r)dr =∫ ∞
1 rα+βi dr < ∞. Thus (A1) holds. For i, j ∈ {1, 2}, let αij be constants satisfying αij > N.

Let lij(r) = Cijr−αij for r ∈ [1, ∞), where 0 ≤ Cij < ᾱ−N
2wN

and ᾱ = mini,j∈{1,2}{αij}. Then

0 ≤ maxi∈{1,2}
{ ∫

Ω[l1i(|x|) + l2i(|x|)]dx
}
≤ CijwN maxi∈{1,2}

{ 1
α1i−N + 1

α2i−N

}
≤ 2CijwN

ᾱ−N < 1,
and thus (A2) holds. Let f̂1(r, u, v) = e−r[uq− up−1 + 1+ v] and f̂2(r, u, v) = r−1[u2 + e(p−1)v−
vp−1] for (r, u, v) ∈ [1, ∞)×R2

+, where q > p− 1. Then it can be easily verified that (F̂1) and
(F̂∞) hold.
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