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Abstract. In this paper, a comparison result for (k, n − k) conjugate boundary value
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1 Introduction

We consider the existence of solution of the following (k, n − k) conjugate boundary value
problems for nonlinear ordinary differential equations, using the method of upper and lower
solutions and its associated monotone iterative technique(−1)n−kx(n)(t) = f (t, x(t)), 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(i)(0) = x(j)(1) = 0, 0 ≤ i ≤ k− 1, 0 ≤ j ≤ n− k− 1,
(1.1)

where n ≥ 2 and k ≥ 1 are fixed integers.
The subject of (k, n − k) conjugate boundary value problems for nonlinear ordinary dif-

ferential equations derives from its theoretical challenge, and have close relationship with
oscillation theory (see [4] for more details). Recently, many people paid attention to existence
result of solution of (k, n− k) conjugate boundary value problems, such as [1,2,5–7,9,10,12–20],
by means of some fixed point theorems.

BCorresponding author. Email: cyj720201@163.com

http://www.math.u-szeged.hu/ejqtde/


2 Y. Cui and Y. Zou

The method of upper and lower solutions coupled with the monotone iterative technique
plays a very important role in investigating the existence of solutions to ordinary differential
equation problems, for example [3, 8, 11]. However, as far as we know, there are no papers
dealing with the existence of solutions for (k, n− k) conjugate boundary value problems, by
means of the lower and upper solutions method.

The aims of this paper are to establish comparison result for (k, n− k) conjugate boundary
value problems and to investigate the existence of extremal solutions of problem (1.1).

The rest of this paper is organized as follows: in Section 2, we present some useful pre-
liminaries and lemmas. The main results are given in Section 3. In Section 4, examples are
presented to illustrate the main results.

2 Preliminaries and lemmas

Let C[0, 1] denote the Banach space of real-valued continuous function with norm ‖x‖ =

maxt∈[0,1] |x(t)|.
Throughout this paper, we shall use the following notation:

G(t, s) =


1

(k− 1)!(n− k− 1)!

∫ t(1−s)

0
uk−1(u + s− t)n−k−1du, 0 ≤ t ≤ s ≤ 1,

1
(k− 1)!(n− k− 1)!

∫ s(1−t)

0
un−k−1(u + t− s)k−1du, 0 ≤ s ≤ t ≤ 1.

It is well known from the papers [10, 17] that G(t, s) is the Green’s function of the following
homogeneous boundary value problem:(−1)n−kx(n)(t) = 0, 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(i)(0) = x(j)(1) = 0, 0 ≤ i ≤ k− 1, 0 ≤ j ≤ n− k− 1.

Lemma 2.1 ([14, 19]). The function G(t, s) defined as above has the following properties:

G(t, s) ≤ βsn−k(1− s)k, 0 ≤ t, s ≤ 1,
β

n− 1
g(t)sn−k(1− s)k ≤ G(t, s) ≤ αg(t)sn−k−1(1− s)k−1, 0 ≤ t, s ≤ 1,

where

β =
1

(k− 1)!(n− k− 1)!
, g(t) = tk(1− t)n−k,

α =
1

min{k, n− k}(k− 1)!(n− k− 1)!
.

In the rest of this paper, we also make the following assumptions:
(H1) ∅ 6= I+ ∪ I− ⊂ {0, 1, . . . , k− 1}, where i ∈ I+ (or i ∈ I−) means that the following

(k, n− k) conjugate boundary value problem
(−1)n−kx(n)(t) = 0, 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(0) = x′(0) = · · · = x(i−1)(0) = x(i+1)(0) = · · · = x(k−1)(0) = 0,

x(i)(0) = 1, x(j)(1) = 0, 0 ≤ j ≤ n− k− 1
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has a unique nonnegative (or nonpositive) solution Ii(t) with |Ii(t)| ≥ tk(1−t)n−k

n! , t ∈ [0, 1].
(H2) ∅ 6= J+ ∪ J− ⊂ {0, 1, . . . , n− k− 1}, where j ∈ J+ (or j ∈ J−) means that the following

(k, n− k) conjugate boundary value problem
(−1)n−kx(n)(t) = 0, 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(i)(0) = 0, 0 ≤ i ≤ k− 1, x(j)(1) = 1,

x(1) = x′(1) = · · · = x(j−1)(1) = x(j+1)(1) = · · · = x(n−k−1)(1) = 0

has a unique nonnegative (nonpositive) solution Jj(t) with |Jj(t)| ≥ tk(1−t)n−k

n! , t ∈ [0, 1].

Remark 2.2. It follows from (H1) and (H2) that for any ai, bj ∈ R (0 ≤ i ≤ k − 1, 0 ≤ j ≤
n− k− 1) such that

ai = 0, if i 6∈ I+ ∪ I−

and

bj = 0, if j 6∈ J+ ∪ J−,

the (k, n− k) conjugate boundary value problem(−1)n−kx(n)(t) = 0, 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(i)(0) = ai, x(j)(1) = bj, 0 ≤ i ≤ k− 1, 0 ≤ j ≤ n− k− 1

has a unique solution ψ(t) = ∑k−1
i=0 ai Ii(t)+∑n−k−1

j=0 bj Jj(t), in which we may take Ii(t) = Jj(t) ≡
0 for i 6∈ I+ ∪ I− and j 6∈ J+ ∪ J−. Moreover, if

ai ≥ 0, if i ∈ I+; ai ≤ 0, if i ∈ I−

and
bj ≥ 0, if j ∈ J+; bj ≤ 0, if j ∈ J−

hold, ψ(t) becomes a nonnegative function.

Remark 2.3. We point out from examples below that the assumptions (H1) and (H2) appear
naturally in the study involving (k, n− k) conjugate boundary value problem.

Example 2.4. When n = 3, k = 1, the unique solution of

x′′′(t) = 0, x(0) = a, x(1) = b, x′(1) = c

can be explicitly given by
ψ(t) = aI0(t) + bJ0(t) + cJ1(t),

where

I0(t) = 1− t2 ≥ 0, J0(t) = −t2 + 2t ≥ 0, J1(t) = −t(1− t) ≤ 0, t ∈ [0, 1].

Example 2.5 ([15]). When n = 4, k = 2, the unique solution of

x(4)(t) = 0, x(0) = a, x(1) = b, x′(0) = c, x′(1) = d
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can be explicitly given by

ψ(t) = aI0(t) + bJ0(t) + cI1(t) + dJ1(t),

where

I0(t) = 2t3 − 3t2 + 1 ≥ 0, J0(t) = −2t3 + 3t2 ≥ 0,

I1(t) = t3 − 2t2 + t ≥ 0, J1(t) = t3 − t2 ≤ 0, t ∈ [0, 1].

Example 2.6. When n = 5, k = 3, the unique solution of

x(5)(t) = 0, x(0) = a, x(1) = b, x′(0) = c, x′(1) = d, x′′(0) = e

can be explicitly given by

ψ(t) = aI0(t) + bJ0(t) + cI1(t) + dJ1(t) + eI2(t),

where

I0(t) = 3t4 − 4t3 + 1 ≥ 0, J0(t) = −3t4 + 4t3 ≥ 0,

I1(t) = t(2t + 1)(1− t)2 ≥ 0, J1(t) = t3 − t4 ≤ 0,

I2(t) =
1
2

t2(1− t)2 ≥ 0, t ∈ [0, 1].

Remark 2.7. Under assumptions (H1), (H2), we give the definition of lower and upper solution
for (k, n− k) conjugate boundary value problem.

Definition 2.8. u ∈ Cn[0, 1] is called a lower solution of (k, n− k) conjugate boundary value
problem if

(−1)n−ku(n)(t) ≤ f (t, u(t)), 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

u(i)(0) ≤ 0, if i ∈ I+; u(i)(0) ≥ 0, if i ∈ I−; u(i)(0) = 0, if i 6∈ I+ ∪ I−;

u(j)(1) ≤ 0, if j ∈ J+; u(j)(1) ≥ 0, if j ∈ J−; u(j)(1) = 0, if j 6∈ J+ ∪ J−.

Analogously, v ∈ Cn[0, 1] is called an upper solutions of (k, n− k) conjugate boundary value
problem if the above inequalities are reversed.

For example, u is a lower solution of (3, 2) conjugate boundary value problem if
u(5)(t) ≤ f (t, u(t)), 0 < t < 1,

u(0) ≤ 0, u′(0) ≤ 0, u′′(0) ≤ 0;

u(1) ≤ 0, u′(1) ≥ 0.

Now we consider the linear (k, n− k) conjugate boundary value problem(−1)n−kx(n)(t) = −Mx(t) + σ(t), 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(i)(0) = ai, x(j)(1) = bj, 0 ≤ i ≤ k− 1, 0 ≤ j ≤ n− k− 1
(2.1)

where M is a nonnegative constant and σ ∈ C[0, 1], ai, bj ∈ R.
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Lemma 2.9. If
αMB(n, n) < 1, (2.2)

where α is given in Lemma 2.1 and B(t, s) denotes the Beta function, then (2.1) has a unique solution
x, which can be expressed by

x(t) = ψ(t) +
∫ 1

0
Q(t, s)ψ(s)ds +

∫ 1

0
H(t, s)σ(s)ds, (2.3)

where ψ(t) is given in Remark 2.2,

G1(t, s) = −MG(t, s), Q(t, s) =
+∞

∑
m=1

Gm(t, s), (2.4)

Gm(t, s) = (−M)m
∫ 1

0
· · ·

∫ 1

0
G(t, r1)G(r1, r2) · · ·G(rm−1, s)dr1 · · · drm−1,

and

H(t, s) = G(t, s) +
∫ 1

0
Q(t, τ)G(τ, s)dτ.

All functions Gn(t, s), H(t, s), Q(t, s) are continuous on [0, 1]× [0, 1] and the series on the right-hand
side of (2.4) converges uniformly on [0, 1]× [0, 1].

Proof. It follows from the paper [10] that x ∈ Cn[0, 1] is a solution of (2.1) if and only if
x ∈ C[0, 1] is a solution of the following operator equation

x + Tx = ϕ (2.5)

with operator T : C[0, 1]→ C[0, 1] given by

(Tx)(t) = M
∫ 1

0
G(t, s)x(s)ds,

and

ϕ(t) = ψ(t) +
∫ 1

0
G(t, s)σ(s)ds. (2.6)

We shall prove r(T) < 1, where r(T) denotes the spectral radius of operator T. Actually,
for x ∈ C[0, 1], by Lemma 2.1, we have

|Tx(t)| ≤ M
∫ 1

0
G(t, s)|x(s)|ds

≤ αMtk(1− t)n−k
∫ 1

0
sn−k−1(1− s)k−1ds‖x‖

= αMB(k, n− k)‖x‖tk(1− t)n−k.

Hence, we have

|T2x(t)| ≤ M
∫ 1

0
G(t, s)|Tx(s)|ds

≤ α2M2B(k, n− k)‖x‖tk(1− t)n−k
∫ 1

0
sn−1(1− s)n−1ds

= α2M2B(k, n− k)B(n, n)‖x‖tk(1− t)n−k.
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By the induction method, we have

|Tmx(t)| ≤ αm MmB(k, n− k)Bm−1(n, n)‖x‖tk(1− t)n−k,

which implies that ‖Tm‖ ≤ αm MmB(k, n− k)Bm−1(n, n). It follows from r(T) = lim
m→∞

‖Tm‖1/m

that

r(T) ≤ αMB(n, n) < 1.

This yields that the unique solution of operator equation (2.5) is given by

x = (I + T)−1ϕ = (I − T + T2 + · · ·+ (−1)mTm + · · · )ϕ.

Substituting (2.6) into the above equality, we get (2.3) and the proof is complete.

Lemma 2.10. Suppose that x ∈ Cn[0, 1] satisfies
(−1)n−kx(n)(t) ≥ −Mx(t), 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(i)(0) ≥ 0, if i ∈ I+; x(i)(0) ≤ 0, if i ∈ I−; x(i)(0) = 0, if i 6∈ I+ ∪ I−,

x(j)(1) ≥ 0, if j ∈ J+; x(j)(1) ≤ 0, if j ∈ J−; x(j)(1) = 0, if j 6∈ J+ ∪ J−,

where the nonnegative constant M satisfies (2.2),

B(k, n− k)
[

Mαβ +
M3α2β2B(n, n)B(k + 1, n− k + 1)

1−M2α2β2B2(n, n)

]
<

β

n− 1
, (2.7)

MNα +
NM3α2βB(n, n)B(k, n− k)

1−M2α2β2B2(n, n)
<

1
n!

, (2.8)

in which

N = max
{∫ 1

0
sn−k−1(1− s)k−1y(s)ds : y ∈ {|Ii|, i ∈ I+ ∪ I−} ∪ {|Jj|, j ∈ J+ ∪ J−}

}
.

Then x(t) ≥ 0 for t ∈ [0, 1].

Proof. Let σ(t) = (−1)n−kx(n)(t) + Mx(t) and

ai = x(i)(0), 0 ≤ i ≤ k− 1; bj = x(j)(1), 0 ≤ j ≤ n− k− 1.

Then σ(t) ≥ 0 andai ≥ 0, if i ∈ I+; ai ≤ 0, if i ∈ I−; ai = 0, if i 6∈ I+ ∪ I−;

bj ≥ 0, if j ∈ J+; bj ≤ 0, if j ∈ J−; bj = 0, if j 6∈ J+ ∪ J−.

By Lemma 2.9, (2.3) holds in which ψ(t) ≥ 0 for t ∈ [0, 1]. It follows from the expression of
Gm(t, s) that Gm(t, s) ≤ 0 when m is odd and Gm(t, s) ≥ 0 when m is even. Thus, we obtain



Monotone iterative technique for (k, n− k) conjugate boundary value problems 7

for m = 3, 5, . . ., by using Lemma 2.1,

Gm(t, s) = −Mm
∫ 1

0
· · ·

∫ 1

0
G(t, r1)G(r1, r2) · · ·G(rm−2, rm−1)G(rm−1, s)dr1 · · · drm−1

≥ −Mm
∫ 1

0
· · ·

∫ 1

0

(
αg(t)rn−k−1

1 (1− r1)
k−1
)
·
(

αrk
1(1− r1)

n−krn−k−1
2 (1− r2)

k−1
)
· · ·

×
(

αrk
m−2(1− rm−2)

n−krn−k−1
m−1 (1− rm−1)

k−1
)
·
(

βsn−k(1− s)k
)

dr1 · · · drm−1

= −Mmαm−1βg(t)sn−k(1− s)k
∫ 1

0
rn−1

1 (1− r1)
n−1dr1

×
∫ 1

0
rn−1

2 (1− r2)
n−1dr2 · · ·

∫ 1

0
rn−1

m−2(1− rm−2)
n−1drm−2

×
∫ 1

0
rn−k−1

m−1 (1− rm−1)
k−1drm−1

= −Mmαm−1βg(t)sn−k(1− s)kBm−2(n, n)B(k, n− k).

Consequently, we have

H(t, s) = G(t, s) +
∫ 1

0
Q(t, τ)G(τ, s)dτ = G(t, s) +

+∞

∑
m=1

∫ 1

0
Gm(t, τ)G(τ, s)dτ

≥ G(t, s)−M
∫ 1

0
G(t, τ)G(τ, s)dτ +

+∞

∑
m=1

∫ 1

0
G2m+1(t, τ)G(τ, s)dτ

≥ β

n− 1
g(t)sn−k(1− s)k −Mαβg(t)sn−k(1− s)k

∫ 1

0
τn−k−1(1− τ)k−1dτ

−
+∞

∑
m=1

M2m+1α2mβ2g(t)sn−k(1− s)kB2m−1(n, n)B(k, n− k)
∫ 1

0
τn−k(1− τ)kdτ

= g(t)sn−k(1− s)k
[

β

n− 1
−MαβB(k, n− k)

−
+∞

∑
m=1

M2m+1α2mβ2B2m−1(n, n)B(k, n− k)B(k + 1, n− k + 1)
]

.

and for y ∈ {Ii, i ∈ I+} ∪ {−Ii, i ∈ I−} ∪ {Jj, j ∈ J+} ∪ {−Jj, j ∈ J−},

y(t) +
∫ 1

0
Q(t, s)y(s)ds

≥ y(t)−M
∫ 1

0
G(t, s)y(s)ds +

+∞

∑
m=1

∫ 1

0
G2m+1(t, s)y(s)ds

≥ g(t)
n!
−Mαg(t)

∫ 1

0
sn−k−1(1− s)k−1y(s)ds +

+∞

∑
m=1

∫ 1

0
G2m+1(t, s)y(s)ds

≥ g(t)
n!
−Mαg(t)

∫ 1

0
sn−k−1(1− s)k−1y(s)ds

−
+∞

∑
m=1

M2m+1α2mβB2m−1(n, n)B(k, n− k)g(t)
∫ 1

0
sn−k(1− s)ky(s)ds

≥ g(t)
n!
−MNαg(t)− N

+∞

∑
m=1

M2m+1α2mβB2m−1(n, n)B(k, n− k)g(t)

= g(t)

[
1
n!
−MNα− N

+∞

∑
m=1

M2m+1α2mβB2m−1(n, n)B(k, n− k)

]
.
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Thus, by (2.8), we have that x(t) ≥ 0 for t ∈ [0, 1], and the lemma is proved.

3 Main results

In this section, we prove the existence of extremal solutions of differential equation (1.1).

Theorem 3.1. Let f ∈ C([0, 1] × R, R); v0, w0 be lower and upper solutions of (1.1) such that
v0(t) ≤ w0(t) on [0, 1]. Suppose further that there exists M > 0 such that

f (t, x)− f (t, y) ≥ −M(x− y), (3.1)

whenever v0(t) ≤ y ≤ x ≤ w0(t) and M satisfies (2.2), (2.7) and (2.8). Then there exist monotone
sequences {vm(t)}, {wm(t)} which converge uniformly on [0, 1] to the extremal solutions of problem
(1.1) in the order interval [v0, w0] = {u ∈ C[0, 1] : v0(t) ≤ u(t) ≤ w0(t), t ∈ [0, 1]}.

Proof. For any η ∈ [v0, w0], we consider the linear differential equation(−1)n−kx(n)(t) = −Mx(t) + f (t, η(t)) + Mη(t), 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(i)(0) = x(j)(1) = 0, 0 ≤ i ≤ k− 1, 0 ≤ j ≤ n− k− 1.
(3.2)

By Lemma 2.9, (3.2) has a unique solution x(t) =
∫ 1

0 H(t, s)[ f (s, η(s)) + Mη(s)]ds in C[0, 1].
Define the mapping A by Aη = x with operator A : [v0, w0]→ C[0, 1] given by

(Aη)(t) =
∫ 1

0
H(t, s)[ f (s, η(s)) + Mη(s)]ds

and use it to construct the sequences {vm(t)}, {wm(t)}. Let us prove that

(i) v0 ≤ Av0, Aw0 ≤ w0;

(ii) A is a monotone operator on [v0, w0].

To prove (i), set Av0 = v1, where v1 is the unique solution of (3.2) with η = v0. Setting
p = v1 − v0, we see that

(−1)n−k p(n)(t) ≥ −Mp(t), 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

p(i)(0) ≥ 0, if i ∈ I+; p(i)(0) ≤ 0, if i ∈ I−; p(i)(0) = 0, if i 6∈ I+ ∪ I−,

p(j)(1) ≥ 0, if j ∈ J+; p(j)(1) ≤ 0, if j ∈ J−; p(j)(1) = 0, if j 6∈ J+ ∪ J−.

This shows, by Lemma 2.10, that p(t) ≥ 0 on [0,1] and hence v0 ≤ Av0. Similarly, we can
show that Aw0 ≤ w0.

To prove (ii), let η1, η2 ∈ [v0, w0] such that η1 ≤ η2. Suppose that x1 = Aη1, and x2 = Aη2.
Set p = x2 − x1 so that(−1)n−k p(n)(t) ≥ −Mp(t), 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

p(i)(0) = p(j)(1) = 0, 0 ≤ i ≤ k− 1, 0 ≤ j ≤ n− k− 1,
(3.3)

here we have used the condition (3.1). By Lemma 2.10, (3.3) implies that Aη1 ≤ Aη2 proving
(ii).
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Now let vm = Avm−1, wm = Awm−1, m = 1, 2, . . . . From the foregoing arguments, we
conclude that

v0 ≤ v1 ≤ · · · ≤ vm ≤ · · · ≤ · · ·wm ≤ · · · ≤ w1 ≤ w0. (3.4)

Obviously the sequences {vm}, {wm} are uniformly bounded on [0, 1], and by (3.1), we have

f (t, v0(t)) + Mv0(t) ≤ f (t, vm(t)) + Mvm(t)

≤ f (t, wm(t)) + Mwm(t) ≤ f (t, w0(t)) + Mw0(t), m ∈N, t ∈ [0, 1].

This together with the continuity of H(t, s) on [0, 1]× [0, 1] imply that {vm}∞
m=2 = {Avm}∞

m=1
and {wm}∞

m=2 = {Awm}∞
m=1 are two sequentially compact sets. As a result, there exist subse-

quences {vmj}, {wmj} that converge uniformly on [0, 1]. In view of (3.4), it also follows that the
entire sequences {vm}, {wm} converge uniformly and monotonically to their limit functions
v∗(t), w∗(t) respectively, that is,

lim
m→∞

vm(t) = v∗(t), lim
m→∞

wm(t) = w∗(t), uniformly on [0, 1].

It is now easy to show that v∗, w∗ are solutions of conjugate boundary value problem (1.1),
using the corresponding integral equation

x(t) = (Aη)(t) =
∫ 1

0
H(t, s)[ f (s, η(s)) + Mη(s)]ds

for (3.2).
Next, we prove that v∗, w∗ are extremal solutions of (1.1) in [v0, w0]. In fact, we assume

that x is any solution of (1.1). That is,(−1)n−kx(n)(t) = f (t, x(t)), 0 < t < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

x(i)(0) = x(j)(1) = 0, 0 ≤ i ≤ k− 1, 0 ≤ j ≤ n− k− 1.

By (3.1) and Lemma 2.10, it is easy by induction to show that

vm ≤ x ≤ wm, m = 1, 2, 3 . . . . (3.5)

Now, letting m → ∞ in (3.5), we have v∗ ≤ x ≤ w∗. That is, v∗ and w∗ are extremal solutions
of (1.1) in [v0, w0].

4 Examples

Consider the following (2, 2) conjugate boundary value problems:
x(4)(t) =

1
5
(t2 − x(t))3 − 1

5
t9, 0 < t < 1,

x(0) = x′(0) = x(1) = x′(1) = 0.
(4.1)
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Let f (t, x) = 1
5 (t

2 − x)3 − 1
5 t9. Obviously, f ∈ C([0, 1] × R, R). Take w0(t) = t2 − 3t3/4,

v0(t) = 0, then v0(t) ≤ w0(t) for t ∈ [0, 1] and we have
w(4)

0 (t) = 0 ≥ − 37
320

t9 =
1
5
(t2 − w0(t))]3 −

1
5

t9, 0 < t < 1,

w0(0) = w′0(0) = 0, w0(1) =
1
4
≥ 0, w′0(1) = −

1
4
≤ 0,v(4)0 (t) = 0 ≤ t6 − t9

5
=

1
5
(t2 − v0(t))3 − 1

5
t9, 0 < t < 1,

v0(0) = v′0(0) = v0(1) = v′0(1) = 0.

Consequently, by Definition 2.8 and Example 2.5, v0, w0 are lower and upper solutions of (4.1)
respectively. If v0(t) ≤ v ≤ u ≤ w0(t), we have

f (t, u)− f (t, v) =
1
5
(t2 − u)3 − 1

5
v(t2 − v)3 ≥ −3

5
(u− v).

It is clear that M = 3
5 , α = 1

2 , β = 1, n = 4, k = 2,

N = max
{∫ 1

0
s(1− s)y(s)ds : y ∈ {2t3 − 3t2 + 1,−2t3 + 3t2, t3 − 2t2 + t, t2 − t3}

}
=

1
12

,

and so, it is easy to show that inequalities (2.2), (2.7) and (2.8) are satisfied.
By Theorem 3.1, problem (4.1) has extremal solutions in [v0, w0].
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