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Abstract

We study a class of second order nonlinear difference boundary value problems

with separated boundary conditions. A series of criteria are obtained for the

existence of one, two, arbitrary number, and even an infinite number of positive

solutions. A theorem for the nonexistence of positive solutions is also derived.

Several examples are given to demonstrate the applications. Our results improve

and supplement several results in the literature.
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1 Introduction

In this paper, we study the existence of positive solutions of the second order boundary
value problem (BVP) consisting of the difference equation

−∆2u(k) = w(k)f(k, u(k + 1)), k ∈ N(0, K), (1.1)

and the separated boundary condition (BC)

a11u(0) − a12∆u(0) = 0,
a21u(K + 1) + a22∆u(K + 1) = 0,

(1.2)

where N(0, K) = {0, 1, . . . , K}.
Second order difference BVPs have drawn attention in research in recent years.

Results have been obtained for the existence of positive solutions for different types
of BVPs, see Ma and Raffoul [12] and Pang and Ge [13] for multi-point BVPs, Tian
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and Ge [14] for BVPs on the half-line, and Yu, Zhu, and Guo [15] for BVPs with
parameters. As regard to BVP (1.1), (1.2), Aykut and Guseinov [3] derived conditions
for the existence of one positive solution. However, to the best of the knowledge of the
authors, very little is known on the existence of multiple positive solutions and on the
nonexistence of positive solutions.

In this paper, we will establish a series of criteria for BVP (1.1), (1.2) to have one,
two, any arbitrary number, and even a countably infinite number of positive solutions.
Criteria for nonexistence of positive solutions are also derived. Several examples are
given to demonstrate the applications. Our results improve the results in [3] even for
the existence of one positive solution.

This paper is organized as follows: After this introduction, our main results are
stated in Section 2. Several examples are given in Section 3. All the proofs are given
in Section 4.

2 Main Results

Throughout this paper, we assume without further mention that

(H1) aij ≥ 0 for i, j = 1, 2 such that a22 > 0, a11 + a12 > 0, and

b := a11a21(K + 1) + a11a22 + a12a21 > 0; (2.1)

(H2) w(k) ≥ 0 on N(0, K) such that
∑K

k=0 w(k) > 0;

(H3) for fixed k ∈ N(0, K), f(k, ·) : [0,∞) → [0,∞) is continuous.

Define G : N(0, K + 2) × N(0, K) → R as

G(k, l) =
1

b

{

[a12 + a11(l + 1)][a22 + a21(K + 1 − k)], 0 ≤ l ≤ k − 1,
(a12 + a11k)[a22 + a21(K − l)], k ≤ l ≤ K,

(2.2)

where b is defined by (2.1). It is known that G(k, l) is the Green’s function of the BVP
consisting of the equation

−∆2u(k) = 0, k ∈ N(0, K), (2.3)

and BC (1.2), see Agarwal [1] for the detail. Let

α = min

{

a11 + a12

a11(K + 1) + a12
,

a22

a11K + a22

}

, (2.4)

β = max
k∈N(1,K+1)

{

K
∑

l=0

G(k, l)w(l)

}

. (2.5)

From Aykut and Guseinov [3], we know that 0 < α < 1 and

0 < αG(l + 1, l) ≤ G(k, l) ≤ G(l + 1, l) on N(1, K + 1) × N(0, K). (2.6)
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Definition 2.1 A function u(k) : N(0, K + 2) → R is said to be a positive solution of
BVP (1.1), (1.2) if u(k) satisfies BVP (1.1), (1.2) and u(k) > 0 on N(1, K + 1).

Define
‖u‖ = max

k∈N(1,K+1)
|u(k)|.

The first theorem is our basic result on the existence of positive solutions of BVP
(1.1), (1.2).

Theorem 2.1 Assume there exist 0 < r∗ < r∗ [respectively, 0 < r∗ < r∗] such that

f(k, x) ≤ β−1r∗ for all (k, x) ∈ N(0, K) × [αr∗, r∗] (2.7)

and
f(k, x) ≥ β−1r∗ for all (k, x) ∈ N(0, K) × [αr∗, r∗]. (2.8)

Then BVP (1.1), (1.2) has at least one positive solution u with r∗ ≤ ‖u‖ ≤ r∗ [respec-
tively, r∗ ≤ ‖u‖ ≤ r∗].

In the sequel, we will use the following notation:

f0 = lim inf
x→0

min
k∈N(0,K)

f(k, x)/x, f∞ = lim inf
x→∞

min
k∈N(0,K)

f(k, x)/x;

f 0 = lim sup
x→0

max
k∈N(0,K)

f(k, x)/x, f∞ = lim sup
x→∞

max
k∈N(0,K)

f(k, x)/x.

The next three theorems are derived from Theorem 2.1 using f0, f∞, f 0, and f∞.

Theorem 2.2 BVP (1.1), (1.2) has at least one positive solution if either

(a) f 0 < β−1, and f∞ > (αβ)−1; or

(b) f0 > (αβ)−1 and f∞ < β−1.

Theorem 2.3 Assume there exists r∗ > 0 such that (2.7) holds.

(a) If f0 > (αβ)−1, then BVP (1.1), (1.2) has at least one positive solution u with
‖u‖ ≤ r∗;

(b) if f∞ > (αβ)−1, then BVP (1.1), (1.2) has at least one positive solution u with
‖u‖ ≥ r∗.

Theorem 2.4 Assume there exists r∗ > 0 such that (2.8) holds.

(a) If f 0 < β−1, then BVP (1.1), (1.2) has at least one positive solution u with
‖u‖ ≤ r∗;
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(b) if f∞ < β−1, then BVP (1.1), (1.2) has at least one positive solution u with
‖u‖ ≥ r∗.

Combining Theorems 2.3 and 2.4 we obtain results on the existence of at least two
positive solutions.

Theorem 2.5 Assume either

(a) f0 > (αβ)−1 and f∞ > (αβ)−1, and there exists r > 0 such that

f(k, x) < β−1r for all (k, x) ∈ N(0, K) × [αr, r]; or (2.9)

(b) f 0 < β−1 and f∞ < β−1, and there exists r > 0 such that

f(k, x) > β−1r for all (k, x) ∈ N(0, K) × [αr, r]. (2.10)

Then BVP (1.1), (1.2) has at least two positive solutions u1 and u2 with ‖u1‖ < r <
‖u2‖.

Note that in Theorem 2.5, the inequalities in (2.9) and (2.10) are strict and hence
are different from those in (2.7) and (2.8) in Theorem 2.1. This is to guarantee that
the two solutions u1 and u2 are different.

By applying Theorem 2.1 repeatedly, we can generalize the conclusions to obtain
criteria for the existence of multiple positive solutions.

Theorem 2.6 Let {ri}
N
i=1 ⊂ R such that 0 < r1 < r2 < r3 < · · · < rN . Assume either

(a) f satisfies (2.9) with r = ri when i is odd, and satisfies (2.10) with r = ri when
i is even; or

(b) f satisfies (2.9) with r = ri when i is even, and satisfies (2.10) with r = ri when
i is odd.

Then BVP (1.1), (1.2) has at least N − 1 positive solutions ui with ri < ‖ui‖ < ri+1,
i = 1, 2, . . . , N − 1.

Theorem 2.7 Let {ri}
∞

i=1 ⊂ R such that 0 < r1 < r2 < r3 < · · · . Assume either

(a) f satisfies (2.7) with r∗ = ri when i is odd, and satisfies (2.8) with r∗ = ri when
i is even; or

(b) f satisfies (2.7) with r∗ = ri when i is even, and satisfies (2.8) with r∗ = ri when
i is odd.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.
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The following is an immediate consequence of Theorem 2.7.

Corollary 2.1 Let {ri}
∞

i=1 ⊂ R such that 0 < r1 < r2 < r3 < · · · . Let E1 =
∪∞

i=1[αr2i−1, r2i−1] and E2 = ∪∞

i=1[αr2i, r2i]. Assume

lim sup
E1∋x→∞

max
k∈N(0,K)

f(k, x)

x
< β−1 and lim inf

E2∋x→∞

min
k∈N(0,K)

f(k, x)

x
> (αβ)−1.

Then BVP (1.1), (1.2) has an infinite number of positive solutions.

We observe that in the above theorems, if one of f0, f∞, f 0, f∞ is involved and it
is between β−1 and (αβ)−1, then the corresponding conclusions fail. Motivated by the
ideas in [6, 10], we employ the first eigenvalue of a Sturm-Liouville problem (SLP)
associated with BVP (1.1), (1.2) and the topological homotopy invariance method to
improve the criteria given in theorems 2.2-2.5.

Consider the SLP consisting of the equation

−∆2u(k) = µw(k)u(k + 1), k ∈ N(0, K), (2.11)

and BC (1.2). Let µ0 be its fist eigenvalue with an associated eigenfunction v0(k). It
is known from assumption (H1) that µ0 > 0, v0(k) > 0 on N(1, K + 1), see [2, 8, 9, 11]
for the detail. Now we have

Theorem 2.8 BVP (1.1), (1.2) has at least one positive solution if f satisfies one of
the following conditions:

(a) f 0 < µ0 and f∞ > µ0;

(b) f0 > µ0 and f∞ < µ0;

(c) f0 > µ0 and there exists r∗ such that (2.7) holds;

(d) f∞ > µ0 and there exists r∗ such that (2.7) holds;

(e) f 0 < µ0 and there exists r∗ such that (2.8) holds;

(f) f∞ < µ0 and there exists r∗ such that (2.8) holds.

Theorem 2.9 BVP (1.1), (1.2) has at least two positive solutions if either

(a) f0 > µ0, f∞ > µ0, and there exists r such that (2.9) holds; or

(b) f 0 < µ0, f∞ < µ0, and there exists r such that (2.10) holds.
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Remark 2.1 We claim that

β−1 ≤ µ0 ≤ (αβ)−1, (2.12)

and hence Theorems 2.8 and 2.9 improve the results of Theorems 2.2-2.5. In fact, for
k ∈ N(1, K + 1) we have

v0(k) = µ0

K
∑

l=0

G(k, l)w(l)v0(l + 1).

Let k1 ∈ N(1, K + 1) with v0(k1) = ‖v0‖. Then

‖v0‖ = µ0

K
∑

l=0

G(k1, l)w(l)v0(l + 1) ≤ µ0β‖v0‖. (2.13)

On the other hand, we observe that w(l)v0(l + 1) 6≡ 0 on N(0, K). For otherwise,
every µ ∈ R is an eigenvalue of SLP (2.11), (1.2). From (2.6) we have that for any
k ∈ N(1, K + 1)

v0(k) ≥ µ0

K
∑

l=0

αG(l + 1, l)w(l)v0(l + 1)

≥ αµ0

K
∑

l=0

G(k1, l)w(l)v0(l + 1) = αv0(k1) = α‖v0‖.

Let k2 ∈ N(1, K + 1) satisfy
K

∑

l=0

G(k2, l)w(l) = β. (2.14)

Then

‖v0‖ ≥ µ0

K
∑

l=0

G(k2, l)w(l)v0(l + 1) ≥ µ0αβ‖v0‖. (2.15)

The combination of (2.13) and (2.15) proves our claim.

Finally, we present a result on the nonexistence of positive solutions of BVP (1.1),
(1.2).

Theorem 2.10 BVP (1.1), (1.2) has no positive solutions if

(a) f(k, x)/x < β−1 for all (k, x) ∈ N(0, K) × (0,∞), or

(b) f(k, x)/x > (αβ)−1 for all (k, x) ∈ N(0, K) × (0,∞).
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3 Examples

In this section, we give several examples to demonstrate the applications of the criteria
obtained in Section 2. For simplicity we choose w(k) ≡ 1 and f(k, x) ≡ f(x) in all the
examples.

Example 3.1 Let f(x) = xp.
If p > 1, then limx→0+ f(x)/x = 0 and limx→∞ f(x)/x = ∞. By Theorem 2.2 (a),

BVP (1.1), (1.2) has at least one positive solution.
If 0 < p < 1, then limx→0+ f(x)/x = ∞ and limx→∞ f(x)/x = 0. By Theorem 2.2

(b), BVP (1.1), (1.2) has at least one positive solution.

Example 3.2 Let f(x) = h(xp1 + xp2), where 0 < p1 < 1 < p2 < ∞. Let r =
(

1−p1

p2−1

)1/(p2−p1)

. Then

(a) BVP (1.1), (1.2) has at least one positive solution when h = r(rp1 + rp2)−1β−1;

(b) BVP (1.1), (1.2) has at least two positive solutions u1 and u2 with ‖u1‖ < r <
‖u2‖ when 0 < h < r(rp1 + rp2)−1β−1;

(c) BVP (1.1), (1.2) has no positive solutions when h > r(rp1 + rp2)−1(αβ)−1.

In fact, it is clear that limx→0+ f(x)/x = limx→∞ f(x)/x = ∞, f(x) is strictly
increasing, and r is the minimum point of f(x)/x on (0,∞).

When h = r(rp1 + rp2)−1β−1, we have f(x) ≤ f(r) = β−1r for all x ∈ [αr, r]. Then
from Theorem 2.3 (a), BVP (1.1), (1.2) has a positive solution u1 with ‖u1‖ ≤ r.
Similarly from Theorem 2.3 (b), BVP (1.1), (1.2) has a positive solution u2 with
‖u2‖ ≥ r. However, u1 and u2 may be the same for the case when ‖u1‖ = ‖u2‖ = r.

When 0 < h < r(rp1 + rp2)−1β−1, by a similar argument and from Theorem 2.5 (a),
we obtain the conclusion.

When h > r(rp1 + rp2)−1(αβ)−1, f(x)/x ≥ f(r)/r > (αβ)−1 on (0,∞). Then the
conclusion follows from Theorem 2.10 (b).

Example 3.3 Let

f(x) =

{

h/(x−p1 + x−p2), x > 0,
0, x = 0,

where h > 0, p1 > 1 and 0 ≤ p2 < 1. Let r =
(

p1−1
1−p2

)1/(p1−p2)

. Then

(a) BVP (1.1), (1.2) has at least one positive solution when h = (r1−p1+r1−p2)(αβ)−1;

(b) BVP (1.1), (1.2) has at least two positive solutions u1 and u2 with ‖u1‖ < r <
‖u2‖ when h > (r1−p1 + r1−p2)(αβ)−1;

(c) BVP (1.1), (1.2) has no positive solutions when 0 < h < (r1−p1 + r1−p2)β−1.
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In fact, it is clear that limx→0+ f(x)/x = limx→∞ f(x)/x = 0, f(x) is strictly
increasing and r is the maximum point of f(x)/x on (0,∞).

When h = (r1−p1 + r1−p2)(αβ)−1, f(r) = (αβ)−1r. Then f(x) ≥ f(r) = (αβ)−1r on
[r, α−1r], i.e., f(x) ≥ β−1r∗ on [αr∗, r∗], where r∗ = α−1r. By Theorem 2.4 (a) or (b),
There exists at least one positive solution.

When h > (r1−p1 + r1−p2)(αβ)−1, by a similar argument and from Theorem 2.5 (b),
we obtain the conclusion.

When 0 < h < (r1−p1 + r1−p2)β−1, f(x)/x ≤ f(r)/r < β−1 on (0,∞). Then the
conclusion follows from Theorem 2.10 (a).

Example 3.4 Let

f(x) =

{

(α−1 + 1)β−1x(sin(h ln x) + 1)/2, x > 0,
0, x = 0,

where 0 < h < (π − 2 sin−1 δ)/ ln(α−1) with δ = (α−1 − 1)/(α−1 + 1). We claim that
BVP (1.1), (1.2) has an infinite number of positive solutions.

To show this, for j = 2i + 1, i ∈ N, let

ξj = exp(h−1(sin−1 δ + (j − 1)π)), ηj = exp(h−1(jπ − sin−1 δ)).

Then

ηj/ξj = exp(h−1(π − 2 sin−1 δ)) > exp(ln(α−1)) = α−1,

hence ξj < αηj. Note that for x ∈ [αηj, ηj] ⊂ [ξj, ηj ], sin(h lnx) ≥ sin(sin−1 δ) = δ.
Therefore for x ∈ [αηj, ηj ],

f(x) ≥ (α−1 + 1)β−1αηj(δ + 1)/2 = β−1ηj ,

i.e., (2.8) holds with r∗ = ηj .
For j = 2i, i ∈ N, let

ξj = exp(h−1((j − 1)π − sin−1 δ)), ηj = exp(h−1(jπ + sin−1 δ)).

Then

ηj/ξj = exp(h−1(π + 2 sin−1 δ)) > exp(ln(α−1)) = α−1,

hence ξj < αηj. Note that for x ∈ [αηj, ηj] ⊂ [ξj, ηj ], sin(h lnx) ≤ −δ. Therefore for
x ∈ [αηj , ηj],

f(x) ≤ (α−1 + 1)β−1ηj(−δ + 1)/2 = β−1ηj,

i.e., (2.7) holds with r∗ = ηj .
Therefore by Theorem 2.7, BVP (1.1), (1.2) has an infinite number of positive

solutions.
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4 Proofs

Let X be a Banach space, Ω ⊂ X a cone in X, and Γ : X → X a completely continuous
operator. For r > 0, define

Ωr = {u ∈ Ω|‖u‖ < r} and ∂Ωr = {u ∈ Ω|‖u‖ = r}.

Let i(Γ, Ωr, Ω) be the fixed point index of Γ on Ωr with respect to Ω. We will use the
following well-known lemmas on fixed-point indices to prove our main results. For the
detail of the fixed point index theory, see [5, 7].

Lemma 4.1 Assume Γu 6= u for u ∈ ∂Ωr. Then
(a) If ‖Γu‖ ≥ ‖u‖ for u ∈ ∂Ωr, then i(Γ, Ωr, Ω) = 0.
(b) If ‖Γu‖ ≤ ‖u‖ for u ∈ ∂Ωr, then i(Γ, Ωr, Ω) = 1.

Lemma 4.2 Let 0 < r1 < r2 satisfy

i(Γ, Ωr1
, Ω) = 0 and i(Γ, Ωr2

, Ω) = 1;

or
i(Γ, Ωr1

, Ω) = 1 and i(Γ, Ωr2
, Ω) = 0.

Then Γ has a fixed point in Ω̄r2
\ Ωr1

.

Define D = {u : N(1, K + 1) → R}, and let ‖u‖ = maxk∈N(1,K+1) |u(k)| for u ∈ D.
It is easy to see (D, ‖ · ‖) is a Banach space. Let α be defined by (2.4). Define a cone
Ω in D by

Ω = {u ∈ D | u(k) ≥ 0, k ∈ N(1, K + 1) and min
k∈N(1,K+1)

u(k) ≥ α‖u‖} (4.1)

and an operator Γ : D → D by

Γu =

K
∑

l=0

G(k, l)w(l)f(l, u(l + 1)), k ∈ N(1, K + 1). (4.2)

Lemma 4.3 Γ(Ω) ⊂ Ω and Γ is completely continuous.

Proof : For any u ∈ Ω, Γu ≥ 0 on N(1, K + 1). By (2.6),

min
k∈N(1,K+1)

(Γu)(k) = min
k∈N(1,K+1)

K
∑

l=0

G(k, l)w(l)f(l, u(l + 1))

≥ α
K

∑

l=0

G(l + 1, l)w(l)f(l, u(l + 1))

≥ α max
k∈N(1,K+1)

K
∑

l=0

G(k, l)w(l)f(l, u(l + 1)) = α‖Γu‖.
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Therefore, Γ(Ω) ⊂ Ω. The complete continuity of Γ can be shown by a standard
argument using the Arzela-Arscoli Theorem. We omit the details.

Proof of Theorem 2.1. We observe that BVP (1.1), (1.2) has a positive solution
u(k), k ∈ N(0, K + 2), if and only if the operator Γ defined by (4.2) has a positive
fixed point u(k), k ∈ N(1, K + 1). In fact, the fixed point of Γ can be extended to
N(0, K + 2) so that BC (1.2) is satisfied. Therefore, it is enough to show that Γ has a
positive fixed point.

For any u ∈ ∂Ωr∗ , ‖u‖ = r∗ and αr∗ ≤ u(k) ≤ r∗ on N(1, K + 1). Without loss
of generality, we assume Γu 6= u. For otherwise, Γu = u implies u is a positive fixed
point. From (2.7), f(k, u(k + 1)) ≤ β−1r∗ on N(0, K). For any k ∈ N(1, K + 1)

(Γu)(k) =

K
∑

l=0

G(k, l)w(l)f(l, u(l + 1))

≤ β−1r∗

K
∑

l=0

G(k, l)w(l) ≤ β−1r∗β = r∗ = ‖u‖.

Thus ‖Γu‖ ≤ ‖u‖. By Lemma 4.1 (b), i(Γ, Ωr∗ , Ω) = 1.
For any u ∈ ∂Ωr∗ , ‖u‖ = r∗ and αr∗ ≤ u(k) ≤ r∗ on N(1, K + 1). From (2.8),

f(k, u(k + 1)) ≥ β−1r∗ on N(0, K). Let k2 ∈ N(1, K + 1) be defined by (2.14). Then

(Γu)(k2) =
K

∑

l=0

G(k2, l)w(l)f(l, u(l + 1))

≥ β−1r∗
K

∑

l=0

G(k2, l)w(l) = ββ−1r∗ = ‖u‖.

Thus ‖Γu‖ ≥ ‖u‖. By Lemma 4.1 (a), i(Γ, Ωr∗ , Ω) = 0.
If r∗ < r∗, then by Lemma 4.2, Γ has a fixed point u ∈ Ω̄r∗ \ Ωr∗ . Similarly, if

r∗ > r∗, then Γ has a fixed point u ∈ Ω̄r∗ \ Ωr∗ . In each case, u is a positive function
with min{r∗, r

∗} ≤ ‖u‖ ≤ max{r∗, r
∗}.

Proof of Theorem 2.2. (a) If f 0 < β−1, there exists r∗ > 0 such that

f(k, x) < β−1x ≤ β−1r∗, (k, x) ∈ N(0, K) × [0, r∗].

If f∞ > (αβ)−1, there exists r̂ > r∗ such that

f(k, x) > (αβ)−1x, (k, x) ∈ N(0, K) × [r̂,∞).

Then for any r∗ with αr∗ ≥ r̂

f(k, x) > (αβ)−1x ≥ β−1r∗ for all (k, x) ∈ N(0, K) × [αr∗, r∗].
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Then the conclusion follows from Theorem 2.1.

(b) The proof is similar to Part (a) and hence is omitted.

The proofs of Theorems 2.3 and 2.4 are in the same way and hence are omitted.

Proof of Theorem 2.5. (a) If there exists r > 0 such that (2.9) holds, then there exist
r1 and r2 such that r1 < r < r2 and f(k, x) < β−1x for all (k, x) ∈ N(0, K) × [αri, ri],
i = 1, 2. By Theorem 2.3 (a) and (b), BVP (1.1), (1.2) has two positive solutions u1

and u2 satisfying ‖u1‖ ≤ r1 and ‖u2‖ ≥ r2.

Similarly, case (b) follows from Theorem 2.4.

The proofs of Theorems 2.6 and 2.7 are in the same way and are hence omitted.

Proof of Corollary 2.1. From the assumption we see that for sufficiently large i

f(k, x)

x
< β−1 for all (k, x) ∈ N(0, K) × [αr2i−1, r2i−1]

and
f(k, x)

x
> (αβ)−1 for all (k, x) ∈ N(0, K) × [αr2i, r2i].

This shows that for sufficiently large i,

f(k, x) < β−1x ≤ β−1r2i−1

for all (k, x) ∈ N(0, K) × [αr2i−1, r2i−1] and

f(k, x) > (αβ)−1x ≥ (αβ)−1αr2i = β−1r2i

for all (k, x) ∈ N(0, K) × [αr2i, r2i].

Therefore, the conclusion follows from Theorem 2.7.

To prove Theorems 2.8 and 2.9, we need the following lemma.

Lemma 4.4 (a) Assume f0 > µ0. Then i(Γ, Ωr, Ω) = 0 for all sufficiently small
r > 0.

(b) Assume f∞ > µ0. Then i(Γ, Ωr, Ω) = 0 for all sufficiently large r > 0.

(c) Assume f 0 < µ0. Then i(Γ, Ωr, Ω) = 1 for all sufficiently small r > 0.

(d) Assume f∞ < µ0. Then i(Γ, Ωr, Ω) = 1 for all sufficiently large r > 0.
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Proof. In this proof, we will use the following integration by parts formulas given in
[1, 4]

b
∑

k=a

f(k + 1)∆g(k) = f(k)g(k)|b+1
a −

b
∑

k=a

∆f(k)g(k) (4.3)

and
b

∑

k=a

f(k)∆g(k) = f(k)g(k)|b+1
a −

b
∑

k=a

∆f(k)g(k + 1). (4.4)

(a) Let 0 < p < 1 be fixed and define Γ1 : D → D by

(Γ1u)(k) =
K

∑

l=0

G(k, l)w(l)up(l + 1).

Similar to the proof of Lemma 4.3, we can show that Γ1 is compact and Γ1Ω ⊂ Ω.
Define r1 = (αp+1

∑K
l=0 G(l + 1, l)w(l))1/(1−p). Then for 0 < r ≤ r1 and u ∈ ∂Ωr,

up(l) ≥ (αr)p on N(1, K + 1) and hence

‖Γ1u‖ = max
k∈N(1,K+1)

(Γ1u)(k) = max
k∈N(1,K+1)

K
∑

l=0

G(k, l)w(l)up(l + 1)

≥ α

K
∑

l=0

G(l + 1, l)w(l)(αr)p = α(αr)p

K
∑

l=0

G(l + 1, l)w(l)

= α(αr1)
p(r/r1)

p
K

∑

l=0

G(l + 1, l)w(l) ≥ r1r/r1 = r = ‖u‖. (4.5)

By Lemma 4.1 (a), i(Γ1, Ωr, Ω) = 0.

Define a homotopy operator H : [0, 1] × Ω → Ω by

H(s, u) = (1 − s)Γu + sΓ1u.

Then H(s, ·) is compact for 0 ≤ s ≤ 1. Since f0 > µ0, we can choose ε > 0 and
0 < r2 ≤ r1 such that for (k, x) ∈ N(0, K) × [0, r2]

f(k, x) ≥ (µ0 + ε)x and xp ≥ (µ0 + ε)x.

Let 0 < r ≤ r2. We now show that H(s, u) 6= u for all 0 ≤ s ≤ 1 and u ∈ K ∩ ∂Ωr.
Assume the contrary, i.e., there exists s1 ∈ [0, 1] and u1 ∈ ∂Ωr with H(s1, u1) = u1.
Then u1 satisfies

−∆2u1(k) = (1 − s1)w(k)f(k, u1(k + 1)) + s1w(k)up
1(w + 1)
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and BC (1.2). Hence

K
∑

l=0

[

−∆2u1(l)v0(l + 1)
]

=

K
∑

l=0

w(l) [(1 − s1)f(l, u1(l + 1))v0(l + 1) + s1u
p
1(l + 1)v0(l + 1)] , (4.6)

where v0 is the eigenfunction of SLP (2.11), (1.2) associated to the eigenvalue µ0. Using
the integration by parts formulas (4.3) and (4.4) and BC (1.2), we have

K
∑

l=0

[−∆2u1(l)v0(l + 1)] = µ0

K
∑

l=0

w(l)u1(l + 1)v0(l + 1). (4.7)

Combining (4.6) and (4.7) we obtain

µ0

K
∑

l=0

w(l)u1(l + 1)v0(l + 1)

=

K
∑

l=0

w(l)[(1 − s1)f(l, u1(l + 1))v0(l + 1) + s1u
p
1(l + 1)v0(l + 1)]

≥ (µ0 + ε)
K

∑

l=0

w(l)[(1 − s1)u1(l + 1)v0(l + 1) + s1u1(l + 1)v0(l + 1)]

= (µ0 + ε)

K
∑

l=0

w(l)u1(l + 1)v0(l + 1),

which is a contradiction since u1 and v0 are positive on N(1, K + 1) and u1(0) ≥ 0
which is implied by (H1). Hence by (4.5)

i(Γ, Ωr, Ω) = i(H(0, ·), Ωr, Ω) = i(H(1, ·), Ωr, Ω) = i(Γ1, Ωr, Ω) = 0.

The proofs of Parts (b), (c) and (d) are similar to Part (a) and hence are omitted.

Proof of Theorem 2.8. We only prove case (a). The rest can be proved similarly.
By Lemma 4.4, f 0 < µ0 implies i(Γ, Ωr, Ω) = 1 when r > 0 small enough. f∞ > µ0

implies i(Γ, ΩR, Ω) = 0 when R > r large enough. Therefore, by Lemma 4.2, Γ has a
positive fixed point and hence BVP (1.1), (1.2) has a positive solution.

The proof of Theorem 2.9 is similar and hence is omitted.

Proof of Theorem 2.10. (a) Assume BVP (1.1), (1.2) has a positive solution u with
‖u‖ = r for some r > 0. Then u is a fixed point of the operator Γ defined by (4.2).
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From the assumption, f(k, u(k + 1)) < β−1u(k) ≤ β−1r on N(0, K). Thus for any
k ∈ N(1, K + 1)

u(k) = (Γu)(k) =

K
∑

l=0

G(k, l)w(l)f(l, u(l + 1))

< β−1r

K
∑

l=0

G(k, l)w(l) ≤ r

which contradicts that ‖u‖ = r. Therefore, BVP (1.1), (1.2) has no positive solutions.

(b) Assume BVP (1.1), (1.2) has a positive solution u with ‖u‖ = r. Similar to
the proof of Lemma 4.3 we can show that Γu ∈ Ω and hence αr ≤ u(k) ≤ r on
N(1, K + 1). From the assumption, f(k, u(k + 1)) > (αβ)−1u(k) ≥ β−1r on N(0, K).
Let k2 ∈ N(1, K + 1) be defined as in (2.14). Then

u(k2) = Γu(k2) =

K
∑

l=0

G(k2, l)w(l)f(l, u(l + 1))

> β−1r
K

∑

l=0

G(k2, l)w(l) = r

which contradicts that ‖u‖ = r. Therefore, BVP (1.1), (1.2) has no positive solutions.
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