# Corrigendum to <br> "Weighted $L^{p}$ estimates for the elliptic Schrödinger operator" [Electron. J. Qual. Theory Differ. Equ. 2014, No. 33, 1-13] 

Fengping Yao ${ }^{\boxtimes}$<br>Department of Mathematics, Shanghai University, Shanghai 200444, China

Received 25 June 2015, appeared 14 August 2015
Communicated by Patrizia Pucci


#### Abstract

An error in Lemma 1.5 in "Weighted $L^{p}$ estimates for the elliptic Schrödinger operator" [Electron. J. Qual. Theory Differ. Equ. 2014, No. 33, 1-13] is corrected.


Keywords: weighted, regularity, $L^{p}$ estimates, elliptic, Schrödinger operator.
2010 Mathematics Subject Classification: 35J10, 35J15.
The author regrets to inform that Lemma 1.5 in [1] is not fully correct. Since the main results in [1] eventually rely on this lemma, we shall give the following new lemma instead of the wrong Lemma 1.5 in [1] and then put it behind Lemma 1.9 in [1].

Lemma 1.9. Assume that $w \in A_{q}$ for some $q>1$.
(1) There exists a positive constant $q_{1} \in(1, q)$ such that

$$
w \in A_{q_{1}} .
$$

(2) Let $q_{2}=\frac{q}{q_{1}} \in(1, q)$. Then we have

$$
L_{w}^{q}\left(B_{r}\right) \subset L^{q_{2}}\left(B_{r}\right) .
$$

Proof. Since $w \in A_{q}$, from Definition 1.3 in [1] we have

$$
\begin{align*}
& \left(f_{B_{r}} w(x) d x\right)\left(f_{B_{r}} w(x)^{\frac{-1}{q-1}} d x\right)^{q-1} \\
& \quad=\left(f_{B_{r}}\left(w(x)^{\frac{-1}{q-1}}\right)^{1-q} d x\right)\left(f_{B_{r}} w(x)^{\frac{-1}{q-1}} d x\right)^{q-1} \\
& \quad=\left[\left(f_{B_{r}}\left(w(x)^{\frac{-1}{q-1}}\right)^{-\frac{1}{q-1}} \frac{\frac{q}{q-1}}{q} d x\right)^{\frac{q}{q-1}-1}\left(f_{B_{r}} w(x)^{\frac{-1}{q-1}} d x\right)\right]^{q-1} \leq C \tag{1.1}
\end{align*}
$$

[^0]for any balls $B_{r}$ in $\mathbb{R}^{n}$, which implies that $w(x)^{\frac{-1}{q-1}} \in A_{\frac{q}{q-1}}$. Therefore, from Lemma 1.8 in [1] we have
\[

$$
\begin{equation*}
\left(f_{B_{r}} w(x)^{-\frac{1+\epsilon_{0}^{\prime}}{q-1}} d x\right)^{\frac{1}{1+\epsilon_{0}^{\prime}}} \leq C f_{B_{r}} w(x)^{\frac{-1}{q-1}} d x \tag{1.2}
\end{equation*}
$$

\]

for some $\epsilon_{0}^{\prime} \in(0,1)$. Let

$$
q_{1}=1+\frac{q-1}{1+\epsilon_{0}^{\prime}} \in(1, q) .
$$

Then from (1.2) and the fact that $w \in A_{q}$ we find that

$$
\begin{align*}
& \left(f_{B_{r}} w(x) d x\right)\left(f_{B_{r}} w(x)^{\frac{-1}{q_{1}-1}} d x\right)^{q_{1}-1} \\
& \quad=\left(f_{B_{r}} w(x) d x\right)\left(f_{B_{r}} w(x)^{-\frac{1+\epsilon_{0}^{\prime}}{q-1}} d x\right)^{\frac{q-1}{1+\epsilon_{0}^{\prime}}} \\
& \quad \leq C\left(f_{B_{r}} w(x) d x\right)\left(f_{B_{r}} w(x)^{-\frac{1}{q-1}} d x\right)^{q-1} \leq C, \tag{1.3}
\end{align*}
$$

which implies that $w \in A_{q_{1}}$. Furthermore, if $f \in L_{w}^{q}\left(B_{r}\right)$, then from Hölder's inequality and (1.3) we have

$$
\begin{aligned}
\int_{B_{r}}|f|^{\frac{q}{q_{1}}} d x & =\int_{B_{r}}|f|^{\frac{q}{q_{1}}} w(x)^{\frac{1}{q_{1}}} w(x)^{-\frac{1}{q_{1}}} d x \\
& \leq\left(\int_{B_{r}}|f|^{q} w(x) d x\right)^{\frac{1}{q_{1}}}\left(\int_{B_{r}} w(x)^{-\frac{1}{q_{1}-1}} d x\right)^{1-\frac{1}{q_{1}}} \\
& \leq C\left(\int_{B_{r}}|f|^{q} w(x) d x\right)^{\frac{\frac{1}{q_{1}}}{q_{1}}}\left(\frac{\left|B_{r}\right|}{w\left(B_{r}\right)}\right)^{\frac{1}{q_{1}}} \leq C,
\end{aligned}
$$

since $w \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ and $w>0$ almost everywhere. This finishes our proof by choosing $q_{2}=\frac{q}{q_{1}} \in(1, q)$.

We shall add the following sentences in front of "Next, we shall prove the following important result" in [1], page 5, line -6:
"Assume that $w \in A_{p}$. Then from Lemma 1.9 (1) (see above) we find that

$$
\begin{equation*}
w \in A_{p_{1}} \text { for some } p_{1} \in(1, p) . .^{\prime \prime} \tag{1.4}
\end{equation*}
$$

Moreover, we shall change "Assume that $1<q<p$ " in Lemma 2.2 of [1] to "Assume that $w \in A_{p}$ " and add the sentence "where $q=\frac{p}{p_{1}} \in(1, p)$ and $p_{1}$ is defined in (1.4)," behind (2.2) in [1]. Furthermore, we shall change "Assume that $1<q<p$ and $w \in A_{p}$ " in Corollary 2.3 of [1] to "Assume that $w \in A_{p}$ " and add the sentence "where $q=\frac{p}{p_{1}} \in(1, p)$ and $p_{1}$ is defined in (1.4)," behind (2.8) in [1].

The author would like to apologize for any inconvenience caused.

## Acknowledgments

This work is supported in part by the NSFC (11471207) and the Innovation Program of Shanghai Municipal Education Commission (14YZ027).

## References

[1] F. Yao, Weighted $L^{p}$ estimates for the elliptic Schrödinger operator, Electron. J. Qual. Theory Differ. Equ. 2014, No. 33, 1-13. MR3250024; url


[^0]:    ${ }^{\boxtimes}$ Email: yfp@shu.edu.cn

