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Abstract. An error in Lemma 1.5 in “Weighted Lp estimates for the elliptic Schrödinger
operator” [Electron. J. Qual. Theory Differ. Equ. 2014, No. 33, 1–13] is corrected.
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The author regrets to inform that Lemma 1.5 in [1] is not fully correct. Since the main
results in [1] eventually rely on this lemma, we shall give the following new lemma instead of
the wrong Lemma 1.5 in [1] and then put it behind Lemma 1.9 in [1].

Lemma 1.9. Assume that w ∈ Aq for some q > 1.

(1) There exists a positive constant q1 ∈ (1, q) such that

w ∈ Aq1 .

(2) Let q2 = q
q1
∈ (1, q). Then we have

Lq
w(Br) ⊂ Lq2(Br).

Proof. Since w ∈ Aq, from Definition 1.3 in [1] we have(∫
Br

w(x) dx
)(∫

Br

w(x)
−1
q−1 dx

)q−1

=

(∫
Br

(
w(x)

−1
q−1

)1−q
dx
)(∫

Br

w(x)
−1
q−1 dx

)q−1

=

(∫
Br

(
w(x)

−1
q−1

)− 1
q

q−1−1 dx

) q
q−1−1 (∫

Br

w(x)
−1
q−1 dx

)q−1

≤ C (1.1)
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for any balls Br in Rn, which implies that w(x)
−1
q−1 ∈ A q

q−1
. Therefore, from Lemma 1.8 in [1]

we have (∫
Br

w(x)−
1+ε′0
q−1 dx

) 1
1+ε′0 ≤ C

∫
Br

w(x)
−1
q−1 dx (1.2)

for some ε′0 ∈ (0, 1). Let

q1 = 1 +
q− 1
1 + ε′0

∈ (1, q).

Then from (1.2) and the fact that w ∈ Aq we find that(∫
Br

w(x) dx
)(∫

Br

w(x)
−1

q1−1 dx
)q1−1

=

(∫
Br

w(x) dx
)(∫

Br

w(x)−
1+ε′0
q−1 dx

) q−1
1+ε′0

≤ C
(∫

Br

w(x) dx
)(∫

Br

w(x)−
1

q−1 dx
)q−1

≤ C, (1.3)

which implies that w ∈ Aq1 . Furthermore, if f ∈ Lq
w(Br), then from Hölder’s inequality and

(1.3) we have ∫
Br

| f |
q

q1 dx =
∫

Br

| f |
q

q1 w(x)
1

q1 w(x)−
1

q1 dx

≤
(∫

Br

| f |q w(x) dx
) 1

q1
(∫

Br

w(x)−
1

q1−1 dx
)1− 1

q1

≤C
(∫

Br

| f |q w(x) dx
) 1

q1
(
|Br|

w(Br)

) 1
q1
≤ C,

since w ∈ L1
loc(R

n) and w > 0 almost everywhere. This finishes our proof by choosing
q2 = q

q1
∈ (1, q).

We shall add the following sentences in front of “Next, we shall prove the following im-
portant result” in [1], page 5, line -6:

“Assume that w ∈ Ap. Then from Lemma 1.9 (1) (see above) we find that

w ∈ Ap1 for some p1 ∈ (1, p).” (1.4)

Moreover, we shall change “Assume that 1 < q < p” in Lemma 2.2 of [1] to “Assume that
w ∈ Ap” and add the sentence “where q = p

p1
∈ (1, p) and p1 is defined in (1.4)," behind (2.2)

in [1]. Furthermore, we shall change “Assume that 1 < q < p and w ∈ Ap” in Corollary 2.3 of
[1] to “Assume that w ∈ Ap” and add the sentence “where q = p

p1
∈ (1, p) and p1 is defined

in (1.4),” behind (2.8) in [1].
The author would like to apologize for any inconvenience caused.

Acknowledgments

This work is supported in part by the NSFC (11471207) and the Innovation Program of Shang-
hai Municipal Education Commission (14YZ027).



Corrigendum to “Weighted Lp estimates” 3

References

[1] F. Yao, Weighted Lp estimates for the elliptic Schrödinger operator, Electron. J. Qual.
Theory Differ. Equ. 2014, No. 33, 1–13. MR3250024; url

http://www.ams.org/mathscinet-getitem?mr=3250024
http://dx.doi.org/10.14232/ejqtde.2014.1.33

