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1 Introduction

In this paper we study the following Darboux problem for a third order hyperbolic differential
inclusion

uxyz(x, y, z) ∈ F(x, y, z, u(x, y, z)), (x, y, z) ∈ Π := [0, T1]× [0, T2]× [0, T3] (1.1)

with the initial values

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Π1 := [0, T1]× [0, T2],

u(0, y, z) = ψ(y, z), (y, z) ∈ Π2 := [0, T2]× [0, T3],

u(x, 0, z)c = χ(x, z), (x, z) ∈ Π3 := [0, T1]× [0, T3],

(1.2)

where ϕ, ψ, χ are absolutely continuous functions satisfying

u(x, 0, 0) = ϕ(x, 0) = χ(x, 0) =: v1(x), x ∈ [0, T1],

u(0, y, 0) = ϕ(0, y) = ψ(y, 0) =: v2(y), y ∈ [0, T2],

u(0, 0, z) = ψ(0, z) = χ(0, z) =: v3(z), z ∈ [0, T3],

u(0, 0, 0) = v1(0) = v2(0) = v3(0) =: v0

(1.3)

and T1, T2, T3 > 0 and F : Π×Rn → P(Rn) is a set-valued map.
Qualitative properties, existence results and structure of the set of solutions of the Darboux

problem (1.1)–(1.2) have been studied by many authors [4, 7–9] etc.
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The aim of the present paper is twofold. On one hand, we show that Filippov’s ideas [5]
can be suitably adapted in order to obtain the existence of a solution of problem (1.1)–(1.3).
We recall that for a first order differential inclusion defined by a Lipschitzian set-valued map
with nonconvex values Filippov’s theorem ([5]) consists in proving the existence of a so-
lution starting from a given “almost” solution. Moreover, the result provides an estimate
between the starting “quasi” solution and the solution of the differential inclusion. On the
other hand, we prove the existence of solutions continuously depending on a parameter for
problem (1.1)–(1.3). This result may be interpreted as a continuous variant of Filippov’s the-
orem for problem (1.1)–(1.3). The key tool in the proof of this theorem is a result of Bressan
and Colombo [2] concerning the existence of continuous selections of lower semicontinuous
multifunctions with decomposable values. This result allows to obtain a continuous selection
of the solution set of the problem considered.

In the literature there are several papers concerning the existence of solutions for higher or-
der differential inclusions defined by Lipschitzian set-valued maps; we mention the paper [1]
for a boundary value problem associated to a second-order differential inclusion which also
uses Filippov’s techniques.

Our results may be interpreted as extensions of previous results of Staicu [6] and Tuan
[10, 11] obtained for “classical” hyperbolic differential inclusions.

The paper is organized as follows: in Section 2 we briefly recall some preliminary results
that we will use in the sequel and in Section 3 we prove the main results of the paper.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space. The Pompeiu–Hausdorff distance of the closed subsets

A, B ⊂ X is defined by dH(A, B) = max{d∗(A, B), d∗(B, A)}, d∗(A, B) = sup{d(a, B); a ∈ A},
where d(x, B) = inf{d(x, y); y ∈ B}. With cl(A) we denote the closure of the set A ⊂ X.

Consider I1 = [0, T1], I2 = [0, T2], I3 = [0, T3] and Π = [0, T1]× [0, T2]× [0, T3]. Denote by
L(Π) the σ-algebra of the Lebesgue measurable subsets of Π and by B(Rn) the family of all
Borel subsets of Rn.

Let C(Π, Rn) be the Banach space of all continuous functions from Π to Rn with the
norm ‖u‖C = sup{‖u(x, y, z)‖; (x, y, z) ∈ Π} where ‖ · ‖ is the Euclidean norm on Rn, and
L1(Π, Rn) be the Banach space of integrable functions u : Π → Rn with the norm ‖u‖1 =∫ T1

0

∫ T2
0

∫ T3
0 ‖u(x, y, z)‖dxdydz.

Recall that a subset D ⊂ L1(Π, Rn) is said to be decomposable if for any u(·), v(·) ∈ D and
any subset A ∈ L(Π) one has uχA + vχB ∈ D, where B = I\A. We denote by D the family of
all decomposable closed subsets of L1(Π, Rn).

Let F(·, ·) : Π ×Rn → P(Rn) be a set-valued map. Recall that F(·, ·) is called L(Π) ⊗
B(Rn) measurable if for any closed subset C ⊂ Rn we have {(x, y, z, u) ∈ Π×Rn; F(x, y, z, u)∩
C} 6= ∅} ∈ L(Π)⊗B(Rn).

We recall now some results that we are going to use in the next section. The next lemma
may be found in [3].

Lemma 2.1. Let H : Π → P(Rn) be a compact valued measurable multifunction and v : Π → Rn a
measurable function.

Then there exists a measurable selection h of H such that

‖v(x, y, z)− h(x, y, z)‖ = d(v(x, y, z), H(x, y, z)), a.e. (Π).
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Next (S, d) is a separable metric space and X is a Banach space. We recall that a multi-
function G(·) : S → P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset
C ⊂ X, the subset {s ∈ S; G(s) ⊂ C} is closed in S.

The proofs of the following two lemmas are in [6].

Lemma 2.2. Let F∗(·, ·) : Π× S → P(Rn) be a closed valued L(Π)⊗B(S) measurable multifunc-
tion such that F∗((x, y, z), ·) is l.s.c. for any (x, y, z) ∈ Π.

Then the set-valued map G(·) defined by

G(s) = {v ∈ L1(Π, Rn); v(x, y, z) ∈ F∗(x, y, z, s) a.e. (Π)}

is l.s.c. with nonempty decomposable closed values if and only if there exists a continuous mapping
p(·) : S→ L1(Π, Rn) such that

d(0, F∗(x, y, z, s)) ≤ p(s)(x, y, z) a.e. (Π), ∀s ∈ S.

Lemma 2.3. Let G(·) : S → D be a l.s.c. set-valued map with closed decomposable values and let
f (·) : S→ L1(Π, Rn), q(·) : S→ L1(Π, R) be continuous such that the multifunction H(·) : S→ D
defined by

H(s) = cl{v(·) ∈ G(s); ‖v(x, y, z)− f (s)(x, y, z)‖ < q(s)(x, y, z) a.e. (Π)}

has nonempty values.
Then H(·) has a continuous selection, i.e. there exists a continuous mapping h(·) : S→ L1(Π, Rn)

such that h(s) ∈ H(s) ∀s ∈ S.

In what follows, by Λ we mean the linear subspace of C(Π, Rn) consisting of all λ ∈
C(Π, Rn) such that there exist continuous functions ϕ : Π1 → Rn, ψ : Π2 → Rn, χ : Π3 →
Rn satisfying (1.3) with λ(x, y, z) = ϕ(x, y) + ψ(y, z) + χ(x, z)− ϕ(x, 0)− ϕ(0, y)− ψ(0, z) +
ψ(0, 0) = ϕ(x, y) + ψ(y, z) + χ(x, z)− v1(x)− v2(y)− v3(z) + v0, (x, y, z) ∈ Π. Note that Λ,
equipped with the norm of C(Π, Rn), is a separable Banach space.

For σ ∈ L1(Π, Rn), consider the following Darboux problem

uxyz(x, y, z) = σ(x, y, z),

u(x, y, 0) = ϕ(x, y),

u(0, y, z) = ψ(y, z),

u(x, 0, z) = χ(x, z).

(2.1)

Definition 2.4. Let λ ∈ Λ. The function u ∈ C(Π, Rn) given by

u(x, y, z) = λ(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
σ(ξ, η, µ)dξdηdµ, (x, y, z) ∈ Π

is said to be a solution of (2.1)

Obviously, problem (2.1) has a unique solution, which will be denoted by uλ,σ.

Definition 2.5. A function u ∈ C(Π, Rn) is said to be a solution of problem (1.1)–(1.2) if there
exists a function σ ∈ L1(Π, Rn) such that

σ(x, y, z) ∈ F(x, y, z, u(x, y, z)) a.e. (Π),

u(x, y, z) = λ(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
σ(ξ, η, µ)dξdηdµ, (x, y, z) ∈ Π.

We denote by S(λ) the solution set of (1.1)–(1.2).
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3 The main results

In order to obtain a Filippov type existence result for problem (1.1)–(1.2) one needs the fol-
lowing assumptions on F.

Hypothesis H1. Let F : Π × Rn → P(Rn) be a set-valued map with nonempty compact
values, satisfying the following assumptions

i) The set-valued maps (x, y, z)→ F(x, y, z, u) is measurable for all u ∈ Rn.

ii) There exist k > 0 such that, for almost all (x, y, z) ∈ Π F(x, y, z, ·) is k-Lipschitz, i.e.

dH(F(x, y, z, u), F(x, y, z, u′)) ≤ k‖u− u′‖ ∀u, u′ ∈ Rn.

In what follows, λ1 ∈ Λ, w ∈ C(Π, Rn) with wxyz ∈ L1(Π, Rn), w(x, y, 0) = λ1(x, y, 0),
w(0, y, z) = λ1(0, y, z), w(x, 0, z) = λ1(x, 0, z) and there exists q ∈ L1(Π, R+) which satisfies

d(wxyz(x, y, z), F(x, y, z, w(x, y, z))) ≤ q(x, y, z) a.e. (Π).

Theorem 3.1. Let Hypothesis H1 be satisfied, consider λ ∈ Λ and λ1 ∈ Λ, w ∈ C(Π, Rn), q ∈
L1(Π, R+) as above.

If kT1T2T3 < 1 there exists u a solution of problem (1.1)–(1.2) such that

‖u(x, y, z)− w(x, y, z)‖ ≤ ‖λ− λ1‖C + |q|1
1− kT1T2T3

, ∀(x, y, z) ∈ Π. (3.1)

Proof. We define f0 = wxyz, u0 = w and T = T1T2T3. It follows from Lemma 2.1 and Hypothe-
sis H1 that there exists a measurable function f1 such that f1(x, y, z) ∈ F(x, y, z, u0(x, y, z)) a.e.
(Π) and for almost all (x, y, z) ∈ Π

‖ f0(x, y, z)− f1(x, y, z)‖ = d( f0(x, y, z), F(x, y, z, u0(x, y, z))) ≤ q(x, y, z).

Define, for (x, y, z) ∈ Π

u1(x, y, z) = λ(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
f1(r, s, t)drdsdt.

Since
w(x, y, z) = λ1(x, y, z) +

∫ x

0

∫ y

0

∫ z

0
f0(r, s, t)drdsdt

one has

‖u1(x, y, z)− u0(x, y, z)‖ ≤ ‖λ(x, y, z)− λ1(x, y, z)‖+
∫ x

0

∫ y

0

∫ z

0
‖ f1(r, s, t)− f0(r, s, t)‖drdsdt

≤ ‖λ− λ1‖C + |q|1.

From Lemma 2.1 and Hypothesis H1 we deduce the existence of a measurable function f2

such that f2(x, y, z) ∈ F(x, y, z, u1(x, y, z)) a.e. (Π) and for almost all (x, y, z) ∈ Π

‖ f2(x, y, z)− f1(x, y, z)‖ ≤ d( f1(x, y, z), F(x, y, z, u1(x, y, z))) ≤ dH(F(x, y, z, u0(x, y, z)),

F(x, y, z, u1(x, y, z))) ≤ k‖u1(x, y, z)− u0(x, y, z)‖ ≤ k(‖λ− λ1‖C + |q|1).
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Define, for (x, y, z) ∈ Π

u2(x, y, z) = λ(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
f1(r, s, t)drdsdt

and one has

‖u2(x, y, z)− u1(x, y, z)‖ ≤
∫ x

0

∫ y

0

∫ z

0
‖ f2(r, s, t)− f1(r, s, t)‖drdsdt ≤ kT(‖λ− λ1‖C + |q|1)

Assuming that for some p ≥ 2 we have already constructed the sequences (ui)
p
i=1, ( fi)

p
i=1

satisfying

‖up(x, y, z)− up−1(x, y, z)‖ ≤ (kT)p−1(‖λ− λ1‖C + |q|1) (x, y, z) ∈ Π, (3.2)

‖ fp(x, y, z)− fp−1(x, y, z)‖ ≤ k(kT)p−1(‖λ− λ1‖C + |q|1) a.e. (Π). (3.3)

We apply Lemma 2.1 and we find a measurable function fp+1 such that fp+1(x, y, z) ∈
F(x, y, z, up(x, y, z)) a.e. (Π) and for almost all (x, y, z) ∈ Π

‖ fp+1(x, y, z)− fp(x, y, z)‖ ≤ d( fp+1(x, y, z), F(x, y, z, up(x, y, z))) ≤ dH(F(x, y, z, up(x, y, z)),

F(x, y, z, up−1(x, y, z))) ≤ k‖up(x, y, z)− up−1(x, y, z)‖ ≤ k(kT)p−1(‖λ− λ1‖C + |q|1).

Define, for (x, y, z) ∈ Π

up+1(x, y, z) = λ(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
fp+1(r, s, t)drdsdt. (3.4)

We have

‖up+1(x, y, z)− up(x, y, z)‖ ≤
∫ x

0

∫ y

0

∫ z

0
‖ fp+1(r, s, t)− fp(r, s, t)‖drdsdt

≤
∫ x

0

∫ y

0

∫ z

0
k‖up(r, s, t)− up−1(r, s, t)‖drdsdt

≤
∫ x

0

∫ y

0

∫ z

0
k(kT)p−1(‖λ− λ1‖C + |q|1)drdsdt

≤ (kT)p(‖λ− λ1‖C + |q|1).

Therefore from (3.2) it follows that the sequence (up)p≥0 is a Cauchy sequence in the space
C(Π, Rn), so it converges to u ∈ C(Π, Rn). From (3.3) it follows that the sequence ( fp)p≥0 is a
Cauchy sequence in the space L1(Π, Rn), thus it converges to f ∈ L1(Π, Rn).

Using the fact that the values of F are closed we get that f (x, y, z) ∈ F(x, y, z, u(x, y, z))
a.e. (Π).

Since ∥∥∥∥∫ x

0

∫ y

0

∫ z

0
fp(r, s, t)dsdt−

∫ x

0

∫ y

0

∫ z

0
f (r, s, t)drdsdt

∥∥∥∥
≤
∫ x

0

∫ y

0

∫ z

0
‖ fp(r, s, t)− f (r, s, t)‖drdsdt

≤
∫ x

0

∫ y

0

∫ z

0
k‖up−1(r, s, t)− u(r, s, t)‖drdsdt

≤ kT‖up−1 − u‖C,



6 A. Cernea

therefore, we may pass to the limit in (3.4) and we obtain that u(·, ·) is a solution of problem
(1.1)–(1.2). On the other hand, by adding inequalities (3.2) for any (x, y, z) ∈ Π we have

‖up(x, y, z)− w(x, y, z)‖
≤ ‖up(x, y, z)− up−1(x, y, z)‖

+‖up−1(x, y, z)− up−2(x, y, z)‖+ · · ·+ ‖u2(x, y, z)− u1(x, y, z)‖
+‖u1(x, y, z)− u0(x, y, z)‖

≤ ((kT)p−1 + (kT)p−2 + · · ·+ kT + 1)(‖λ− λ1‖C + |q|1)

≤ ‖λ− λ1‖C + |q|1
1− kT

.

(3.5)

It remains to pass to the limit with p → ∞ in (3.5) in order to obtain (3.1) and the proof is
complete.

If in Theorem 3.1 we take w = 0, λ1 = 0 and q ≡ k then we obtain the following existence
result for solutions of problem (1.1)–(1.2).

Corollary 3.2. Let Hypothesis H1 be satisfied, kT1T2T3 < 1 and assume that d(0, F(x, y, z, 0)) ≤ k
∀(x, y, z) ∈ Π.

Then there exists u ∈ C(Π, Rn) a solution of problem (1.1)–(1.2) such that

‖u(x, y, z)‖ ≤ ‖λ‖C + kT1T2T3

1− kT1T2T3
, ∀(x, y, z) ∈ Π.

We note that the proof of corollary above can be performed also by using the Covitz–
Nadler set-valued contraction principle.

Next we obtain a continuous version of Theorem 3.1. This result allows to provide a
continuous selection of the solution set of problem (1.1)–(1.2).

Hypothesis H2.

i) S is a separable metric space, λ : S→ Λ and ε(·) : S→ (0, ∞) are continuous mappings.

ii) There exist the continuous mappings λ1(·) : S → Λ, g(·) : S → L1(Π, Rn), w(·) : S →
C(Π, Rn) and q(·) : S→ L1(Π, R+) such that w(s)xyz ≡ g(s), w(s)(x, y, 0) = λ1(s)(x, y, 0),
w(s)(0, y, z) = λ1(s)(0, y, z), w(s)(x, 0, z) = λ1(s)(x, 0, z) (x, y, z) ∈ Π, s ∈ S and

d(g(s)(x, y, z), F(x, y, z, w(s)(x, y, z)) ≤ q(s)(x, y, z) a.e. (Π), ∀ s ∈ S.

Theorem 3.3. Assume that Hypotheses H1 and H2 are satisfied.
Then, there exists a continuous mapping u(·) : S → C(Π, Rn) such that for any s ∈ S, u(s) is

a solution of problem (1.1) which satisfies u(s)(x, y, 0) = λ(s)(x, y, 0), u(s)(0, y, z) = λ(s)(0, y, z),
u(s)(x, 0, z) = λ(s)(x, 0, z), (x, y, z) ∈ Π, s ∈ S and, for any (x, y, z) ∈ Π, s ∈ S,

‖u(s)(x, y, z)− w(s)(x, y, z)‖ ≤ ‖λ(s)− λ1(s)‖C + ε(s) + ‖q(s)‖1

1− kT1T2T3
.

Proof. We make the following notations u0 = w, kp(s) := (kT)p−1(‖λ(s) − λ1(s)‖C + ε(s) +
‖q(s)‖1), p ≥ 1, T = T1T2T3.
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We consider the set-valued maps G0, H0 defined, respectively, by

G0(s) = {v ∈ L1(Π, Rn); v(x, y, z) ∈ F(x, y, z, w(s)(x, y, z)) a.e. (Π)},

H0(s) = cl
{

v ∈ G0(s); ‖v(x, y, z)− g(s)(x, y, z)‖ < q(s)(x, y, z) +
ε(s)

T

}
.

Since d(g(s)(x, y, z), F(x, y, z, w(s)(x, y, z)) ≤ q(s)(x, y, z) < q(s)(x, y, z) + ε(s)
T the set H0(s) is

not empty.
Set F∗0 (x, y, z, s) = F(x, y, z, w(s)(x, y, z)) and note that

d(0, F∗0 (x, y, z, s)) ≤ ‖g(s)(x, y, z)‖+ q(s)(x, y, z) =: q∗(s)(x, y, z)

and q∗(·) : S→ L1(I, R) is continuous.
Applying now Lemmas 2.2 and 2.3 we obtain the existence of a continuous selection f0 of

H0 such that ∀s ∈ S, (x, y, z) ∈ Π,

f0(s)(x, y, z) ∈ F(x, y, z, w(s)(x, y, z)) a.e. (Π), ∀s ∈ S,

‖ f0(s)(x, y, z)− g(s)(x, y, z)‖ ≤ q0(s)(x, y, z) = q(s)(x, y, z) +
ε(s)

T
.

We define
u1(s)(x, y, z) = λ(s)(x, y, z) +

∫ x

0

∫ y

0

∫ z

0
f0(s)(r, l, t)drdldt

and one has

‖u1(s)(x, y, z)− u0(s)(x, y, z)‖

≤ ‖λ(s)− λ1(s)‖C +
∫ x

0

∫ y

0

∫ z

0
‖ f0(s)(r, l, t)− g(s)(r, l, t)‖drdldt

≤ ‖λ(s)− λ1(s)‖C +
∫ x

0

∫ y

0

∫ z

0

[
q(s)(r, l, t) +

ε(s)
T

]
drdldt

= ‖λ(s)− λ1(s)‖C + ‖q(s)‖1 + ε(s) = k1(s)

We shall construct, using the same idea as in [6], two sequences of approximations fp :
S→ L1(Π, Rn), up : S→ C(Π, Rn) with the following properties

a) fp : S→ L1(Π, Rn), up : S→ C(Π, Rn) are continuous,

b) fp(s)(x, y, z) ∈ F(x, y, z, up(s)(x, y, z)), a.e. (Π), s ∈ S,

c) ‖ fp(s)(x, y, z)− fp−1(s)(x, y, z)‖ ≤ k · kp(s), a.e. (Π), s ∈ S,

d) up+1(s)(x, y, z) = λ(s)(x, y, z) +
∫ x

0

∫ y
0

∫ z
0 fp(s)(r, l, t)drdldt.

Suppose we have already constructed fi, ui satisfying a)–c) and define up+1 as in d). From
c) and d) one has

‖up+1(s)(x, y, z)− up(s)(x, y, z)‖

≤
∫ x

0

∫ y

0

∫ z

0
‖ fp(s)(r, l, t)− fp−1(s)(r, l, t)‖drdldt

≤
∫ x

0

∫ y

0

∫ z

0
k · kp(s)drdldt = (kT)kp(s) = kp+1(s)

(3.6)
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On the other hand,

d( fp(s)(x, y, z), F(x, y, z, up+1(s)(x, y, z))

≤ k‖up+1(s)(x, y, z)− up(s)(x, y, z)‖ < k · kp+1(s). (3.7)

For any s ∈ S we define the set-valued maps

Gp+1(s) = {v ∈ L1(Π, Rn); v(x, y, z) ∈ F(x, y, z, up+1(s)(x, y, z)) a.e. (Π)},
Hp+1(s) = cl{v ∈ Gp+1(s); ‖v(x, y, z)− fp(s)(x, y, z)‖ < k · kp+1(s)}.

We note that from (3.7) the set Hp+1(s) is not empty.
Set F∗p+1(x, y, z, s) = F(x, y, z, up+1(s)(x, y, z)) and note that

d(0, F∗p+1(x, y, z, s)) ≤ ‖ fp(s)(x, y, z)‖+ k · kp+1(s) =: q∗p+1(s)(x, y, z)

and q∗p+1(·) : S→ L1(I, R) is continuous.
By Lemmas 2.2 and 2.3 we obtain the existence of a continuous function fp+1 : S →

L1(Π, Rn) such that

fp+1(s)(x, y, z) ∈ F(x, y, z, up+1(s)(x, y, z)) a.e. (Π), ∀s ∈ S,

‖ fp+1(s)(x, y, z)− fp(s)(x, y, z)‖ ≤ k · kp+1(s) ∀s ∈ S, (x, y, z) ∈ Π.

From (3.6), c) and d) we obtain

‖up+1(s)− up(s)‖C ≤ kp+1(s) = (kT)p(‖λ(s)− λ1(s)‖C + ε(s) + ‖q(s)‖1), (3.8)

‖ fp+1(s)− fp(s)‖1 ≤ kT.kp(s) = (kT)p(‖λ(s)− λ1(s)‖C + ε(s) + ‖q(s)‖1). (3.9)

Therefore fp(s), up(s) are Cauchy sequences in the Banach space L1(Π, Rn) and C(Π, Rn),
respectively. Let f : S → L1(Π, Rn), x : S → C(Π, Rn) be their limits. The function s →
‖λ(s)− λ1(s)‖C + ε(s) + ‖q(s)‖1 is continuous, hence locally bounded. Therefore (3.9) implies
that for every s′ ∈ S the sequence fp(s′) satisfies the Cauchy condition uniformly with respect
to s′ on some neighborhood of s. Hence, s→ f (s) is continuous from S into L1(Π, Rn).

From (3.8), as before, up(s) is Cauchy in C(Π, Rn) locally uniformly with respect to s.
So, s → u(s) is continuous from S into C(Π, Rn). On the other hand, since up(s) converges
uniformly to u(s) and a.e. (Π) and ∀s ∈ S

d( fp(s)(x, y, z), F(x, y, z, u(s)(x, y, z)) ≤ k‖up(s)(x, y, z)− u(s)(x, y, z)‖,

passing to the limit along a subsequence of fp(s) converging pointwise to f (s) we obtain

f (s)(x, y, z) ∈ F(x, y, z, u(s)(x, y, z)) a.e. (Π), ∀s ∈ S.

One the other hand,∥∥∥∥∫ x

0

∫ y

0

∫ z

0
fp(s)(r, l, t)drdldt−

∫ x

0

∫ y

0

∫ z

0
f (s)(r, l, t)drdldt

∥∥∥∥
≤
∫ x

0

∫ y

0

∫ z

0
‖ fp(s)(r, l, t)− f (s)(r, l, t)‖drdldt ≤ kT‖up−1(s)− u(s)‖C.

Therefore one may pass to the limit in d) and we get ∀(x, y, z) ∈ Π, s ∈ S

u(s)(x, y, z) = λ(s)(x, y, z) +
∫ x

0

∫ y

0

∫ z

0
f (s)(r, l, t)drdldt,
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i.e., u(s) is the desired solution.
Moreover, by adding inequalities (3.6) for all p ≥ 1 we get

‖up+1(s)(x, y, z)− w(s)(x, y, z)‖ ≤
p+1

∑
l=1

kl(s) ≤
‖λ(s)− λ1(s)‖C + ε(s) + ‖q(s)‖1

1− kT
. (3.10)

Passing to the limit in (3.10) we obtain the conclusion of the theorem.

Corollary 3.4. Assume that Hypothesis H2 is satisfied and, in addition, d(0, F(x, y, z, 0)) ≤ k
a.e. (Π).

Then, there exists a function u(·, ·) : Π×Λ→ Rn such that

a) x(·, λ) ∈ S(λ), ∀λ ∈ Λ.

b) λ→ x(·, λ) is continuous from Λ into C(Π, Rn).

Proof. We take S = Λ, ε an arbitrary continuous positive function, g(·) = 0, w(·) = 0,
q(s)(x, y, z) ≡ k and we apply Theorem 3.3 in order to obtain the conclusion of the corol-
lary.
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