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Abstract

We prove new results on the existence of positive solutions for some can-

tilever equation subject to nonlocal and nonlinear boundary conditions. Our

main ingredient is the classical fixed point index.
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1 Introduction

In this paper we establish new results on the existence of positive solutions for the
fourth order differential equation

u(4)(t) = g(t)f(t, u(t)), t ∈ (0, 1), (1)

subject to the nonlocal boundary conditions (BCs)

u(0) = u′(0) = u′′(1) = 0, u′′′(1) + k0 + B(α[u]) = 0. (2)

Here k0 is a non-negative constant, B is a non-negative continuous function and α[u]
is a positive functional given by

α[u] =

∫ 1

0

u(s) dA(s),

involving a Stieltjes integral.
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Equation (1) models the stationary states of the deflection of an elastic beam.
Beam equations have been studied recently by several authors under different boundary
conditions. For example, the BCs

u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) = 0,

correspond to both ends of the beam being clamped, these have been studied recently
in [32, 37, 42, 43, 48]; the BCs

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0,

model a bar with hinged ends and have been studied for example in [5, 7, 9, 12, 14,
19, 35, 36, 37, 42, 43, 46]. Also the BCs

u(0) = 0, u′(0) = 0, u(1) = 0, u′′(1) = 0,

have been studied in [1, 42, 49] and correspond to the left end being clamped and the
right end being hinged. The conditions

u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0

model the so-called cantilever bar, that is a bar clamped on the left end and where the
right end is free to move with vanishing bending moment and shearing force. These
types of BCs have been investigated in [4, 47] and, in particular, [4] provides a detailed
insight on the physical motivation for this problem.

The BCs (2) describe a cantilever beam with forces acting on its right end, for
example,

• u′′′(1) + k0 = 0 models a force acting in 1,

• u′′′(1) + k1u(1) = 0 describes a spring in 1,

• u′′′(1)+B(u(1)) = 0 models a spring with a strongly nonlinear rigidity (this could
happen, for example, due to the type of material),

• u′′′(1) + B(u(η)) = 0 describes a feedback mechanism, where the spring reacts to
the displacement registered in a point η of the beam.

Thus the condition
u′′′(1) + k0 + B(α[u]) = 0

covers a variety of cases and includes, as special cases when k0 = 0 and B(w) = w,
multi-point and integral boundary conditions, that are widely studied objects also in
the case of fourth order BVPs, see for example [8, 11, 13, 15, 16, 18, 29, 30, 39]. BCs
of nonlinear type are widely studied objects in the case of second and fourth order
equations, see for example [3, 6, 10, 20, 21, 23, 25, 31, 45] and references therein. The
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study of positive solutions of BVPs that involve Stieltjes integrals has been done, in
the case of positive measures, in [27, 28]. Signed measures were used in [41] and in the
subsequent papers [40, 42]; here, as in [23, 25], we are forced, due to some inequalities
involved in our theory, to restrict our attention to positive measures only.

Our approach is to rewrite the BVP (1)-(2) as a perturbed Hammerstein integral
equation of the form

u(t) = γ(t)(k0 + B(α[u])) +

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds.

This type of integral equation has been investigated, when k0 = 0 and B(w) ≡ w, in
[38, 41, 43, 44], when B(w) ≡ w in [22, 24, 27], and when k0 = 0 in [21, 23, 25, 45].
In order to utilize classical fixed point index theory, we provide here a modification of
the results of [27, 41] in order to prove the existence of multiple positive solutions of
the BVP (1)-(2).

In a last remark we briefly illustrate how our approach may also be applied to the
nonlinear BCs

u(0) = k0 + B(α[u]), u′(0) = 0, u′′(1) = 0, u′′′(1) = 0, (3)

u(0) = 0, u′(0) = k0 + B(α[u]), u′′(1) = 0, u′′′(1) = 0, (4)

u(0) = 0, u′(0) = 0, u′′(1) = k0 + B(α[u]), u′′′(1) = 0. (5)

As in [42], where a different set of BCs were investigated, we point out that these
nonlocal boundary conditions can be interpreted as feedback controls; in particular,
the BCs (3) can be seen as a control on the displacement in the left end, the BCs (4)
would be a device handling the angular attitude at the left end, whereas the BCs (5)
describe a control on the bending moment at the right end.

2 Positive Solutions of the Fourth-Order BVPs

We firstly describe in details our approach for the BVP

u(4)(t) = g(t)f(t, u(t)), t ∈ (0, 1), (6)

u(0) = u′(0) = u′′(1) = 0, u′′′(1) + k0 + B(α[u]) = 0. (7)

Throughout the paper we assume that:

(C1) f : [0, 1] × [0,∞) → [0,∞) satisfies Carathéodory conditions, that is, for each u,
t 7→ f(t, u) is measurable and for almost every t, u 7→ f(t, u) is continuous, and
for every r > 0 there exists a L∞-function φr : [0, 1] → [0,∞) such that

f(t, u) ≤ φr(t) for almost all t ∈ [0, 1] and all u ∈ [0, r],
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(C2) g ∈ L1[0, 1], g ≥ 0 for almost every t ∈ [0, 1],

(C3) A is a function of bounded variation and dA is a positive measure,

(C4) B : [0,∞) → [0,∞) is continuous and there exist δ1, δ2 ≥ 0 such that

δ1w ≤ B(w) ≤ δ2w for every w ∈ [0,∞).

The homogeneous BVP that corresponds to the BCs

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

has been studied in [4, 47], by means of an Hammerstein integral equation of the type

u(t) =

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds, (8)

where G0 is the Green’s function associated with these BCs, that is

G0(t, s) =

{

1
6
(3t2s − t3), s ≥ t

1
6
(3s2t − s3), s ≤ t.

In order to rewrite the BVP (6)-(7) as a perturbation of the integral equation (8),
we observe that the function

γ(t) =
1

6
(3t2 − t3) for all t ∈ [0, 1],

is the unique solution of the BVP

γ(4)(t) = 0, γ(0) = γ′(0) = γ′′(1) = 0, γ′′′(1) + 1 = 0.

This allows us to associate with the BVP (6)-(7) the perturbed Hammerstein inte-
gral equation

u(t) = γ(t)(k0 + B(α[u])) +

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds, (9)

where γ and G0 are as above, and utilize the classical fixed point index for compact
maps (see for example [2] or [17]).

Since the derivative of the function G0 with respect to t is non-negative for all
t ∈ [0, 1], G0 is a non-decreasing function of t that attains its maximum when t = 1.
Then we set

Φ(s) := max
0≤t≤1

G0(t, s) = G0(1, s) =
1

2
s2 − 1

2
s3.
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We now look for a suitable interval [a, b] ⊂ [0, 1] and for the constants c0, cγ > 0 that
satisfy the inequalities

G0(t, s) ≥ c0Φ(s), for every (t, s) ∈ [a, b] × [0, 1],

γ(t) ≥ cγ‖γ‖, for every t ∈ [a, b].

Since the derivative of the function G0(t, s)/Φ(s) with respect to s is non-negative for
all s ∈ [0, 1], the function G0(t, s)/Φ(s) is a non-decreasing function of s.

If we set

c0(t) = min
{ 2t

3 − t
,

1

2
t2(3 − t)

}

=
1

2
t2(3 − t),

we may take, for [a, b] ⊂ (0, 1],

c0 := min
a≤t≤b

c0(t) =
1

2
a2(3 − a).

We observe that ‖γ‖ = 1
3
, mint∈[a,b] γ(t) = γ(a) and therefore we have

γ(t) ≥ 3γ(a)‖γ‖, for every t ∈ [a, b],

so that we can take
cγ := 3γ(a).

Thus, for an arbitrary [a, b] ⊂ (0, 1], we may set

c := min{c0, cγ} =
1

2
a2(3 − a). (10)

By a solution of the BVP (6)-(7) we mean a solution of the corresponding integral
equation (9) and we work in the Banach space C[0, 1] endowed with the usual supremum
norm ‖u‖ := sup{|u(t)| : t ∈ [0, 1]} and the above hypotheses enable us to utilize the
cone

K =
{

u ∈ C[0, 1] : min
t∈[a,b]

u(t) ≥ c‖u‖
}

,

where [a, b] ⊂ (0, 1] and c is as in (10).
If Ω is a bounded open subset of K (in the relative topology) we denote by Ω and

∂Ω the closure and the boundary relative to K. We write

Kr = {u ∈ K : ‖u‖ < r} and Kr = {u ∈ K : ‖u‖ ≤ r}.

We consider now the map T : C[0, 1] → C[0, 1] defined by

Tu(t) := γ(t)(k0 + B(α[u])) + Fu(t),

where

Fu(t) :=

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds.
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Theorem 2.1 If the hypotheses (C1)-(C4) hold for some r > 0, then T maps Kr into
K. When these hypotheses hold for each r > 0, T maps K into K. Moreover, T is a
compact map.

Proof. Take u ∈ Kr. Then we have, for t ∈ [0, 1],

Tu(t) = γ(t)(k0 + B(α[u])) +

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds

≤ γ(t)(k0 + B(α[u])) +

∫ 1

0

Φ(s)g(s)f(s, u(s)) ds,

therefore

‖Tu‖ ≤ ‖γ‖(k0 + B(α[u])) +

∫ 1

0

Φ(s)g(s)f(s, u(s)) ds.

Then we have

min
t∈[a,b]

Tu(t) ≥ c
[

‖γ‖(k0 + B(α[u])) +

∫ 1

0

Φ(s)g(s)f(s, u(s)) ds
]

≥ c‖Tu‖.

Hence we have Tu ∈ K for every u ∈ Kr. Moreover, the map T is compact, since it
is a sum of two compact maps. In fact, the compactness of F is well-known and the
perturbation γ(t)(k0 + B(α[u])) is compact since γ and B are continuous and it maps
a bounded set into a bounded subset of a 1-dimensional space. �

We make use of the following numbers

f 0,ρ := sup
0≤u≤ρ, 0≤t≤1

f(t, u)

ρ
, fρ,ρ/c := inf

ρ≤u≤ρ/c, a≤t≤b

f(t, u)

ρ
,

1

m
:= sup

t∈[0,1]

∫ 1

0

G0(t, s)g(s) ds,
1

M(a, b)
:= inf

t∈[a,b]

∫ b

a

G0(t, s)g(s) ds,

use the notation

G(s) :=

∫ 1

0

G0(t, s) dA(t),

and assume

(C5) 1 − δ2α[γ] > 0.

First, we give a condition that implies the index is 1 on the set Kρ.

Lemma 2.1 Assume that there exists ρ > 0 such that

(I1ρ) the following inequality holds:

k0

3ρ(1 − δ2α[γ])
+ f 0,ρ

( δ2

3(1 − δ2α[γ])

∫ 1

0

G(s)g(s) ds +
1

m

)

< 1. (11)
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Then the fixed point index, iK(T, Kρ), is 1.

Proof. We show that

λu 6= Tu for every u ∈ ∂Kρ and for every λ ≥ 1,

which implies that the index is 1 on the set Kρ. In fact, if there exists λ ≥ 1 and
u ∈ ∂Kρ such that

λu(t) = Tu(t) = γ(t)(k0 + B(α[u])) +

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds

then we have

λu(t) ≤ γ(t)(k0 + δ2α[u]) +

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds (12)

and

λα[u] ≤ α[γ](k0 + δ2α[u]) +

∫ 1

0

G(s)g(s)f(s, u(s)) ds.

Hence we obtain

(λ − δ2α[γ])α[u] ≤ k0α[γ] +

∫ 1

0

G(s)g(s)f(s, u(s)) ds.

Substituting into (12) gives

λu(t) ≤ λk0γ(t)

λ − δ2α[γ]
+

γ(t)δ2

λ − δ2α[γ]

∫ 1

0

G(s)g(s)f(s, u(s)) ds+

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds.

Taking the supremum for t ∈ [0, 1] gives

λρ ≤ λk0‖γ‖
λ − δ2α[γ]

+
‖γ‖δ2

λ − δ2α[γ]

∫ 1

0

G(s)g(s)ρf 0,ρ ds + sup
t∈[0,1]

∫ 1

0

G0(t, s)g(s)ρf 0,ρ ds

≤ k0‖γ‖
1 − δ2α[γ]

+
‖γ‖δ2

1 − δ2α[γ]

∫ 1

0

G(s)g(s)ρf 0,ρ ds + sup
t∈[0,1]

∫ 1

0

G0(t, s)g(s)ρf 0,ρ ds.

Thus we have,

λ ≤ k0

3ρ(1 − δ2α[γ])
+ f 0,ρ

( δ2

3(1 − δ2α[γ])

∫ 1

0

G(s)g(s) ds +
1

m

)

< 1.

This contradicts the fact that λ ≥ 1 and proves the result. �

In order to give a condition that implies the fixed point index is equal to 0, we
make use of the open set

Vρ =
{

u ∈ K : min
t∈[a,b]

u(t) < ρ
}

.

Vρ is equal to the set called Ωρ/c in [33]. Note that Kρ ⊂ Vρ ⊂ Kρ/c.
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Lemma 2.2 Assume that there exists ρ > 0 such that

(I0ρ) the following inequality holds:

k0c

3ρ(1 − δ1α[γ])
+

( cδ1

3(1 − δ1α[γ])

∫ b

a

G(s)g(s) ds +
1

M(a, b)

)

fρ,ρ/c > 1. (13)

Then we have iK(T, Vρ) = 0.

Proof. Let e(t) ≡ 1 for t ∈ [0, 1]. Then e ∈ K. We prove that

u 6= T (u) + λe for all u ∈ ∂Vρ and λ ≥ 0,

which ensures that the index is 0 on the set Vρ. In fact, if this does not happen, there
exist u ∈ ∂Vρ and λ ≥ 0 such that u = Tu + λe, that is

u(t) = γ(t)(k0 + B(α[u])) +

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds + λ.

Then we have

u(t) ≥ γ(t)(k0 + δ1α[u]) +

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds + λ, (14)

and

α[u] ≥ α[γ](k0 + δ1α[u]) +

∫ 1

0

G(s)g(s)f(s, u(s)) ds + α[λ]

≥ α[γ](k0 + δ1α[u]) +

∫ 1

0

G(s)g(s)f(s, u(s)) ds.

Hence we obtain

(1 − δ1α[γ])α[u] ≥ k0α[γ] +

∫ 1

0

G(s)g(s)f(s, u(s)) ds.

Substituting into (14) gives

u(t) ≥ k0γ(t)

1 − δ1α[γ]
+

γ(t)δ1

1 − δ1α[γ]

∫ 1

0

G(s)g(s)f(s, u(s)) ds+

∫ 1

0

G0(t, s)g(s)f(s, u(s)) ds+λ.

Then we have, for t ∈ [a, b],

u(t) ≥ k0cγ‖γ‖
1 − δ1α[γ]

+
cγ‖γ‖δ1

1 − δ1α[γ]

∫ b

a

G(s)g(s)ρfρ,ρ/c ds +

∫ b

a

G0(t, s)g(s)ρfρ,ρ/c ds + λ,
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and therefore

min
t∈[a,b]

u(t) ≥ k0c

3ρ(1 − δ1α[γ])
+ fρ,ρ/c

( cδ1

3(1 − δ1α[γ])

∫ b

a

G(s)g(s) ds +
1

M(a, b)

)

+ λ.

By (I0ρ) we have that mint∈[a,b] u(t) > ρ + λ ≥ ρ. This contradict the fact that u ∈ ∂Vρ

and proves the result. �

We can now state a result for the existence of one or two positive solutions for the
integral equation (9).

Theorem 2.2 Equation (9) has a positive solution in K if either of the following
conditions hold.

(S1) There exist ρ1, ρ2 ∈ (0,∞), with ρ1 < ρ2, such that (I1ρ1
) and (I0ρ2

) hold.

(S2) There exist ρ1, ρ2 ∈ (0,∞), with ρ1 < cρ2, such that (I0ρ1
) and (I1ρ2

) hold.

Equation (9) has two positive solutions in K if either of the following conditions hold.

(D1) There exist ρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < ρ2 < cρ3, such that (I1ρ1
), (I0ρ2

) and (I1ρ3
)

hold.

(D2) There exist ρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < cρ2 and ρ2 < ρ3, such that (I0ρ1
), (I1ρ2

)
and (I0ρ3

) hold.

We omit the proof which follows simply from properties of fixed point index, for details
of similar proofs see [26, 34]. Note that, if the nonlinearity f has a suitable oscillatory
behavior, one may establish, by the same method, the existence of more than two
positive solutions (we refer the reader to [27, 33] to see the type of results that may be
stated).

Example 2.1 We now assume that g ≡ 1, α[u] = u(ξ), ξ ∈ (0, 1) and we make, as in
[25], the choice

B(w) =

{

1
4
w, 0 ≤ w ≤ 1,

1
8
w + 1

8
, w ≥ 1.

In this case we have δ1 = 1
8

and δ2 = 1
4
,

α[γ] =

∫ 1

0

γ(t) dA(t) =
1

6
(3ξ2 − ξ3)

and
∫ 1

0

G(s) ds = ξ2
(

− 1

24
ξ2 − 1

6
ξ +

1

4

)

.

By direct calculation one gets m = 8. The ‘optimal’ [a, b], the interval for which

M := M(a, b) =
12

3a2b2 − 2a3b − a4
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is a minimum, is given by the interval

[−3 +
√

33

4
, 1

]

, (15)

this gives M = 22.032 and c = 0.545.

Remark 2.1 Until now we have discussed in details the case of the BCs (2). We point
out that the same approach may be applied to the BCs (3), (4), (5).

In all these cases the growth assumptions on the nonlinearities, that are the condi-
tions equivalent to (11) and (13), can be written in the form

k0‖γ‖
(1 − δ2α[γ])ρ

+ f 0,ρ
( δ2‖γ‖

(1 − δ2α[γ])

∫ 1

0

G(s)g(s) ds +
1

m

)

< 1,

and
k0cγ‖γ‖

(1 − δ1α[γ])ρ
+

( cγδ1‖γ‖
(1 − δ1α[γ])

∫ b

a

G(s)g(s) ds +
1

M(a, b)

)

fρ,ρ/c > 1,

where

BCs (2) BCs (3) BCs (4) BCs (5)
γ(t) (3t2 − t3)/6 1 t t2/2

cγ a2(3 − a)/2 1 a a2/2

c a2(3 − a)/2 a2(3 − a)/2 a2(3 − a)/2 a2/2

This also illustrates that the cone K, given by the constant c, varies according to the
non-homogeneous BCs considered.
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