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Abstract. In this paper we prove the existence of an infinite number of radial solutions
of ∆u + f (u) = 0 on the exterior of the ball of radius R > 0 centered at the origin and
f is odd with f < 0 on (0, β), f > 0 on (β, δ), and f ≡ 0 for u > δ. The primitive
F(u) =

∫ u
0 f (t) dt has a “hilltop” at u = δ which allows one to use the shooting method

to prove the existence of solutions.
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1 Introduction

In this paper we study radial solutions of:

∆u + f (u) = 0 in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

u→ 0 as |x| → ∞, (1.3)

where x ∈ Ω = RN\BR(0) is the complement of the ball of radius R > 0 centered at the
origin. We assume there exist β, γ, δ with 0 < β < γ < δ such that f is odd, locally Lipschitz
with f (0) = f (β) = f (δ) = 0, and F(u) =

∫ u
0 f (s) ds where:

f < 0 on (0, β), f > 0 on (β, δ), f ≡ 0 on (δ, ∞), F(γ) = 0, and F(δ) > 0. (1.4)

In addition we assume:
f ′(β) > 0 if N > 2. (1.5)

In an earlier paper [6] we studied (1.1), (1.3) when Ω = RN and we proved existence of an
infinite number of solutions – one with exactly n zeros for each nonnegative integer n such
that u → 0 as |x| → ∞. Interest in the topic for this paper comes from some recent papers
[5, 8, 10] about solutions of differential equations on exterior domains.

When f grows superlinearly at infinity i.e. limu→∞
f (u)

u = ∞, and Ω = RN then the prob-
lem (1.1), (1.3) has been extensively studied [1–3, 7, 11]. However, the type of nonlinearity
addressed in this paper has not.
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Since we are interested in radial solutions of (1.1)–(1.3) we assume that u(x) = u(|x|) =

u(r) where r = |x|=
√

x2
1 + · · ·+ x2

N so that u solves:

u′′(r) +
N − 1

r
u′(r) + f (u(r)) = 0 on (R, ∞) where R > 0, (1.6)

u(R) = 0, u′(R) = a > 0. (1.7)

We will show that there are infinitely many solutions of (1.6)–(1.7) on [R, ∞) such that:

lim
r→∞

u(r) = 0.

Main theorem. There exists a positive number d∗ and positive numbers ai so that:

0 < a0 < a1 < a2 < · · · < d∗

and u(r, ai) satisfies (1.6)–(1.7), u(r, ai) has exactly i zeros on (R, ∞), and limr→∞ u(r, ai) = 0.

We will first show that there exists a d∗ > 0 so that the corresponding solution, u(r, d∗), of
(1.6)–(1.7) satisfies: u(r, d∗) > 0 on (R, ∞) and limr→∞ u(r, d∗) = δ. Once d∗ is determined we
will then find the ai.

An important step in proving this result is showing that solutions can be obtained with
more and more zeros by choosing a appropriately. Intuitively it can be of help to interpret
(1.6) as an equation of motion for a point u(r) moving in a double-well potential F(u) subject
to a damping force −N−1

r u′. This potential however becomes flat at u = ±δ. According to
(1.7) the system has initial position zero and initial velocity a > 0. We will see that if a > 0 is
sufficiently small then the solution will “fall” into the well at u = β and – due to damping – it
will be unable to leave the well whereas if a > 0 is sufficiently large the solution will reach the
top of the hill at u = δ and will continue to move to the right indefinitely. For an appropriate
value of a – which we denote d∗ – the solution will reach the top of the hill at u = δ as r → ∞.
For values of a slightly less than d∗ the solutions will not make it to the top of the hill at u = δ

and they will nearly stop moving. Thus the solution “loiters” near the hilltop on a sufficiently
long interval and will usually “fall” into the positive well at u = β or the negative well at
u = −β after passing the origin several times. The closer a is to d∗ with a < d∗ the more times
the solution passes the origin. Given n ≥ 0 for the right value of a – which we denote as an –
the solution will pass the origin n times and come to rest at the local maximum of the function
F(u) at the origin as r → ∞.

In contrast to a double-well potential that goes off to infinity as |u| → ∞ – for example
F(u) = u2(u2 − 4) – the solutions behave quite differently. Here as a increases the number of
zeros of u increases as a → ∞. Thus the number of times that u reaches the local maximum
of F(u) at the origin increases as the parameter a increases. See for example [7, 9].

2 Preliminaries

Since R > 0 existence of solutions of (1.6)–(1.7) on [R, R + ε) for some ε > 0 follows from the
standard existence–uniqueness theorem [4] for ordinary differential equations. For existence
on [R, ∞) we consider:

E(r) =
1
2

u′2 + F(u), (2.1)
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and using (1.6) we see that:

E′(r) = −N − 1
r

u′2 ≤ 0 (2.2)

so E is nonincreasing. Therefore:

1
2

u′2 + F(u) = E(r) ≤ E(R) =
1
2

a2 for r ≥ R. (2.3)

It follows from the definition of f in (1.4) that F is bounded from below and so there exists a
real number, F0, so that:

F(u) ≥ F0 for all u. (2.4)

Therefore (2.3)–(2.4) imply u′ and hence (from (1.6)) u′′ are uniformly bounded wherever they
are defined. It follows from this then that u, u′, and u′′ are defined and continuous on [R, ∞).

Lemma 2.1. Let u(r, a) be a solution of (1.6)–(1.7) with a > 0 and suppose Ma ∈ (R, ∞) is a positive
local maximum of u(r, a). Then |u(r, a)| < u(Ma, a) for r > Ma.

Proof. If there were an r0 > Ma such that |u(r0, a)| = u(Ma, a) then integrating (2.2) on (Ma, r0)

and noting that u′(Ma, a) = 0 and F is even (since f is odd) we obtain:

F(u(Ma, a)) = F(u(r0, a)) ≤ 1
2

u′2(r0, a) + F(u(r0, a))

+
∫ r0

Ma

N − 1
r

u′2 dr = E(Ma) = F(u(Ma, a)).

Thus: ∫ r0

Ma

N − 1
r

u′2 dr = 0

so that u′(r, a) ≡ 0 on (Ma, r0) and hence by uniqueness of solutions of initial value problems
it follows that u(r, a) is constant on [R, ∞). However, u′(R, a) = a > 0 and thus u(r, a) is not
constant. Therefore we obtain a contradiction and the lemma is proved.

Lemma 2.2. Let u(r, a) be a solution of (1.6)–(1.7) with a > 0 on (R, Ta] where u(Ta, a) = δ and
u′(r, a) > 0 on [R, Ta). Then u′(r, a) > 0 on [R, ∞).

Proof. Since u′(r, a) > 0 on [R, Ta) then by continuity we have u′(Ta, a) ≥ 0. If u′(Ta, a) = 0 then
since u(Ta, a) = δ we have f (u(Ta, a)) = 0 and therefore by (1.6) we have u′′(Ta, a) = 0 which
would imply u(r, a) ≡ δ (by uniqueness of solutions of initial value problems) contradicting
u′(R, a) = a > 0. Thus we see u′(Ta, a) > 0. Therefore u(r, a) > δ on (Ta, Ta + ε) for some
ε > 0 and so f (u(r, a)) ≡ 0 on this set. Then from (1.6) we have u′′ + N−1

r u′ = 0 and thus:

rn−1u′(r, a) = Tn−1
a u′(Ta, a) > 0 (2.5)

on (Ta, Ta + ε). It follows from this that u(r, a) continues to be greater than δ so f (u(r, a)) ≡ 0
and therefore (1.6) reduces to u′′ + N−1

r u′ = 0 so that (2.5) continues to hold on [R, ∞). This
completes the proof.

Lemma 2.3. Let u(r, a) be a solution of (1.6)–(1.7) with a > 0. Then there is an ra > R such that
u′(r, a) > 0 on [R, ra] and u(ra, a) = β. In addition, if u(r, a) has a positive local maximum, Ma, with
β < u(Ma, a) < δ then there exists ra2 > Ma such that u′(r, a) < 0 on (Ma, ra2 ] and u(ra2 , a) = β.
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Proof. Since u′(R, a) = a > 0 we see that u(r, a) is increasing for values of r close to R.
If u(r, a) has a first critical point, ta > R, with u′(r, a) > 0 on [R, ta) then we must have
u′(ta, a) = 0, u′′(ta, a) ≤ 0 and in fact u′′(ta, a) < 0 (by uniqueness of solutions of initial value
problems). Therefore from (1.6) it follows that f (u(ta, a)) > 0 so that u(ta, a) > β. Thus the
existence of ra is established by the intermediate value theorem provided that u(r, a) has a
critical point. On the other hand, if u(r, a) has no critical point then u′(r, a) > 0 for all r ≥ R
so limr→∞ u(r, a) = L where 0 < L ≤ ∞. If L = ∞ then again we see by the intermediate
value theorem that ra exists. If L < ∞ then since E is nonincreasing by (2.2) and bounded
below by (2.4), it follows that limr→∞ E(r) exists which implies limr→∞ u′(r, a) exists. This
limit must be zero for if u′ → A > 0 as r → ∞ then integrating this on (r0, r) for large r0

and r implies u → ∞ as r → ∞ but we know u is bounded by L < ∞. Thus it must be the
case that limr→∞ u′(r, a) = 0. It follows then from (1.6) that limr→∞ u′′(r, a) exists and by an
argument similar to the proof that limr→∞ u′(r, a) = 0 it follows that limr→∞ u′′(r, a) = 0 so
that by (1.6) we have f (L) = 0. Since L > 0 it follows from the definition of f that L = β

or L = δ. If L = δ > β then again we see by the intermediate value theorem that ra exists
and so the only case we need to consider is if u′(r, a) > 0 and L = β. In this case we see
that f (u(r, a)) ≤ 0 for all r ≥ R so that u′′ + N−1

r u′ ≥ 0 by (1.6). Thus, (rN−1u′(r, a))′ ≥ 0
and so rN−1u′(r, a) ≥ RN−1u′(R, a) = aRN−1 > 0 for r ≥ R and hence if 1 ≤ N < 2 then
u(r, a) = u(r, a)− u(R, a) ≥ aRn−1

2−N (r2−N − R2−N) → ∞ as r → ∞ and if N = 2 then u(r, a) =
u(r, a)− u(R, a) ≥ aR ln(r/R) → ∞ as r → ∞. These however contradict that u(r, a) ≤ β and
so it follows then in both of these situations that ra exists and so we now only need to consider
the case where N > 2 with u′(r, a) > 0 and limr→∞ u(r, a) = β. So suppose u′(r, a) > 0 and
u(r, a)− β < 0 for r ≥ R. Rewriting (1.6) we see:

u′′ +
N − 1

r
u′ +

f (u)
u− β

(u− β) = 0.

Recalling (1.5) we see that:

lim
r→∞

f (u(r, a))
u(r, a)− β

= lim
u→β

f (u)
u− β

= f ′(β) > 0.

Thus f (u(r,a))
u(r,a)−β

≥ 1
2 f ′(β) for r > r0 where r0 is sufficiently large. Next suppose v is a solution of:

v′′ +
N − 1

r
v′ +

1
2

f ′(β)(v− β) = 0

with v(r0) = u(r0) and v′(r0) = u′(r0).
Then it is straightforward to show that:

v(r)− β = r−
N−2

2 J

(√
1
2

f ′(β) r

)

where J is a solution of Bessel’s equation of order N−2
2 :

J′′ +
1
r

J′ +

(
1−

(N−2
2 )2

r2

)
J = 0.

It is well-known [4] that J has an infinite number of zeros on (0, ∞) and so in particular there
is an r1 > r0 where v(r1)− β = 0. It then follows by the Sturm comparison theorem [4] that
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u(r, a)− β has a zero on (r0, r1) contradicting our assumption that u(r, a)− β < 0 for r ≥ R.
This therefore completes the proof of the first part of the lemma.

Suppose now that u(r, a) has a maximum, Ma, so that u′(Ma, a) = 0 and β < u(Ma, a) < δ.
A similar argument using the Sturm comparison theorem shows that u(r, a) again must equal
β for some r > Ma. This completes the proof of the lemma.

3 Proof of the Main theorem

Before proceeding to the proof of the main theorem, we will first show that there is a d∗ > 0
such that u′(r, d∗) > 0 for r ≥ R, 0 < u(r, a) < δ for r > R, and u(r, a)→ δ as r → ∞.

Let ε be chosen so that 0 < ε < δ− γ. (Recall that β < γ < δ and F(γ) = 0).

Lemma 3.1. Let u(r, a) be a solution of (1.6)–(1.7) with a > 0. If 0 < a <
√

2F(δ− ε) then
u(r, a) < δ− ε on [R, ∞).

Proof. Since E′ ≤ 0 by (2.2) we see for r ≥ R that:

F(u(r, a)) ≤ 1
2

u′2(r, a) + F(u(r, a)) = E(r) ≤ E(R) =
1
2

a2 < F(δ− ε). (3.1)

Now if there is an r0 > R such that u(r0, a) = δ− ε then substituting in (3.1) gives: F(δ− ε) ≤
1
2 a2 < F(δ− ε) which is impossible.

Lemma 3.2. Let u(r, a) be a solution of (1.6)–(1.7) with a > 0. If 0 < ε < δ − γ and 0 <

a <
√

2F(δ− ε) then there exists an Ma > R such that u(r, a) has a local maximum at Ma with
u(Ma, a) < δ and u′(r, a) > 0 on [R, Ma).

Proof. From Lemma 3.1 we see that since 0 < ε < δ − γ and 0 < a <
√

2F(δ− ε) then
u(r, a) < δ − ε on [R, ∞). Also u(r, a) is increasing near r = R since u′(R, a) = a > 0. We
suppose now by the way of contradiction that u′(r, a) > 0 for all r ≥ R. Then by Lemma 3.1
there is an L > 0 such that limr→∞ u(r, a) = L ≤ δ− ε. Since E is bounded from below by (2.4),
E′ ≤ 0 by (2.2), and limr→∞ u(r, a) = L, it follows that limr→∞ u′(r, a) exists and in fact this
must be zero (as in the proof of Lemma 2.3). From (1.6) it follows that limr→∞ u′′(r, a) = − f (L)
and in fact this must also be zero (as in the proof that limr→∞ u′(r, a) = 0 from Lemma 2.3)
and therefore f (L) = 0. Since 0 < L ≤ δ − ε it then follows that L = β. However, from
Lemma 2.3 we know that u(r, a) must equal β for some ra > R and since we are assuming
u′(r, a) > 0 for r ≥ R we see that u(r, a) exceeds β for large r so that L > β – a contradiction.
Thus there is an Ma > R with u(Ma, a) < δ− ε, u′(r, a) > 0 on [R, Ma), u′(Ma, a) = 0, and
u′′(Ma, a) ≤ 0. We have in fact that u′′(Ma, a) < 0 (by uniqueness of solutions of initial value
problems) and therefore Ma is a local maximum for u(r, a). This completes the proof.

Lemma 3.3. Let u(r, a) be a solution of (1.6)–(1.7). For sufficiently large a > 0 there exists Ta > R
such that u(Ta, a) = δ, u(r, a) < δ on [R, Ta), and u′(r, a) > 0 on [R, ∞).

Proof. Suppose u(r, a) < δ for all r ≥ R for all sufficiently large a. We first show that |u(r, a)| <
δ for all r ≥ R. If u(r, a) is nondecreasing for all r ≥ R then of course we have u(r, a) > 0 > −δ

and so |u(r, a)| < δ for all r ≥ R. On the other hand if u is nondecreasing on [R, Ma)

such that u(r, a) has a local maximum at Ma with u(Ma, a) < δ then by Lemma 2.1 we have
|u(r, a)| < u(Ma, a) < δ for r > Ma. Thus in either case we see that:

|u(r, a)| < δ for all r ≥ R. (3.2)
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Now we let va(r) =
u(r,a)

a . Then va satisfies:

v′′a +
N − 1

r
v′a +

1
a

f (ava) = 0, (3.3)

va(R) = 0, v′a(R) = 1. (3.4)

It also follows from (2.2)–(2.3) that:(
1
2

v′2a +
1
a2 F(ava)

)′
≤ 0 for r ≥ R,

and so integrating this on [R, r) gives:

1
2

v′2a +
1
a2 F(ava) ≤

1
2

for r ≥ R. (3.5)

From (3.2) we know |va| = | u(r,a)
a | <

δ
a and since F is bounded from below by (2.4) it

follows from (3.5) that the {v′a} are uniformly bounded for large values of a. From (3.3) it
also follows that the {v′′a } are uniformly bounded for large values of a and so by the Arzelà–
Ascoli theorem there is a subsequence of {va} and {v′a} (still denoted {va} and {v′a}) such
that va → v and v′a → v′ uniformly on compact subsets of [R, ∞) as a → ∞. But clearly v ≡ 0
(since |va| = | u(r,a)

a | <
δ
a by (3.2) thus |va| → 0 as a→ ∞) whereas v′(R) = 1 – a contradiction.

Therefore it must be the case that if a is sufficiently large then there exists Ta > R such
that u(Ta, a) = δ and u(r, a) < δ on [R, Ta). In addition, it must be the case that u′(r, a) > 0 on
[R, Ta) for if not then there exists an Ma < Ta such that u′(Ma, a) = 0 and u(Ma, a) < δ. But
from Lemma 2.1 it would follow that |u(r, a)| < u(Ma, a) < δ for r > Ma contradicting that
u(Ta, a) = δ. Thus u′(r, a) > 0 on [R, Ta). Now from Lemma 2.2 it follows that u′(r, a) > 0 on
[R, ∞). This completes the proof.

Now let:

S =
{

a > 0 | ∃Ma with Ma > R | u′(r, a) > 0 on [R, Ma),

u′(Ma, a) = 0, u′′(Ma, a) < 0, and u(Ma, a) < δ
}

.

From Lemma 3.2 it follows that S is nonempty and from Lemma 3.3 it follows that S is
bounded above. Next we set:

0 < d∗ = sup S.

Lemma 3.4. Let u(r, d∗) be the solution of (1.6)–(1.7) with a = d∗. Then:

0 < u(r, d∗) < δ for all r > R,

u′(r, d∗) > 0 for all r ≥ R, and:

lim
r→∞

u(r, d∗) = δ.

Proof. We first note that d∗ /∈ S for if d∗ ∈ S then by continuity with respect to initial conditions
that d∗ + ε ∈ S for ε > 0 sufficiently small contradicting the definition of d∗. Thus d∗ /∈ S.
Therefore there exist a ∈ S with a < d∗ and a arbitrarily close to d∗.

Next we show u(r, d∗) < δ for all r ≥ R. First since u(r, a) < δ for all a < d∗ then by
continuity with respect to initial conditions it follows that u(r, d∗) ≤ δ. Now suppose that
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there exists Td∗ > R such that u(Td∗ , d∗) = δ with u(r, d∗) < δ for R ≤ r < Td∗ . Then by
Lemma 2.2 we have u′(r, d∗) > 0 on [R, ∞). So there exists r0 > Td∗ such that u(r0, d∗) > δ + ε

for some ε > 0. Then by continuity with respect to initial conditions it follows that u(r0, a) >
δ + 1

2 ε for a < d∗ and a sufficiently close to d∗. But this contradicts that for a < d∗ we have
u(r, a) < δ by Lemma 2.1. Thus there is no such Td∗ and so:

u(r, d∗) < δ for all r ≥ R. (3.6)

Now for a < d∗ and a ∈ S there is an Ma where u(r, a) has a local maximum. If u(r, d∗) has
a local maximum, Md∗ , then u(Md∗ , d∗) < δ by (3.6) and u′′(Md∗ , d∗) ≤ 0. In fact, u′′(Md∗ , d∗) <
0 (by uniqueness of solutions to initial value problems) and so by continuity with respect to
initial conditions this implies that:

u(r, a) has a local maximum, Ma, for a slightly larger than d∗. (3.7)

But for a > d∗ we have a /∈ S so either u′(r, a) > 0 on [R, ∞) or there exists Na such that
u′(Na, a) = 0 and u(Na, a) ≥ δ.

Clearly the first option does not hold because this contradicts (3.7) so therefore the second
must be true. Then since u(Na, a) ≥ δ we have f (u(Na, a)) = 0 and since u′(Na, a) = 0
then u′′(Na, a) = 0 (from (1.6)) which implies u(r, a) is constant (by uniqueness of solutions
of initial value problems). But a > d∗ > 0 and thus u′(R, a) = a > 0 so that u(r, a) is not
constant. This contradiction implies that the second option does not hold either so u(r, d∗)
has no local maximum and therefore u′(r, d∗) > 0 for all r ≥ R. Thus u(r, d∗) is increasing and
bounded above by δ so limr→∞ u(r, d∗) = L with 0 < L ≤ δ and as in the proof of Lemma 2.3
we see limr→∞ u′(r, a) = limr→∞ u′′(r, a) = 0 and so f (L) = 0. Thus L = β or L = δ. By
Lemma 2.3 we know that u must equal β for some r > R and since u′(r, a) > 0 for r ≥ R we
see that u(r, a) exceeds β for large r. Thus we see that L = δ. This completes the proof.

Lemma 3.5. Let u(r, a) be a solution on (1.6)–(1.7). For 0 < a < d∗ and a ∈ S, u(r, a) has a local
maximum, Ma, on (R, ∞) such that:

lim
a→d∗−

Ma = ∞,

and:
lim

a→d∗−
u(Ma, a) = δ.

Proof. Since a ∈ S then we know that Ma exists. If the {Ma} were bounded independent of
a then there is a subsequence (still labeled {Ma}) and a real number M such that Ma → M.
Also, by (2.3) and since F is bounded from below by (2.4) it follows that {u′(r, a)} are uni-
formly bounded. It then follows from (1.6) that {u′′(r, a)} are uniformly bounded. Also
0 < u(r, a) < δ on (R, ∞) and so by the Arzelà–Ascoli theorem there is a subsequence of
{u(r, a)} and {u′(r, a)} (still labeled {u(r, a)} and {u′(r, a)}) such that u(r, a) → u(r, d∗) and
u′(r, a) → u′(r, d∗) uniformly on compact sets and so in particular u′(M, d∗) = 0. However,
we know from Lemma 3.4 that u′(r, d∗) > 0 for r ≥ R and so we obtain a contradiction.
Thus lima→d∗− Ma = ∞. Next since limr→∞ u(r, d∗) = δ by Lemma 3.4 then given ε > 0
there is r0 > R such that u(r0, d∗) > δ − ε

2 . Since u(r, a) → u(r, d∗) uniformly on com-
pact subsets of [R, ∞) as a → d∗ it then follows that for a sufficiently close to d∗ there is
some pa close to r0 with u(rp, a) > δ− ε. And since u(r, a) has its maximum at Ma we have
u(Ma, a) ≥ u(pa, a) > δ− ε. Thus lima→d∗− u(Ma, a) = δ.
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Lemma 3.6. Let u(r, a) be a solution of (1.6)–(1.7). For sufficiently small a > 0 we have u(r, a) > 0
for all r > R.

Proof. We observe that from (2.2):

{r2N−2E(r)}′ = (2N − 2)r2N−3F(u) ≤ 0 when 0 ≤ u ≤ γ. (3.8)

We denote ra1 as the smallest value of r > R such that u(ra1 , a) = 1
2 β and ra as the smallest

value of r > R such that u(ra, a) = β. We know that these numbers exist by Lemma 2.3 and it
also follows from Lemma 2.3 that u′(r, a) > 0 on [R, ra]. By the definition of f and F we see
that on the set [ 1

2 β, β] there exists c0 > 0 such that F(u) ≤ −c0 < 0. Therefore integrating (3.8)
on [R, ra] and estimating we obtain:

r2N−2
a E(ra) = R2N−2E(R) +

∫ ra

R
(2N − 2)r2N−3F(u) dr

≤ 1
2

R2N−2a2 +
∫ ra

ra1

(2N − 2)r2N−3F(u) dr ≤ 1
2

R2N−2a2 − c0[r2N−2
a − r2N−2

a1
]

≤ 1
2

R2N−2a2 − (2N − 2)c0[ra − ra1 ]r
2N−3
a1

. (3.9)

Recalling (2.3) and rewriting we have:

|u′|√
a2 − 2F(u)

≤ 1 on [R, ∞). (3.10)

Integrating (3.10) on [R, ra1 ] where u′(r, a) > 0 gives:∫ β
2

0

ds√
a2 − 2F(s)

=
∫ ra1

R

u′√
a2 − 2F(u)

dt ≤ ra1 − R. (3.11)

On [0, β] we have 2F(s) ≥ −c2
1s2 for some c1 > 0 and therefore:

∫ β
2

0

ds√
a2 − 2F(s)

≥
∫ β

2

0

ds√
a2 + c2

1s2
=

1
c1

ln

 c1β

2a
+

√
1 +

(
c1β

2a

)2
→ ∞ as a→ 0+. (3.12)

Therefore by (3.11) and (3.12) we have:

ra1 → ∞ as a→ 0+. (3.13)

In addition, integrating (3.10) on [ra1 , ra] gives for small a:∫ β

β
2

ds√
a2 + c2

1s2
≤
∫ β

β
2

ds√
a2 − 2F(s)

=
∫ ra

ra1

u′√
a2 − 2F(u)

dt ≤ ra − ra1 . (3.14)

The left-hand side of (3.14) approaches
∫ β

β
2

ds
c1s = ln(2)

c1
≥ 1

2c1
as a → 0+ therefore it follows

from (3.9) and (3.13)–(3.14) that:

r2N−2
a E(ra) ≤

1
2

R2N−2a2 −
(N − 1)c0r2N−3

a1

c1
→ −∞

as a → 0+. Thus for sufficiently small a we see that E becomes negative on [R, ra] and since
E is nonincreasing by (2.2), E remains negative for all r ≥ ra. It follows that u(r, a) cannot be
zero for any r > ra because at any such point z we would have E(z) = 1

2 u′2(z, a) ≥ 0. We also
know u(r, a) is increasing on [R, ra] by Lemma 2.3 and so u(r, a) > 0 on [R, ra]. Thus u(r, a)
stays positive for all r > R for small a > 0. This completes the proof.
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Lemma 3.7. There exists d1 with 0 < d1 < d∗ such that u(r, d1) has at least one zero on [R, ∞).
In addition, if a < d∗ and a is sufficiently close to d∗ then u(r, a) has a local minimum, ma, and
u(ma, a)→ −δ as a→ d∗−.

Proof. Suppose first that a ∈ S and u′(r, a) < 0 on (Ma, r). Then integrating (2.2) on (Ma, r),
using (2.3)–(2.4), and using the fact from Lemma 2.1 that −δ < u(r, a) < δ on (Ma, r) gives:

E(Ma)− E(r) =
∫ r

Ma

N − 1
t

u′2(t, a) dt ≤ N − 1
Ma

∫ r

Ma

|u′(t, a)||u′(t, a)| dt

≤ N − 1
Ma

∫ r

Ma

√
a2 − 2F(u(t, a))[−u′(t, a)] dt

≤ N − 1
Ma

∫ u(Ma,a)

u(r,a)

√
a2 − 2F(s) ds ≤ 2(N − 1)δ

√
a2 − 2F0

Ma
.

Thus we see:

E(Ma)− E(r) ≤ 2(N − 1)δ
√

a2 − 2F0

Ma
. (3.15)

We now have two possibilities. Either:

(i) u′(r, a) < 0 for all r > Ma for a sufficiently close to d∗,

or:

(ii) there exists ma > Ma such that u′(r, a) < 0 on (Ma, ma) and u′(ma, a) = 0 for a suffi-
ciently close to d∗.

If (i) holds then u(r, a) → L and as in the proof of Lemma 2.3 it follows that u′(r, a) → 0 and
u′′(r, a) → 0 as r → ∞ where f (L) = 0. By Lemma 2.1 we also have |u(r, a)| < u(Ma, a) < δ

for r > Ma so that L = 0 or L = ±β. In particular, |L| ≤ β. Also as r → ∞ we see from (3.15):

0 < F(u(Ma, a))− F(L) = E(Ma)− E(∞) ≤ 2(N − 1)δ
√

a2 − 2F0

Ma
. (3.16)

As a → d∗− the right-hand side of (3.16) goes to 0 by Lemma 3.5. Also by Lemma 3.5,
F(u(Ma, a)) → F(δ) > 0 as a → d∗− and therefore it follows from (3.16) that F(L) > 0 for a
sufficiently close to d∗. This however implies that |L| ≥ γ > β which contradicts that |L| ≤ β.
Therefore we see that (i) does not hold for a sufficiently close to d∗. Thus it must be the case
that (ii) holds for a sufficiently close to d∗. With r = ma then we have from (3.15):

F(u(Ma, a))− F(u(ma, a)) = E(Ma)− E(ma) ≤
2(N − 1)δ

√
a2 − 2F0

Ma
. (3.17)

As above the right-hand side of (3.17) goes to 0 by Lemma 3.5 and F(u(Ma, a))→ F(δ) > 0
as a → d∗−. Therefore it follows that F(u(ma, a)) → F(δ) > 0 and hence |u(ma, a)| → δ for
a → d∗. Also since u′(ma, a) = 0 and u′(r, a) < 0 on (Ma, ma) we must have u′′(ma) ≥ 0 so
that f (u(ma, a)) ≤ 0. This implies u(ma, a) ≤ −β < 0 thus u(r, a) → −δ and in particular
we see that u(r, a) must be zero somewhere on the interval (Ma, ma) provided a is sufficiently
close to d∗. So there exists a d1 with 0 < d1 < d∗ such that u(r, d1) has at least one zero on
(R, ∞). This completes the proof of the lemma.
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Now let:
W0 = {0 < a < d1 | u(r, a) > 0 on [R, ∞)}.

By Lemma 3.6 we know that W0 is nonempty, and clearly W0 is bounded above by d1. So we
let:

a0 = sup W0.

Then we have the following lemma.

Lemma 3.8. u(r, a0) > 0 on [R, ∞) and limr→∞ u(r, a0) = 0. In addition, there is an Ma0 such that
u′(r, a0) > 0 on [R, Ma0) and u′(r, a0) < 0 on (Ma0 , ∞).

Proof. If u(r, a0) has a zero, z, then u′(z, a0) 6= 0 (by uniqueness of solutions of initial value
problems) and so u(r, a) will have a zero for a slightly larger than a0 which contradicts the
definition of a0. Thus u(r, a0) > 0 on [R, ∞).

Next suppose that u(r, a0) has a positive local minimum, ma0 , so that u′(ma0 , a0) = 0,
u′′(ma0 , a0) ≥ 0, (and in fact u′′(ma0 , a0) > 0 by uniqueness of solutions of initial value prob-
lems), so therefore f (u(ma0 , a0)) < 0. Then 0 < u(ma0 , a0) < β and E(ma0) = F(u(ma0 , a0)) < 0.
Thus for a > a0 and a close to a0 then u(r, a) must also have a positive local minimum, ma,
and E(ma) < 0. But since a > a0 then u(r, a) must have a zero, za, with za > ma. Since E is
nonincreasing this implies 0 ≤ 1

2 u′2(za, a) = E(za) ≤ E(ma) < 0 which is a contradiction.
Thus it must be that u′(r, a0) < 0 for r > Ma0 . Since u(r, a0) > 0 it follows then that

u(r, a0)→ β or u(r, a0)→ 0 as r → ∞ but from Lemma 2.3 we know that u(r, a0) will become
less than β for sufficiently large r. Thus u(r, a0) → 0 as r → ∞. This completes the proof of
the lemma.

Proof of the Main theorem. Now for a0 < a < d∗ it follows that u(r, a) has at least one zero on
[R, ∞). By Lemma 4 from [9], for a > a0 and a close to a0 then u(r, a) has at most one zero on
[R, ∞). Hence for a > a0 and a sufficiently close to a0 then u(r, a) has exactly one zero on [R, ∞).

Next we can use a similar argument as in Lemma 3.7 to prove that there exists d2 with
d1 ≤ d2 < d∗ such that u(r, d2) has at least two zeros on [R, ∞).

To see this, using a nearly identical argument as in Lemma 3.7 it follows that:

E(ma)− E(r) ≤ 2(N − 1)δ
√

a2 − 2F0

ma
(3.18)

where ma is the minimum obtained in Lemma 3.7. Then either:

(i) u′(r, a) > 0 for r > ma for a sufficiently close to d∗,

or:

(ii) there exists M2,a > ma such that u′(r, a) > 0 on (ma, M2,a) and u′(M2,a) = 0 for a
sufficiently close to d∗.

If (i) holds then it follows as in the proof of Lemma 3.7 that u(r, a) → L where L = 0 or
L = ±β. And as r → ∞ we see from (3.18):

F(u(ma, a))− F(L) = E(ma)− E(∞) ≤ 2(N − 1)δ
√

a2 − 2F0

ma
. (3.19)

As a → d∗− the right-hand side of (3.19) goes to zero since ma > Ma and Ma → ∞ by
Lemma 3.5. Also by Lemma 3.7, F(u(ma, a)) → F(δ) > 0 as a → d∗− and so F(L) > 0 for a
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sufficiently close to d∗ which implies |L| ≥ γ > β which contradicts |L| ≤ β. Thus it must be
the case that (ii) holds and as in the proof of Lemma 3.7 it follows that u(r, a) must be zero on
(ma, M2,a). So there exists a d2 with d1 < d2 < d∗ such that u(r, d2) has at least two zeros on
(R, ∞).

Then we define:

W1 = {a0 < a < d2 | u(r, a) has exactly one zero on [R, ∞)}.

Clearly W1 is nonempty since from Lemma 3.7 we have d1 ∈ W1. Also W1 is bounded above
by d2. Thus we set:

a1 = sup W1.

Then it can be shown in an argument similar to the one in Lemma 3.8 that u(r, a1) has one
zero on (R, ∞) and u(r, a1) → 0 as r → ∞. Proceeding inductively we can show for n ≥ 1
that there exists an with an−1 < an < d∗ such that u(r, an) has exactly n zeros on (R, ∞) and
u(r, an)→ 0 as r → ∞. This completes the proof of the main theorem.
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