EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF EVEN ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT

Chengjun Guo ${ }^{1}$, Donal O'Regan ${ }^{2}$, Yuantong X^{3} and Ravi P.Agarwal ${ }^{4}$
${ }^{1}$ Department of Applied Mathematics, Guangdong University of Technology 510006, P. R. China
${ }^{2}$ Department of Mathematics, National University of Ireland, Galway, Ireland e-mail: donal.oregan@nuigalway.ie
${ }^{3}$ Department of Mathematics, Sun Yat-sen University
Guangzhou Guangdong 510275, P. R China
${ }^{4}$ Department of Mathematical Sciences, Florida Institute of Technology Melbourne, Florida 32901, USA
e-mail: agarwal@fit.edu

Honoring the Career of John Graef on the Occasion of His Sixty-Seventh Birthday

Abstract

Using Mawhin's continuation theorem we establish the existence of periodic solutions for a class of even order differential equations with deviating argument.

Key words and phrases: Even order differential equation, deviating argument, Mawhin's continuation theorem, Green's function.
AMS (MOS) Subject Classifications: 34K15; 34C25

1 Introduction

In this paper, we discuss the even order differential equation with deviating argument of the form

$$
\begin{equation*}
x^{(2 n)}(t)+\sum_{i=0}^{2 n-2} a_{i}(t) x^{(i)}(t)+g(x(t-\tau(t)))=p(t) \tag{1}
\end{equation*}
$$

where $\tau(t), a_{i}(t)(i=0,1,2, \cdots, n), p(t)$ are real continuous functions defined on \mathbf{R} with positive period T and $a_{2 k-2}(t)>0(k=1,2, \cdots, n)$ for $t \in \mathbf{R}$, and $g(x)$ is a real continuous function defined on \mathbf{R}.

Periodic solutions for differential equations were studied in [2-12] and we note that most of the results in the literatue concern lower order problems. There are only a few papers [$1,13,14$] which discuss higher order problems.

For the sake of completeness, we first state Mawhin's continuation theorem [3]. Let X and Y be two Banach space and $L: \operatorname{DomL} \subset X \longrightarrow Y$ is a linear mapping and
$N: X \longrightarrow Y$ is a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if $\operatorname{dimKer} L=$ codimImL $<+\infty$, and ImL is closed in Y. If L is a Fredholm mapping of index zero, there exist continuous projectors $P: X \longrightarrow X$ and $Q: Y \longrightarrow Y$ such that $\operatorname{ImP}=\operatorname{Ker} L$ and $\operatorname{Im} L=\operatorname{Ker} Q=\operatorname{Im}(I-Q)$. It follows that $\left.L\right|_{\text {DomLnKerP }}:(I-P) X \longrightarrow I m L$ has an inverse which will be denoted by K_{P}. If Ω is an open and bounded subset of X, the mapping N will be called L-compact on Ω if $Q N(\bar{\Omega})$ is bounded and $\overline{K_{P}(I-Q) N(\bar{\Omega})}$ is compact. Since $\operatorname{Im} Q$ is isomorphic to $\operatorname{Ker} L$, there exists an isomorphism $J: \operatorname{Im} Q \longrightarrow \operatorname{Ker} L$. The following theorem is called Mawhin's continuation theorem (see [3]).
Theorem 1.1 Let L be a Fredholm mapping of index zero, and let N be L-compact on $\bar{\Omega}$. Suppose
(1) for each $\lambda \in(0,1)$ and $x \in \partial \Omega, L x \neq \lambda N x$, and
(2) for each $x \in \partial \Omega \cap \operatorname{Ker}(L), Q N x \neq 0$ and $\operatorname{deg}(Q N, \Omega \cap \operatorname{Ker}(L), 0) \neq 0$.

Then the equation $L x=N x$ has at least one solution in $\bar{\Omega} \cap D(L)$.

2 Main Result

Now we make the following assumptions on $a_{i}(t)$:
(i) $\quad M_{2 k-2}=\max _{t \in[0, T]} a_{2 k-2}(t) \geq a_{2 k-2}(t) \geq m_{2 k-2}=\min _{t \in[0, T]} a_{2 k-2}(t)>0,(k=$ $1,2, \cdots, n)$ for each $t \in[0, T]$;
(ii) $\quad M_{2 n-2}<\left(\frac{\pi}{T}\right)^{2}$ and $\frac{M_{2 n-2 i}}{M_{2 n-2 i+2}}<\left(\frac{\pi}{T}\right)^{2} \quad(i=2,3, \cdots, n)$;
(iii) There exists a positive constant r with $m_{0}>r$, such that with $A-\frac{2 M_{0}+m_{0}+r}{2\left(m_{0}-r\right)} B>0$ and $1-A^{*}>0$, where $A=1-A^{*}$,

$$
\begin{aligned}
& B=M_{1}\left(\frac{T}{2}\right)^{2 n-2}+\left(M_{2}-m_{2}\right)\left(\frac{T}{2}\right)^{2 n-3}+M_{3}\left(\frac{T}{2}\right)^{2 n-4}+\left(M_{4}-m_{4}\right)\left(\frac{T}{2}\right)^{2 n-5} \\
& +\cdots+M_{2 n-3}\left(\frac{T}{2}\right)^{2}+\left(M_{2 n-2}-m_{2 n-2}\right) \frac{T}{2} \\
& A^{*}=\left[M_{2 n-2}\left(\frac{T}{2}\right)^{2}+M_{2 n-3}\left(\frac{T}{2}\right)^{3}+M_{2 n-4}\left(\frac{T}{2}\right)^{4}+\cdots+M_{2}\left(\frac{T}{2}\right)^{2 n-2}+M_{1}\left(\frac{T}{2}\right)^{2 n-1}\right]
\end{aligned}
$$

and $M_{2 k-1}=\max _{t \in[0, T]}\left|a_{2 k-1}(t)\right| \quad(k=1,2, \cdots, n-1)$.
Our main result is the following theorem.

Theorem 2.1 Under the assumptions (i), (ii) and (iii), if

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \sup \left|\frac{g(x)}{x}\right| \leq r \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \operatorname{sgn}(x) g(x)=+\infty, \tag{3}
\end{equation*}
$$

then Eq.(1) has at least one T-periodic solution.

In order to prove the main theorem we need some preliminaries. Set

$$
X:=\left\{x \mid x \in C^{2 n-1}(\mathbf{R}, \mathbf{R}), x(t+T)=x(t), \forall t \in \mathbf{R}\right\}
$$

and $x^{(0)}(t)=x(t)$, and define the norm on X by

$$
\|x\|=\max _{0 \leq j \leq 2 n-1} \max _{t \in[0, T]}\left|x^{(j)}(t)\right|,
$$

and set

$$
Y:=\{y \mid y \in C(\mathbf{R}, \mathbf{R}), y(t+T)=y(t), \forall t \in \mathbf{R}\} .
$$

We define the norm on Y by $\|y\|_{0}=\max _{t \in[0, T]}|y(t)|$. Thus both $(X,\|\cdot\|)$ and $\left(Y,\|\cdot\|_{0}\right)$ are Banach spaces.

Remark 2.1 If $x \in X$, then it follows that $x^{(i)}(0)=x^{(i)}(T)(i=0,1,2, \cdots, 2 n-1)$.
Define the operators $L: X \longrightarrow Y$ and $N: X \longrightarrow Y$, respectively, by

$$
\begin{equation*}
L x(t)=x^{(2 n)}(t), \quad t \in \mathbf{R}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
N x(t)=p(t)-\sum_{i=0}^{2 n-2} a_{i}(t) x^{(i)}(t)-g(x(t-\tau(t))), t \in \mathbf{R} . \tag{5}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\operatorname{Ker} L=\{x \in X: x(t)=c \in \mathbf{R}\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ImL}=\left\{y \in Y: \int_{0}^{T} y(t) d t=0\right\} \tag{7}
\end{equation*}
$$

is closed in Y. Thus L is a Fredholm mapping of index zero.
Let us define $P: X \rightarrow X$ and $Q: Y \rightarrow Y / \operatorname{Im}(L)$, respectively, by

$$
\begin{equation*}
P x(t)=\frac{1}{T} \int_{0}^{T} x(t) d t=x(0), \quad t \in \mathbf{R}, \tag{8}
\end{equation*}
$$

for $x=x(t) \in X$ and

$$
\begin{equation*}
Q y(t)=\frac{1}{T} \int_{0}^{T} y(t) d t, \quad t \in \mathbf{R} \tag{9}
\end{equation*}
$$

for $y=y(t) \in Y$. It is easy to see that $\operatorname{ImP}=\operatorname{Ker} L$ and $\operatorname{Im} L=\operatorname{Ker} Q=\operatorname{Im}(I-Q)$. It follows that $\left.L\right|_{\text {DomLnKerP }}:(I-P) X \longrightarrow I m L$ has an inverse which will be denoted by K_{P}.

Furthermore for any $y=y(t) \in \operatorname{Im} L$, if $n=1$, it is well-known that

$$
\begin{equation*}
K_{P} y(t)=-\frac{t}{T} \int_{0}^{T} d u \int_{0}^{u} y(s) d s+\int_{0}^{t} d u \int_{0}^{u} y(s) d s \tag{10}
\end{equation*}
$$

If $n>1$, let $x(t) \in \operatorname{Dom} L \cap \operatorname{Ker} P$ be such that $K_{P} y(t)=x(t)$. Then $x^{(2 n)}(t)=y(t)$,

$$
\begin{equation*}
x^{(2 n-1)}(t)=x^{(2 n-1)}(0)+\int_{0}^{t} x^{(2 n)}(s) d s \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{(2 n-2)}(t)=x^{(2 n-2)}(0)+x^{(2 n-1)}(0) t+\int_{0}^{t} d u \int_{0}^{u} x^{(2 n)}(s) d s \tag{12}
\end{equation*}
$$

Since $x^{(2 n-2)}(T)=x^{(2 n-2)}(0)$, we have

$$
x^{(2 n-1)}(0) T+\int_{0}^{T} d u \int_{0}^{u} x^{(2 n)}(s) d s=0
$$

or

$$
x^{(2 n-1)}(0)=-\frac{1}{T} \int_{0}^{T} d u \int_{0}^{u} x^{(2 n)}(s) d s
$$

From (12), we have

$$
\begin{equation*}
x^{(2 n-2)}(t)=x^{(2 n-2)}(0)-\frac{t}{T} \int_{0}^{T} d u \int_{0}^{u} x^{(2 n)}(s) d s+\int_{0}^{t} d u \int_{0}^{u} x^{(2 n)}(s) d s . \tag{13}
\end{equation*}
$$

Now since $\int_{0}^{T} x^{(2 n-2)}(s) d s=0$, from (13) we have

$$
x^{(2 n-2)}(0) T-\frac{T}{2} \int_{0}^{T} d u \int_{0}^{u} x^{(2 n)}(s) d s+\int_{0}^{T} d w \int_{0}^{w} d u \int_{0}^{u} x^{(2 n)}(s) d s=0
$$

or

$$
\begin{equation*}
x^{(2 n-2)}(0)=\frac{1}{2} \int_{0}^{T} d u \int_{0}^{u} x^{(2 n)}(s) d s-\frac{1}{T} \int_{0}^{T} d w \int_{0}^{w} d u \int_{0}^{u} x^{(2 n)}(s) d s \tag{14}
\end{equation*}
$$

From (13) and (14), we have

$$
\begin{align*}
x^{(2 n-2)}(t) & =\frac{1}{2} \int_{0}^{T} d u \int_{0}^{u} x^{(2 n)}(s) d s-\frac{1}{T} \int_{0}^{T} d w \int_{0}^{w} d u \int_{0}^{u} x^{(2 n)}(s) d s \\
& -\frac{t}{T} \int_{0}^{T} d u \int_{0}^{u} x^{(2 n)}(s) d s+\int_{0}^{t} d u \int_{0}^{u} x^{(2 n)}(s) d s \\
& =\left(\frac{1}{2}-\frac{t}{T}\right) \int_{0}^{T} d u \int_{0}^{u} x^{(2 n)}(s) d s+\int_{0}^{t} d u \int_{0}^{u} x^{(2 n)}(s) d s \tag{15}\\
& -\frac{1}{T} \int_{0}^{T} d w \int_{0}^{w} d u \int_{0}^{u} x^{(2 n)}(s) d s .
\end{align*}
$$

Let $y_{0}(t)=y(t)$ and $y_{1}(t)=x^{(2 n-2)}(t)$. Since $y(t)=x^{(2 n)}(t)$, we have from (15) that

$$
\begin{align*}
x^{(2 n-2)}(t)=y_{1}(t) & =\left(\frac{1}{2}-\frac{t}{T}\right) \int_{0}^{T} d u \int_{0}^{u} y_{0}(s) d s \\
& +\int_{0}^{t} d u \int_{0}^{u} y_{0}(s) d s-\frac{1}{T} \int_{0}^{T} d w \int_{0}^{w} d u \int_{0}^{u} y_{0}(s) d s \tag{16}
\end{align*}
$$

From (16), we obtain

$$
x^{(2 n-3)}(t)=x^{(2 n-3)}(0)+\int_{0}^{t} y_{1}(s) d s
$$

and

$$
\begin{equation*}
x^{(2 n-4)}(t)=x^{(2 n-4)}(0)+x^{(2 n-3)}(0) t+\int_{0}^{t} d u \int_{0}^{u} y_{1}(s) d s . \tag{17}
\end{equation*}
$$

EJQTDE Spec. Ed. I, 2009 No. 12

Since $x^{(2 n-4)}(T)=x^{(2 n-4)}(0)$, we have from (17) that

$$
\begin{equation*}
x^{(2 n-3)}(0)=-\frac{1}{T} \int_{0}^{T} d u \int_{0}^{u} y_{1}(s) d s . \tag{18}
\end{equation*}
$$

Since $\int_{0}^{T} x^{(2 n-4)}(s) d s=0$, we have from (17) that

$$
\begin{equation*}
x^{(2 n-4)}(0)=\frac{1}{2} \int_{0}^{T} d u \int_{0}^{u} y_{1}(s) d s-\frac{1}{T} \int_{0}^{T} d w \int_{0}^{w} d u \int_{0}^{u} y_{1}(s) d s \tag{19}
\end{equation*}
$$

Let $y_{2}(t)=x^{(2 n-4)}(t)$ and we have from (17)-(19) that

$$
\begin{aligned}
x^{(2 n-4)}(t)=y_{2}(t) & =\left(\frac{1}{2}-\frac{t}{T}\right) \int_{0}^{T} d u \int_{0}^{u} y_{1}(s) d s \\
& +\int_{0}^{t} d u \int_{0}^{u} y_{1}(s) d s-\frac{1}{T} \int_{0}^{T} d w \int_{0}^{w} d u \int_{0}^{u} y_{1}(s) d s .
\end{aligned}
$$

Let $y_{i}(t)=x^{(2 n-2 i)}(t)(i=1,2, \cdots, n-1)$ and as above it is easy to check that

$$
\begin{aligned}
x^{(2 n-2 i)}(t)=y_{i}(t) & =\left(\frac{1}{2}-\frac{t}{T}\right) \int_{0}^{T} d u \int_{0}^{u} y_{i-1}(s) d s \\
& +\int_{0}^{t} d u \int_{0}^{u} y_{i-1}(s) d s-\frac{1}{T} \int_{0}^{T} d w \int_{0}^{w} d u \int_{0}^{u} y_{i-1}(s) d s
\end{aligned}
$$

for $(i=1,2, \cdots, n-1)$, and

$$
y_{n}(t)=y_{n}(0)-\frac{t}{T} \int_{0}^{T} d u \int_{0}^{u} y_{n-1}(s) d s+\int_{0}^{t} d u \int_{0}^{u} y_{n-1}(s) d s .
$$

Note that $y_{n}(t)=x(t) \in \operatorname{DomL} \cap \operatorname{KerP}$. Thus $y_{n}(0)=x(0)=0$, and

$$
\begin{equation*}
K_{P} y(t)=-\frac{t}{T} \int_{0}^{T} d u \int_{0}^{u} y_{n-1}(s) d s+\int_{0}^{t} d u \int_{0}^{u} y_{n-1}(s) d s \tag{20}
\end{equation*}
$$

Let Ω be an open and bounded subset of X. In view of (5), (9) and (10) (or (20)), we can easily see that $Q N(\bar{\Omega})$ is bounded and $\overline{K_{P}(I-Q) N(\bar{\Omega})}$ is compact. Thus the mapping N is L-compact on $\bar{\Omega}$. That is, we have the following result.

Lemma 2.1 Let L, N, P and Q be defined by (4), (5), (8) and (9) respectively. Then L is a Fredholm mapping of index zero and N is L-compact on $\bar{\Omega}$, where Ω is any open and bounded subset of X.

In order to prove our main result, we need the following Lemmas [6, 7]. The first result follows from [6 and Remark 2.1] and the second from [7].

Lemma 2.2 Let $x(t) \in C^{(n)}(\mathbf{R}, \mathbf{R}) \cap C_{T}$. Then

$$
\left\|x^{(i)}\right\|_{0} \leq \frac{1}{2} \int_{0}^{T}\left|x^{(i+1)}(s)\right| d s, i=1,2, \cdots, n-1,
$$

where $n \geq 2$ and $C_{T}:=\{x \mid x \in C(R, R), x(t+T)=x(t), \forall t \in \mathbf{R}\}$.

Lemma 2.3 Suppose that M, λ are positive numbers and satisfy $0<M<\left(\frac{\pi}{T}\right)^{2}$ and $0<\lambda<1$, then for any function φ defined in $[0, T]$, the following problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+\lambda M x(t)=\lambda \varphi(t) \\
x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
\end{array}\right.
$$

has a unique solution

$$
x(t)=\int_{0}^{T} G(t, s) \lambda \varphi(s) d s
$$

where $\alpha=\sqrt{\lambda M}$, and

$$
G(t, s)=\left\{\begin{array}{l}
w(t-s), \quad(k-1) T \leq s \leq t \leq k T \\
w(T+t-s), \quad(k-1) T \leq t \leq s \leq k T, \quad(k \in \mathbf{N})
\end{array}\right.
$$

with

$$
w(t)=\frac{\cos \alpha\left(t-\frac{T}{2}\right)}{2 \alpha \sin \frac{\alpha T}{2}}
$$

Now, we consider the following auxiliary equation

$$
\begin{equation*}
x^{(2 n)}(t)+\lambda \sum_{i=0}^{2 n-2} a_{i}(t) x^{(i)}(t)+\lambda g(x(t-\tau(t)))=\lambda p(t) \tag{21}
\end{equation*}
$$

where $0<\lambda<1$. We have

Lemma 2.4 Suppose the conditions of Theorem 2.1 are satisfied. If $x(t)$ is $a T$-periodic solution of Eq.(21), then there are positive constants $D_{i}(i=0,1, \cdots 2 n-1)$, which are independent of λ, such that

$$
\begin{equation*}
\left\|x^{(i)}\right\|_{0} \leq D_{i}, \quad t \in[0, T] \text { for } i=0,1, \cdots, 2 n-1 \tag{22}
\end{equation*}
$$

Proof.Suppose that $x(t)$ is a T-periodic solution of (21). By (2) of Theorem 2.1 we know that there exists a $\overline{M_{1}}>0$, such that

$$
\begin{equation*}
|g(x(t))| \leq r|x(t)|, \quad|x(t)|>\overline{M_{1}}, \quad t \in \mathbf{R} \tag{23}
\end{equation*}
$$

Set

$$
\begin{gather*}
E_{1}=\left\{t:|x(t)|>\overline{M_{1}}, \quad t \in[0, T]\right\} \tag{24}\\
E_{2}=[0, T] \backslash E_{1} \tag{25}
\end{gather*}
$$

and

$$
\begin{equation*}
\rho=\max _{|x| \leq \overline{M_{1}}}|g(x)| . \tag{26}
\end{equation*}
$$

EJQTDE Spec. Ed. I, 2009 No. 12

Let $\varepsilon=\frac{m_{0}-r}{2}$. By (21), (23), (24), (25), (26) and Lemma 2.2, we obtain

$$
\begin{align*}
& \left\|x^{(2 n-1)}\right\|_{0} \leq \frac{1}{2} \int_{0}^{T}\left|x^{(2 n)}(s)\right| d s \\
& \leq \frac{\lambda}{2} \int_{0}^{T}\left[\left|\sum_{i=0}^{2 n-2} a_{i}(t) x^{(i)}(t)\right|+|g(x(t-\tau(t)))|+|p(t)|\right] d t \\
& \leq \frac{\lambda T}{2}\left[M_{2 n-2}| | x^{(2 n-2)}\left\|_{0}+M_{2 n-3}\right\| x^{(2 n-3)}\left\|_{0}+\cdots+M_{2}\right\| x^{(2)}\| \|_{0}+M_{1}\left\|x^{(1)}\right\|_{0}\right. \\
& \left.+M_{0}\|x\|_{0}\right]+\frac{\lambda}{2} \int_{0}^{T}|g(x(t-\tau(t)))| d t+\frac{\lambda T}{2}\|p\|_{0} \\
& \leq \frac{T}{2}\left[M_{2 n-2} \frac{T}{2}+M_{2 n-3}\left(\frac{T}{2}\right)^{2}+\cdots+M_{2}\left(\frac{T}{2}\right)^{2 n-3}+M_{1}\left(\frac{T}{2}\right)^{2 n-2}\right]\left\|x^{(2 n-1)}\right\|_{0}+ \\
& +\frac{T}{2} M_{0}\|x\|_{0}+\frac{1}{2}\left[\int_{E_{1}}|g(x(t-\tau(t)))| d t+\int_{E_{2}}|g(x(t-\tau(t)))| d t\right]+\frac{T}{2}\|p\|_{0} \\
& \leq A^{*}\left\|x^{(2 n-1)}\right\|_{0}+\frac{T}{2}\left(M_{0}+r+\varepsilon\right)\|x\|_{0}+\frac{T}{2} C \tag{27}\\
& =A^{*} x^{(2 n-1)}\left\|_{0}+\frac{T}{4}\left(2 M_{0}+r+m_{0}\right)\right\| x \|_{0}+\frac{T}{2} C
\end{align*}
$$

where $C=\left(\rho+\|p\|_{0}\right)$ and

$$
\begin{aligned}
A^{*} & =\left[M_{2 n-2}\left(\frac{T}{2}\right)^{2}+M_{2 n-3}\left(\frac{T}{2}\right)^{3}+M_{2 n-4}\left(\frac{T}{2}\right)^{4}\right. \\
& \left.+\cdots+M_{2}\left(\frac{T}{2}\right)^{2 n-2}+M_{1}\left(\frac{T}{2}\right)^{2 n-1}\right] .
\end{aligned}
$$

Now from (27), we have

$$
\begin{equation*}
\left\|x^{(2 n-1)}\right\|_{0} \leq\left(1-A^{*}\right)^{-1}\left[\frac{T}{4}\left(2 M_{0}+r+m_{0}\right)\|x\|_{0}+\frac{T}{2} C\right] . \tag{28}
\end{equation*}
$$

On the other hand, from (21) and Lemma 2.3, we get

$$
\begin{align*}
& x^{(2 n-2)}(t) \\
& =\int_{0}^{T} G_{1}\left(t, t_{1}\right) \lambda\left[\left(M_{2 n-2}-a_{2 n-2}\left(t_{1}\right)\right) x^{(2 n-2)}\left(t_{1}\right)+p\left(t_{1}\right)\right. \tag{29}\\
& \left.-g\left(x\left(t-\tau\left(t_{1}\right)\right)\right)\right] d t_{1}-\lambda \int_{0}^{T} G_{1}\left(t, t_{1}\right)\left[\sum_{i=0}^{2 n-3} a_{i}\left(t_{1}\right) x^{(i)}\left(t_{1}\right)\right] d t_{1},
\end{align*}
$$

where $\alpha_{1}=\sqrt{\lambda M_{2 n-2}}$, and

$$
G_{1}\left(t, t_{1}\right)=\left\{\begin{array}{l}
w_{1}\left(t-t_{1}\right), \quad(k-1) T \leq t_{1} \leq t \leq k T \tag{30}\\
w_{1}\left(T+t-t_{1}\right), \quad(k-1) T \leq t \leq t_{1} \leq k T, \quad(k \in \mathbf{N}),
\end{array}\right.
$$

with

$$
\begin{equation*}
w_{1}(t)=\frac{\cos \alpha_{1}\left(t-\frac{T}{2}\right)}{2 \alpha_{1} \sin \frac{\alpha_{1} T}{2}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T} G_{1}\left(t, t_{1}\right) d t_{1}=\frac{1}{\lambda M_{2 n-2}} . \tag{32}
\end{equation*}
$$

From (29) and Lemma 2.3, we have

$$
\begin{align*}
& x^{(2 n-4)}(t) \\
& =\lambda \int_{0}^{T} G_{2}\left(t, t_{1}\right) \int_{0}^{T} G_{1}\left(t_{1}, t_{2}\right)\left[p\left(t_{2}\right)-g\left(x\left(t-\tau\left(t_{2}\right)\right)\right)\right] d t_{2} d t_{1} \\
& +\lambda \int_{0}^{T} G_{2}\left(t, t_{1}\right) \int_{0}^{T} G_{1}\left(t_{1}, t_{2}\right)\left(M_{2 n-2}-a_{2 n-2}\left(t_{2}\right)\right) x^{(2 n-2)}\left(t_{2}\right) d t_{2} d t_{1} \tag{33}\\
& +\int_{0}^{T} G_{2}\left(t, t_{1}\right)\left[\frac{M_{2 n-4}}{M_{2 n-2}} x^{(2 n-4)}\left(t_{1}\right)-\lambda \int_{0}^{T} G_{1}\left(t_{1}, t_{2}\right) a_{2 n-4}\left(t_{2}\right) x^{(2 n-4)}\left(t_{2}\right) d t_{2}\right] d t_{1} \\
& -\lambda \int_{0}^{T} G_{2}\left(t, t_{1}\right) \int_{0}^{T} G_{1}\left(t_{1}, t_{2}\right)\left[\sum_{i=0}^{2 n-5} a_{i}\left(t_{1}\right) x^{(i)}\left(t_{2}\right)+a_{2 n-3}\left(t_{2}\right) x^{(2 n-3)}\left(t_{2}\right)\right] d t_{2} d t_{1},
\end{align*}
$$

where $\alpha_{2}=\sqrt{\frac{M_{2 n-4}}{M_{2 n-2}}}$, and

$$
G_{2}\left(t, t_{2}\right)=\left\{\begin{array}{l}
w_{2}\left(t-t_{2}\right), \quad(k-1) T \leq t_{2} \leq t \leq k T \tag{34}\\
w_{2}\left(T+t-t_{2}\right), \quad(k-1) T \leq t \leq t_{2} \leq k T, \quad(k \in \mathbf{N})
\end{array}\right.
$$

with

$$
\begin{equation*}
w_{2}(t)=\frac{\cos \alpha_{2}\left(t-\frac{T}{2}\right)}{2 \alpha_{2} \sin \frac{\alpha_{2} T}{2}} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T} G_{2}\left(t, t_{2}\right) d t_{2}=\frac{M_{2 n-2}}{M_{2 n-4}} . \tag{36}
\end{equation*}
$$

By induction, we have

$$
\begin{align*}
& x(t)=\lambda \int_{0}^{T} G_{n}\left(t, t_{1}\right) \cdots \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right)\left[p\left(t_{n}\right)-g\left(x\left(t_{n}-\tau\left(t_{n}\right)\right)\right)\right] d t_{n} \cdots d t_{1} \\
& +\lambda \int_{0}^{T} G_{n}\left(t, t_{1}\right) \cdots \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right)\left(M_{2 n-2}-a_{2 n-2}\left(t_{n}\right)\right) x^{(2 n-2)}\left(t_{n}\right) d t_{n} \cdots d t_{1} \\
& +\int_{0}^{T} G_{n}\left(t, t_{1}\right) \cdots \int_{0}^{T} G_{2}\left(t_{n-2}, t_{n-1}\right)\left[\frac{M_{2 n-4}}{M_{2 n-2}} x^{(2 n-4)}\left(t_{n-1}\right)-\right. \\
& \left.\lambda \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right) a_{2 n-4} x^{(2 n-4)}\left(t_{n}\right) d t_{n}\right] d t_{n-1} \cdots d t_{1} \\
& +\int_{0}^{T} G_{n}\left(t, t_{1}\right) \cdots \int_{0}^{T} G_{3}\left(t_{n-3}, t_{n-2}\right)\left[\frac{M_{2 n-6}}{M_{2 n-4}} x^{(2 n-6)}\left(t_{n-2}\right)-\right. \\
& \lambda \int_{0}^{T} G_{2}\left(t_{n-2}, t_{n-1}\right) \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right)\left[a_{2 n-6} x^{(2 n-6)}\left(t_{n}\right) d t_{n} d t_{n-1}\right] d t_{n-2} \cdots d t_{1} \\
& +\cdots+\cdots \tag{37}\\
& +\int_{0}^{T} G_{n}\left(t, t_{1}\right)\left[\frac{M_{0}}{M_{2}} x\left(t_{1}\right)-\lambda \int_{0}^{T} G_{n-1}\left(t_{1}, t_{2}\right) \int_{0}^{T} G_{n-2}\left(t_{2}, t_{3}\right)\right. \\
& \left.\cdots \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right) a_{0}\left(t_{n}\right) x\left(t_{n}\right) d t_{n} \cdots d t_{2}\right] d t_{1} \\
& -\lambda \int_{0}^{T} G_{n}\left(t, t_{1}\right) \cdots \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right)\left[\sum_{k=1}^{n-1} a_{2 k-1}\left(t_{n}\right) x^{(2 k-1)}\left(t_{n}\right)\right] d t_{n} \cdots d t_{1}
\end{align*}
$$

where $\alpha_{i}=\sqrt{\frac{M_{2 n-2 i}}{M_{2 n-2 i+2}}} \quad(2 \leq i \leq n)$, and

$$
G_{i}\left(t, t_{i}\right)=\left\{\begin{array}{l}
w_{i}\left(t-t_{i}\right), \quad(k-1) T \leq t_{i} \leq t \leq k T \tag{38}\\
w_{i}\left(T+t-t_{i}\right), \quad(k-1) T \leq t \leq t_{i} \leq k T, \quad(k \in \mathbf{N})
\end{array}\right.
$$

with

$$
\begin{equation*}
w_{i}(t)=\frac{\cos \alpha_{i}\left(t-\frac{T}{2}\right)}{2 \alpha_{i} \sin \frac{\alpha_{i} T}{2}} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T} G_{i}\left(t, t_{i}\right) d t_{i}=\frac{M_{2 n-2 i+2}}{M_{2 n-2 i}} \quad(2 \leq i \leq n) . \tag{40}
\end{equation*}
$$

From (32), (37), (40) and Lemma 2.2, we obtain

$$
\begin{align*}
& \|x\|_{0} \\
& \leq \max _{t \in[0, T]} \lambda \int_{E_{1}}\left|G_{n}\left(t, t_{1}\right)\right| \cdots \int_{0}^{T}\left|G_{1}\left(t_{n-1}, t_{n}\right) \| p\left(t_{n}\right)-g\left(x\left(t_{n}-\tau\left(t_{n}\right)\right)\right)\right| d t_{n} \cdots d t_{1} \\
& +\max _{t \in[0, T]} \lambda \int_{E_{2}}\left|G_{n}\left(t, t_{1}\right)\right| \cdots \int_{0}^{T}\left|G_{1}\left(t_{n-1}, t_{n}\right)\right|\left|p\left(t_{n}\right)-g\left(x\left(t_{n}-\tau\left(t_{n}\right)\right)\right)\right| d t_{n} \cdots d t_{1}+ \\
& \max _{t \in[0, T]} \lambda \int_{0}^{T}\left|G_{n}\left(t, t_{1}\right)\right| \cdots \int_{0}^{T}\left|G_{1}\left(t_{n-1}, t_{n}\right)\right|\left(M_{n-1}-a_{n-1}\left(t_{n}\right)\right)\left|x^{(2 n-2)}\left(t_{n}\right)\right| d t_{n} \cdots d t_{1} \\
& +\max _{t \in[0, T]} \int_{0}^{T}\left|G_{n}\left(t, t_{1}\right)\right| \cdots \int_{0}^{T}\left|G_{2}\left(t_{n-2}, t_{n-1}\right) \|\right| \frac{M_{n-2}}{M_{n-1}} x^{(2 n-4)}\left(t_{n-1}\right)- \\
& \lambda \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right) a_{n-2} x^{(2 n-4)}\left(t_{n}\right) d t_{n} \mid d t_{n-1} \cdots d t_{1} \\
& +\max _{t \in[0, T]} \int_{0}^{T}\left|G_{n}\left(t, t_{1}\right)\right| \cdots \int_{0}^{T} \mid G_{3}\left(t_{n-3}, t_{n-2}\right) \| \frac{M_{n-3}}{M_{n-2}} x^{(2 n-6)}\left(t_{n-2}\right)- \\
& \lambda \int_{0}^{T} G_{2}\left(t_{n-2}, t_{n-1}\right) \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right)\left[a_{n-3} x^{(2 n-6)}\left(t_{n}\right) d t_{n} d t_{n-1} \mid d t_{n-2} \cdots d t_{1}\right. \\
& +\cdots+\cdots \\
& +\max _{t \in[0, T]} \int_{0}^{T}\left|G_{n}\left(t, t_{1}\right) \|\right| \frac{M_{0}}{M_{1}} x\left(t_{1}\right)-\lambda \int_{0}^{T} G_{n-1}\left(t_{1}, t_{2}\right) \int_{0}^{T} G_{n-2}\left(t_{2}, t_{3}\right) \\
& \cdots \int_{0}^{T} G_{1}\left(t_{n-1}, t_{n}\right) a_{0}\left(t_{n}\right) x\left(t_{n}\right) d t_{n} \cdots d t_{2} \mid d t_{1} \\
& \left.+\max _{t \in[0, T]} \lambda \int_{0}^{T}\left|G_{n}\left(t, t_{1}\right)\right| \cdots \int_{0}^{T}\left|G_{1}\left(t_{n-1}, t_{n}\right)\right| \mid \sum_{k=1}^{n-1} a_{2 k-1}\left(t_{n}\right) x^{(2 k-1)}\left(t_{n}\right)\right] \mid d t_{n} \cdots d t_{1} \\
& \quad \leq \frac{1}{M_{0}}\left[\|p\|_{0}+\rho+(r+\varepsilon)\|x\|_{0}\right]+\frac{M_{0}-m_{0}}{M_{0}}\|x\|_{0}+\frac{1}{M_{0}}\left[\left(M_{2 n-2}-m_{2 n-2}\right)\left\|x^{(2 n-2)}\right\|_{0}\right. \\
& \left.\quad+\left(M_{2 n-4}-m_{2 n-4}\right)\left\|x^{(2 n-4)}\right\|_{0}+\cdots+\left(M_{2}-m_{2}\right)\left\|x^{(2)}\right\| \|_{0}\right] \\
& \quad+\frac{1}{M_{0}}\left[M_{1}\left\|x^{(1)}\right\|_{0}+M_{3}\left\|x^{(3)}\right\|_{0}+\cdots+M_{2 n-3}\left\|x^{(2 n-3)}\right\|_{0}\right] \\
& \quad \leq \frac{1}{M_{0}}\left[C+\left(M_{0}-m_{0}+r+\varepsilon\right)\|x\|_{0}\right]+\frac{1}{M_{0}}\left[M_{1}\left(\frac{T}{2}\right)^{2 n-2}+\left(M_{2}-m_{2}\right)\left(\frac{T}{2}\right)^{2 n-3}\right. \\
& \quad+M_{3}\left(\frac{T}{2}\right)^{2 n-4}+\left(M_{4}-m_{4}\right)\left(\frac{T}{2}\right)^{2 n-5}+\cdots+M_{2 n-3}\left(\frac{T}{2}\right)^{2} \\
& \left.\quad+\left(M_{2 n-2}-m_{2 n-2}\right) \frac{T}{2}\right]\left\|x^{(2 n-1)}\right\|_{0} . \tag{41}
\end{align*}
$$

Now (41) and $\varepsilon=\frac{m_{0}-r}{2}$ give

$$
\begin{equation*}
\|x\|_{0} \leq \frac{2\left(B\left\|x^{(2 n-1)}\right\|_{0}+C\right)}{\left(m_{0}-r\right)} \tag{42}
\end{equation*}
$$

where

$$
\begin{aligned}
B=M_{1}\left(\frac{T}{2}\right)^{2 n-2} & +\left(M_{2}-m_{2}\right)\left(\frac{T}{2}\right)^{2 n-3}+M_{3}\left(\frac{T}{2}\right)^{2 n-4}+\left(M_{4}-m_{4}\right)\left(\frac{T}{2}\right)^{2 n-5} \\
& +\cdots+\cdots+M_{2 n-3}\left(\frac{T}{2}\right)^{2}+\left(M_{2 n-2}-m_{2 n-2}\right) \frac{T}{2}
\end{aligned}
$$

and $M_{2 k-1}=\max _{t \in[0, T]}\left|a_{2 k-1}(t)\right| \quad(k=1,2, \cdots n-1)$.
Thus combining (27) and (42), we see that

$$
\begin{align*}
\left(A-\frac{2 M_{0}+m_{0}+r}{2\left(m_{0}-r\right)} B\right)\left\|x^{(2 n-1)}\right\|_{0} & \leq \frac{T C}{2}\left(\frac{2 M_{0}+m_{0}+r}{\left(m_{0}-r\right)}+1\right) \tag{43}\\
& =\frac{\left(M_{0}+m_{0}\right) T C}{\left(m_{0}-r\right)},
\end{align*}
$$

where $A=1-A^{*}$.
From (42) and (43), we have

$$
\begin{align*}
\left\|x^{(2 n-1)}\right\|_{0} & \leq \frac{\left(M_{0}+m_{0}\right) T C}{\left(m_{0}-r\right)}\left(A-\frac{2 M_{0}+m_{0}+r}{2\left(m_{0}-r\right)} B\right)^{-1} \tag{44}\\
& =D_{2 n-1}
\end{align*}
$$

and

$$
\begin{equation*}
\|x\|_{0} \leq \frac{2\left(B D_{2 n-1}+C\right)}{\left(m_{0}-r\right)}=D_{0} \tag{45}
\end{equation*}
$$

Finally from (44), (45) and Lemma 2.2, we get

$$
\begin{equation*}
\left\|x^{(i)}\right\|_{0} \leq D_{i} \quad(1 \leq i \leq 2 n-2) \tag{46}
\end{equation*}
$$

The proof of Lemma 2.4 is complete.
Proof of Theorem 2.1. Suppose that $x(t)$ is a T-periodic solution of Eq.(21). By Lemma 2.4, there exist positive constants $D_{i}(i=0,1, \cdots, 2 n-1)$ which are independent of λ such that (22) is true. By (3), we know that there exists a $M_{2}>0$, such that

$$
\operatorname{sgn}(x) g(x(t))>0, \quad|x(t)|>M_{2}, \quad t \in \mathbf{R} .
$$

Consider any positive constant $\bar{D}>\max _{0 \leq i \leq 2 n-1}\left\{D_{i}\right\}+M_{2}$.
Set

$$
\Omega:=\{x \in X:\|x\|<\bar{D}\} .
$$

We know that L is a Fredholm mapping of index zero and N is L-compact on $\bar{\Omega}$ (see [3]).

Recall

$$
\operatorname{Ker}(L)=\{x \in X: x(t)=c \in \mathbf{R}\}
$$

and the norm on X is

$$
\|x\|=\max _{0 \leq j \leq 2 n-1} \max _{t \in[0, T]}\left|x^{(j)}(t)\right| .
$$

Then we have

$$
\begin{equation*}
x=\bar{D} \quad \text { or } \quad x=-\bar{D} \quad \text { for } \quad x \in \partial \Omega \cap \operatorname{Ker}(L) . \tag{47}
\end{equation*}
$$

From (3) and (47), we have (if \bar{D} is chosen large enough)

$$
\begin{equation*}
a_{0}(t) \bar{D}+g(\bar{D})-\|p\|_{0}>0 \quad \text { for } t \in[0, T] \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{(i)}(t)=0, \quad \forall x \in \partial \Omega \cap \operatorname{Ker}(L)(i=1,2, \cdots, 2 n-1) . \tag{49}
\end{equation*}
$$

Finally from (5), (9) and (47)-(49), we have

$$
\begin{aligned}
(Q N x) & =\frac{1}{T} \int_{0}^{T}\left[-\sum_{i=0}^{2 n-2} a_{i}(t) x^{(i)}(t)-g(x(t-\tau(t)))+p(t)\right] d t \\
& =-\frac{1}{T} \int_{0}^{T}\left[a_{0}(t) x(t)+g(x(t-\tau(t)))-p(t)\right] d t \\
& \neq 0, \quad \forall x \in \partial \Omega \cap \operatorname{Ker}(L) .
\end{aligned}
$$

Then, for any $x \in \operatorname{Ker} L \cap \partial \Omega$ and $\eta \in[0,1]$, we have

$$
\begin{aligned}
x H(x, \eta) & =-\eta x^{2}-\frac{x}{T}(1-\eta) \int_{0}^{T}\left[\sum_{i=0}^{2 n-2} a_{i}(t) x^{(i)}(t)+g(x(t-\tau(t)))-p(t)\right] d t \\
& \neq 0 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\operatorname{deg}\{Q N, \Omega \cap \operatorname{Ker}(L), 0\} & =\operatorname{deg}\left\{-\frac{1}{T} \int_{0}^{T}\left[\sum_{i=0}^{2 n-2} a_{i}(t) x^{(i)}(t)\right.\right. \\
& +g(x(t-\tau(t)))-p(t)] d t, \Omega \cap \operatorname{Ker}(L), 0\} \\
& =\operatorname{deg}\{-x, \Omega \cap \operatorname{Ker}(L), 0\} \\
& \neq 0 .
\end{aligned}
$$

From Lemma 2.4 for any $x \in \partial \Omega \cap \operatorname{Dom}(L)$ and $\lambda \in(0,1)$ we have $L x \neq \lambda N x$. By Theorem 1.1, the equation $L x=N x$ has at least a solution in $\operatorname{Dom}(L) \cap \bar{\Omega}$, so there exists a T-periodic solution of Eq.(1). The proof is complete.

References

[1] J. D. Cao and G. He, Periodic solutions for higher-order neutral differential equations with several delays, Comput. Math. Appl. 48 (2004), 1491-1503.
[2] T. R. Ding, Nonlinear oscillations at a point of resonance, Sci. Sini. Ser.A. $\mathbf{2 5}$ (1982), 918-931.
[3] R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math, 568, Springer-Verlag, 1977.
[4] X. K. Huang, The 2π-periodic solution of conservative systems with a deviating argument, Sys. Sci. Math. Sci. 9 (1989), 298-308.
[5] X. K. Huang and Z. G. Xiang, On the existence of 2π-periodic solution for delay Duffing equation $x^{\prime \prime}(t)+g(x(t-\tau))=p(t)$, Chinese Sci. Bull. 39 (1994), 201-203.
[6] J. W. Li and G. Q. Wang, Sharp inequalities for periodic functions, Applied Math. E-Note. 5 (2005), 75-83.
[7] Y. X. Li, Positive periodic solutions of nonlinear second order ordinary differential equations, Acta Math. Sini. 45 (2002), 482-488.
[8] S. P. Lu and W. G. Ge, Periodic solutions of the second order differential equation with deviating arguments, Acta Math. Sini. 45 (2002), 811-818.
[9] S. W. Ma, Z. C. Wang and J. S. Yu, Periodic solutions of Duffing equations with delay, Differ. Equ. Dyn. Syst. 8 (2000), 243-255.
[10] P. Omari and P. Zanolin, A note on nonlinear oscillations at resonance, Acta. Math. Sini. 3 (1987), 351-361.
[11] G. Q. Wang and S. S. Cheng, A priori bounds for periodic solutions of a delay Rayleigh equation, Applied Math. Lett. 12 (1999), 41-44.
[12] G. Q. Wang and J. R. Yan, Existence of periodic solutions for second order nonlinear neutral delay equations, Acta Math. Sini. 47 (2004), 379-384.
[13] K. Wang and S. P. Lu, On the existence of periodic solutions for a kind of highorder neutral functional differential equation, J. Math. Anal. Appl. 326 (2007), 1161-1173.
[14] Z. Yang, Existence and uniqueness of postive solutions for a higher order boundary value problem, Comput. Math. Appl. 54 (2007), 220-228.

