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Abstract

By using a variational approach, we obtain some sufficient conditions for the
existence of three classical solutions of a boundary value problem consisting of
a system of differential equations and some multi–point boundary conditions.
Applications of our results are discussed. Our results extend some related work
in the literature.
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1 Introduction

In recent years, there are many papers published on the existence of solutions of bound-
ary value problems (BVPs) with various multi-point boundary conditions (BCs). For
a small sample of the recent work on this topic, we refer the reader to [6, 10, 11, 15,
16, 19, 22, 23] for second order problems and to [2, 7, 8, 9, 12, 13, 17, 18, 24] for higher
order ones. In this paper, we study the BVP consisting of the system of differential
equations

(φpi
(u′

i))
′ + λfi(t, u1, . . . , un) = 0, t ∈ (0, 1), i = 1, . . . , n, (1)

1This author is supported by the Natural Science Foundation of Jiangsu Province (BK2008119),
the NSF of the Education Department of Jiangsu Province (08KJB110011), and the Excellent Younger
Teacher Program of Jiangsu Province in China (QL200613).

2Corresponding author. This author is supported in part by a Faculty Research Grant of the
University of Tennessee at Chattanooga.
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and the multi–point BCs

ui(0) =
m∑

j=1

ajui(tj), ui(1) =
m∑

j=1

bjui(tj), i = 1, . . . , n, (2)

where λ is a real parameter, m, n ≥ 1 are integers, pi > 1, φpi
(x) = |x|pi−2x, and

fi ∈ C([0, 1] × R
n) for i = 1, . . . , n, aj , bj ∈ R for j = 1, . . . , m, and 0 < t1 ≤ t2 ≤

. . . ≤ tm < 1. We will obtain sufficient conditions for the existence of an open interval
Λ ⊆ [0,∞) such that, for each λ ∈ Λ, BVP (1), (2) has at least three classical solutions.
Here, by a classical solution of BVP (1), (2), we mean a function u = (u1, . . . , un) such
that, for i = 1, . . . , n, ui ∈ C1[0, 1], φpi

(u′
i) ∈ C1[0, 1], and ui(t) satisfies (1), (2).

Our proof is based on a three critical point theorem of Ricceri [26]; see Lemma 1.2
below. For more applications of this theorem to various problems, we refer the reader
to [3, 5, 6, 14, 21] for work on ordinary differential equations and [1, 4, 20] for work on
partial differential equations. In particular, Bonannao [3] applied Ricceri’s theorem to
the BVP

u′′ + λf(u) = 0, t ∈ (0, 1), (3)

u(0) = u(1) = 0, (4)

and obtained the following interesting result.

Proposition 1.1 ([3, Theorem 2]) Let f ∈ C(R), F̄ (x) =
∫ x

0
f(ξ)dξ, and the norm

of the Sobolev space W 1,2
0 ([0, 1]) be defined by ||u|| =

(∫ 1

0
|u′(s)|2ds

)1/2

. Assume that

there exist four positive constants c̄, d̄, ā, s̄ with c̄ <
√

2d̄ and γ̄ < 2 such that

(i) f(x) ≥ 0 for all x ∈ [−c̄, max{c̄, d̄}],

(ii) F̄ (c̄) ≤ (c̄/2d̄)2F̄ (d̄),

(iii) F̄ (x) ≤ ā(1 + |x|γ̄) for all x ∈ R.

Then there exist an open interval Λ ⊆ [0,∞) and a positive real number δ such that,
for each λ ∈ Λ, BVP (3), (4) has at least three solutions belonging to C2[0, 1] whose
norms in W 1,2

0 ([0, 1]) are less than δ.

Candito [5] extended Proposition 1.1 to the nonautonomous case. He and Ge [14]
further extended the result in [5] to the BVP consisting of the equation

(φp(u
′))′ + λf(t, u) = 0, t ∈ (0, 1), (5)

and BC (4), where p > 1 and f ∈ C([0, 1] × R). Recently, Du [6] extended the main
results in [3, 5, 14] to the BVP consisting of Eq. (5) and the three–point BCs

u(0) = 0, u(1) = αu(η), (6)
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where α ∈ R and η ∈ (0, 1).
Motivated by these works, in this paper, we establish some criteria for the existence

of three classical solutions of BVP (1), (2) (see Theorem 2.1). As applications, we
present some new existence results (see Corollaries 2.1 and 2.2) for the scalar BVP
consisting of Eq. (5) and the multi–point BCs

u(0) =

m∑

j=1

aju(tj), u(1) =

m∑

j=1

bju(tj). (7)

Observe that BCs (7) include BCs (4) and (6) as special cases. We also give an
application to BVP (5), (4) (see Corollary 2.3). Our results extend the main results in
[3, 5, 6, 14] to more general problems (see Remark 2.1).

For the reader’s convenience, we now recall the following two results that are fun-
damental tools in our discussion.

Lemma 1.1 ([25, Proposition 3.1]) Let X be a separable and reflexive real Banach
space, and Φ, J two real functions on X. Assume that there exist r > 0 and u0, u1 ∈ X
such that

Φ(u0) = J(u0) = 0, Φ(u1) > r,

sup
u∈Φ−1((−∞,r])

J(u) < r
J(u1)

Φ(u1)
.

Then, for each η satisfying

sup
u∈Φ−1((−∞,r])

J(u) < η < r
J(u1)

Φ(u1)
,

one has

sup
λ≥0

inf
u∈X

(Φ(u) + λ(η − J(u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(η − J(u))).

Lemma 1.2 ([26, Theorem 1]) Let X be a separable and reflexive real Banach space,
Φ : X → R a continuously Gâteaux differentiable and sequentially weakly lower semi-
continuous functional whose Gâteaux derivative admits a continuous inverse on X∗,
Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact. Assume that

lim
||u||→∞

(Φ(u) + λΨ(u)) = ∞

for all λ ∈ [0,∞), and that there exists a continuous concave function h : [0,∞) → R

such that

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + h(λ)) < inf
u∈X

sup
λ≥0

(Φ(u) + λΨ(u) + h(λ)).
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Then there exist an open interval Λ ⊆ [0,∞) and a positive real number δ such that,
for each λ ∈ Λ, the equation

Φ′(u) + λΨ′(u) = 0

has at least three solutions in X whose norms are less than δ.

The rest of this paper is organized as follows. After this introduction, in Section
2, we state the main results and give one simple example for illustrative purposes.
The proofs of the main results, together with some technical lemmas, are presented in
Section 3.

2 Main Results

In the sequel, for i = 1, . . . , n, let

Xi =

{

y ∈ W 1,pi([0, 1]) : y(0) =

m∑

j=1

ajy(tj), y(1) =

m∑

j=1

bjy(tj)

}

and let X be defined by

X = X1 × X2 × . . . × Xn

with the norm

||u|| = ||(u1, . . . , un)|| =
n∑

i=1

||u′
i||pi

,

where

||u′
i||pi

=

(∫ 1

0

|u′(s)|pids

)1/pi

.

Then, X is a separable and reflexive real Banach space.

We first make the following assumption.

(H1)
∑m

j=1 aj 6= 1 and
∑m

j=1 bj 6= 1.

We now introduce some notations. For any nonempty set S, let

Sn = S × S × . . . × S
︸ ︷︷ ︸

n

,

and for x > 0, define

S1,n(x) =

{
[0, t1/2] × [x

∑m
j=1 aj , x]n if

∑m
j=1 aj < 1,

[0, t1/2] × [x, x
∑m

j=1 aj ]
n if

∑m
j=1 aj > 1,

(8)
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S2,n(x) =

{
[(1 + tm)/2, 1] × [x

∑m
j=1 bj , x]n if

∑m
j=1 bj < 1,

[(1 + tm)/2, 1] × [x, x
∑m

j=1 bj ]
n if

∑m
j=1 bj > 1.

(9)

Let the positive constants κi, i = 1, . . . , n, and ρ be defined by

κi = 2pi−1

(

t1−pi
1

∣
∣
∣1 −

m∑

j=1

aj

∣
∣
∣

pi

+ (1 − tm)1−pi

∣
∣
∣1 −

m∑

j=1

bj

∣
∣
∣

pi

)

(10)

and

ρ =
1

2

(

1 +

∑m
j=1 |aj|

|1 −∑m
j=1 aj |

+

∑m
j=1 |bj|

|1 −∑m
j=1 bj |

)

. (11)

Throughout this paper, the following assumptions are also needed.

(H2) there exists a function F : [0, 1]×R
n → R such that F (t, x1, . . . , xn) is continuous

in t and differentiable in xi, i = 1, . . . , n. Moreover, ∂F/∂xi = fi for i = 1, . . . , n;

(H3) there exist two positive constants c and d with c < d such that

F (t, x1, . . . , xn) ≥ 0 for (t, x1, . . . , xn) ∈ S1,n(d) ∪ S2,n(d)

and

n∑

i=1

κid
pi

pi
max

(t,x1,...,xn)∈K
F (t, x1, . . . , xn) ≤

n∑

i=1

κic
pi

pi

∫ (1+tm)/2

t1/2

F (s, d, . . . , d)ds,

where

K =

{

(t, x1, . . . , xn) : t ∈ [0, 1],

n∑

i=1

|xi|pi

pi
< ρpi

n∑

i=1

κic
pi

pi

}

;

(H4) there exist θ ∈ L1(0, 1) and n positive constants γi with γi < pi, i = 1, . . . , n,
such that

F (t, x1, . . . , xn) ≤ θ(t)

(

1 +

n∑

i=1

|xi|γi

)

for t ∈ [0, 1] and xi ∈ R, i = 1, . . . , n;

(H5) F (t, 0, . . . , 0) = 0 for t ∈ [0, 1].

We say that a function u = (u1, . . . , un) ∈ X is a weak solution of BVP (1), (2) if

∫ 1

0

n∑

i=1

φpi
(u′

i(s))v
′
i(s)ds − λ

∫ 1

0

n∑

i=1

fi(s, u1(s), . . . , un(s))vi(s)ds = 0
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for any v = (v1, . . . , vn) ∈ W 1,p1

0 ([0, 1]) × W 1,p2

0 ([0, 1]) × . . . × W 1,pn

0 ([0, 1]). Under the
assumptions (H1)–(H5), Theorem 2.1 below shows that BVP (1), (2) has at least three
classical solutions. To prove the theorem, we will first apply Lemmas 1.1 and 1.2 to
obtain the existence of three weak solutions of BVP (1), (2), then we show that the
three weak solutions are indeed the classical solutions. In the process of the proof,
three functionals Φ, Ψ, and J are constructed in such a way that all the conditions of
Lemmas 1.1 and 1.2 are satisfied.

We now make some brief comments about the assumptions (H1)–(H5). (H1) is
needed to obtain some useful bounds for functions in X (see Lemma 3.1). The function
F introduced in (H2) is used in the construction of the functional Ψ. (H3) is required
in the proof of the existence of a function w ∈ X with some nice properties (see Lemma
3.2). Both Lemmas 3.1 and 3.2 are crucial to prove our existence results. (H4), together
with Lemma 3.1, is used to show the functional Φ(u) + λΨ(u) is weakly coercive for
λ ∈ [0,∞), i.e.,

lim
||u||→∞

(Φ(u) + λΨ(u)) = ∞, λ ∈ [0,∞).

Finally, (H5) is needed to show that J(0, . . . , 0) = 0, which is necessary in order to
apply Lemma 1.1.

Now, we state our main results. The first one is concerned with BVP (1), (2).

Theorem 2.1 Assume (H1)–(H5) hold. Then there exist an open interval Λ ⊆ [0,∞)
and a positive real number δ such that, for each λ ∈ Λ, BVP (1), (2) has at least three
classical solutions whose norms in X are less than δ.

For n = 1, let

F̃ (t, x) =

∫ x

0

f(t, ξ)dξ. (12)

The following corollaries are direct consequences of Theorem 2.1.

Corollary 2.1 Assume (H1) and the following conditions hold:

(A1) there exist two positive constants c and d with c < d such that

F̃ (t, x) ≥ 0 for (t, x) ∈ S1,1(d) ∪ S2,1(d)

and

max
t∈[0,1],|x|<ρc(κ)1/p

F̃ (t, x) ≤
( c

d

)p
∫ (1+tm)/2

t1/2

F̃ (s, d)ds,

where S1,1 and S2,1 are defined by (8) and (9), respectively, with n = 1, ρ is
defined by (11), and κ is defined by (10) with pi = p, i.e.,

κ = 2p−1

(

t1−p
1

∣
∣
∣1 −

m∑

j=1

aj

∣
∣
∣

p

+ (1 − tm)1−p
∣
∣
∣1 −

m∑

j=1

bj

∣
∣
∣

p
)

; (13)
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(A2) there exist θ ∈ L1(0, 1) and γ > 0 with γ < p such that

F̃ (t, x) ≤ θ(t) (1 + |x|γ)

for t ∈ [0, 1] and x ∈ R.

Then there exist an open interval Λ ⊆ [0,∞) and a positive real number δ such that,
for each λ ∈ Λ, BVP (5), (7) has at least three classical solutions whose norms in X
are less than δ.

Corollary 2.2 Assume (H1) and the following conditions hold:

(B1) f(t, x) = g(t)h(x) with g(t) and H(x) =
∫ x

0
h(ξ)dξ being nonnegative;

(B2) there exist two positive constants c and d with c < d such that

max
t∈[0,1]

g(t) max
|x|<ρc(κ)1/p

H(x) ≤
( c

d

)p

H(d)(G((1 + tm)/2) − G(t1/2)),

where ρ is defined by (11) and κ is defined by (13), and G(t) =
∫ t

0
g(s)ds.

(B3) there exists σ > 0 and γ > 0 with γ < p such that

H(x) ≤ σ(1 + |x|γ) for x ∈ R.

Then there exist an open interval Λ ⊆ [0,∞) and a positive real number δ such that,
for each λ ∈ Λ, BVP (5), (7) has at least three classical solutions whose norms in X
are less than δ.

Corollary 2.3 Assume (A2) and the following condition hold:

(C1) there exist two positive constants c and d with c < d such that

F̃ (t, x) ≥ 0 for (t, x) ∈ ([0, 1/4] ∪ [3/4, 1]) × [0, d]

and

max
t∈[0,1],|x|<21−1/pc

F̃ (t, x) ≤
( c

d

)p
∫ 3/4

1/4

F̃ (s, d)ds.

Then there exist an open interval Λ ⊆ [0,∞) and a positive real number δ such that,
for each λ ∈ Λ, BVP (5), (4) has at least three classical solutions whose norms in X
are less than δ.

Remark 2.1 Corollaries 2.1–2.3 improve and extend the main results in [3, 5, 6, 14].
In particular, for the case when p = 2, by taking c̄ =

√
2c and d̄ = d, it is easy to see

that Proposition 1.1 is a special case of Corollary 2.3.
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We conclude this section with the following simple example.

Example Consider the BVP consisting of the equation

(|u′|u′)′ + λt(eu + 2u) = 0, t ∈ (0, 1), (14)

and the three–point BCs

u(0) = u(1) =
1

2
u

(
1

2

)

, (15)

where λ is a real parameter.

We claim that there exist an open interval Λ ⊆ [0,∞) and a positive real number δ
such that, for each λ ∈ Λ, BVP (14), (15) has at least three classical solutions whose
norms in X are less than δ.

In fact, with p = 3, m = 1, a1 = b1 = t1 = 1/2, and f(t, x) = t(ex +2x), it is easy to
see that BVP (14), (15) is of the form BVP (5), (7). Let g(t) = t and h(x) = ex + 2x.
Then

max
t∈[0,1]

g(t) = 1, G(t) =
t2

2
, and H(x) = ex + x2.

Clearly, (B1) and (B3) with σ = 1 and γ = 2 hold.
Let c = 1 and d = 12. For ρ and κ defined by (11) and (13), by a simple calculation,

we have that ρ = 3/2, κ = 4,

( c

d

)p

H(d)(G(1 + t1)/2 − G(t1/2)) ≈ 23.57,

and
max
t∈[0,1]

g(t) max
|x|<ρc(κ)1/p

H(x) ≈ 16.49.

Then
max
t∈[0,1]

g(t) max
|x|<ρc(κ)1/p

H(x) ≤
( c

d

)p

H(d)(G(1 + t1)/2 − G(t1/2)),

i.e., (B2) holds. The conclusion now readily follows from Corollary 2.2.

Remark 2.2 To the best of our knowledge, no known criteria in the literature can be
applied to BVP (14), (15) to obtain the same conclusion as what we get here.

3 Proofs of the Main Results

Lemma 3.1 Assume (H1) holds. If u = (u1, . . . , un) ∈ X, then

max
t∈[0,1]

|ui(t)| ≤ ρ||u′
i||pi

, i = 1, . . . , n,

where ρ is defined by (11).
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Proof. For i = 1, . . . , n and t ∈ [0, 1], from

ui(t) =

∫ t

0

u′
i(s)ds + C1,

it follows that

ui(0) = C1 and
m∑

j=1

ajui(tj) =
m∑

j=1

aj

∫ tj

0

u′
i(s)ds + C1

m∑

j=1

aj.

Since ui(0) =
∑m

j=1 ajui(tj), we have

C1 =

m∑

j=1

aj

∫ tj

0

u′
i(s)ds + C1

m∑

j=1

aj.

Then,

C1 =
1

1 −
∑m

j=1 aj

m∑

j=1

aj

∫ tj

0

u′
i(s)ds.

Thus,

ui(t) =

∫ t

0

u′
i(s)ds +

1

1 −
∑m

j=1 aj

m∑

j=1

aj

∫ tj

0

u′
i(s)ds. (16)

Similarly, from

ui(t) =

∫ t

1

u′
i(s)ds + C2 and ui(1) =

m∑

j=1

bjui(tj),

we have that

ui(t) =

∫ t

1

u′
i(s)ds +

1

1 −
∑m

j=1 bj

m∑

j=1

bj

∫ tj

1

u′
i(s)ds. (17)

Now, (16) and (17) imply that

|ui(t)| ≤
∫ t

0

|u′
i(s)|ds +

1

|1 −
∑m

j=1 aj|

m∑

j=1

|aj|
∫ tj

0

|u′
i(s)|ds

and

|ui(t)| ≤
∫ 1

t

|u′
i(s)|ds +

1

|1 −∑m
j=1 bj |

m∑

j=1

|bj|
∫ 1

tj

|u′
i(s)|ds.
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Hence,

2|ui(t)| ≤
∫ 1

0

|u′
i(s)|ds +

1

|1 −∑m
j=1 aj|

m∑

j=1

|aj |
∫ tj

0

|u′
i(s)|ds

+
1

|1 −
∑m

j=1 bj |

m∑

j=1

|bj |
∫ 1

tj

|u′
i(s)|ds

≤
(

1 +

∑m
j=1 |aj |

|1 −
∑m

j=1 aj |
+

∑m
j=1 |bj |

|1 −
∑m

j=1 bj |

)
∫ 1

0

|u′
i(s)|ds

= 2ρ

∫ 1

0

|u′
i(s)|ds.

Then, from Hölder’s inequality,

|ui(t)| ≤ ρ

∫ 1

0

|u′
i(s)|ds ≤ ρ

(∫ 1

0

|u′(s)|pi

)1/pi

= ρ||u′
i||pi

on [0, 1].

This completes the proof of the lemma.

Lemma 3.2 Assume (H1)–(H3) hold. Then there exists w = (w1, . . . , wn) ∈ X such
that

n∑

i=1

||w′
i||pi

pi

pi

> r

and

n∑

i=1

||w′
i||pi

pi

pi

max
(t,x1,...,xn)∈K

F (t, x1, . . . , xn) <
n∑

i=1

κic
pi

pi

∫ 1

0

F (s, w1(s), . . . , wn(s))ds,

where κi is defined by (10) and

r =
n∑

i=1

κic
pi

pi

.

Proof. For i = 1, . . . , n, let

wi(t) =







d

(
∑m

j=1 aj +
2(1−

Pm
j=1

aj)
t1

t

)

, t ∈ [0, t1/2],

d, t ∈ [t1/2, (1 + tm)/2],

d

(
2−

Pm
j=1

bj−(
Pm

j=1
bj)tm

1−tm
− 2(1−

Pm
j=1

bj)
1−tm

t

)

, t ∈ [(1 + tm)/2, 1].
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Let w(t) = (w1(t), . . . , wn(t)). Then, w ∈ X, and by a simple calculation, we obtain
that

||w′
i||pi

pi
=

∫ 1

0

|w′
i(s)|pids

=

(
∫ t1/2

0

(

2|1 −
∑m

j=1 aj |
t1

)pi

ds +

∫ 1

(1+tm)/2

(

2|1 −
∑m

j=1 bj |
1 − tm

)pi

ds

)

dpi

= 2pi−1

(

t1−pi
1

∣
∣
∣1 −

m∑

j=1

aj

∣
∣
∣

pi

+ (1 − tm)1−pi

∣
∣
∣1 −

m∑

j=1

bj

∣
∣
∣

pi

)

dpi = κid
pi. (18)

Thus, in view of the fact that c < d, we have

m∑

j=1

||wi||pi
pi

pi

=
m∑

j=1

κid
pi

pi

>
m∑

j=1

κic
pi

pi

= r.

Note that for i = 1, . . . , n,

d
m∑

j=1

aj ≤ wi(t) ≤ d on [0, t1, /2] if
m∑

j=1

aj < 1,

d ≤ wi(t) ≤ d

m∑

j=1

aj on [0, t1, /2] if

m∑

j=1

aj > 1,

d

m∑

j=1

bj ≤ wi(t) ≤ d on [(1 + tm)/2, 1] if

m∑

j=1

bj < 1,

and

d ≤ wi(t) ≤ d
m∑

j=1

bj on [(1 + tm)/2, 1] if
m∑

j=1

bj > 1.

Then, from (H3) and (18), it follows that

n∑

i=1

κic
pi

pi

∫ 1

0

F (s, w1(s), . . . , wn(s))ds

≥
n∑

i=1

κic
pi

pi

∫ (1+tm)/2

t1/2

F (s, w1(s), . . . , wn(s))ds

≥
n∑

i=1

κid
pi

pi

max
(t,x1,...,xn)∈K

F (t, x1, . . . , xn)

=

n∑

i=1

||w′
i||pi

pi

pi
max

(t,x1,...,xn)∈K
F (t, x1, . . . , xn).
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This completes the proof of the lemma.

In what follows, for i = 1, . . . , n, let φ−1
pi

denote the inverse of φpi
. Then, φ−1

pi
(x) =

φqi
(x), where 1/pi + 1/qi = 1. Clearly, φpi

is increasing on R, and

lim
x→−∞

φpi
(x) = −∞ and lim

x→∞
φpi

(x) = ∞. (19)

Lemma 3.3 For any fixed λ ∈ R, u = (u1, . . . , un) ∈ (C[0, 1])n, and i = 1, . . . , n,
define αi(·; u) : R → R by

αi(x; u) =

∫ 1

0

φ−1
pi

(

x − λ

∫ τ

0

fi(s, u1(s), . . . , un(s))ds

)

dτ

+
m∑

j=1

ajui(tj) −
m∑

j=1

bjui(tj).

Then the equation
αi(x; u) = 0 (20)

has a unique solution xu,i.

Proof. From (19), we see that

lim
x→−∞

α(x; u) = −∞ and lim
x→∞

α(x; u) = ∞.

Hence, the existence and uniqueness of a solution of Eq. (20) follow from the fact that
α(·; u) is continuous and increasing on R.

Lemma 3.4 The function u(t) = (u1(t), . . . , un(t)) is a solution of BVP (1), (2) if
and only if ui(t), i = 1, . . . , n, is a solution of the system of the integral equations

ui(t) =

m∑

j=1

ajui(tj) +

∫ t

0

φ−1
pi

(

xu,i − λ

∫ τ

0

fi(s, u1(s), . . . , un(s))ds

)

dτ, i = 1, . . . , n,

where xu,i is the unique solution of Eq. (20).

Proof. This can be verified by direct computations.

Proof of Theorem 2.1. For u = (u1, . . . , un) ∈ X, let

Φ(u) =
n∑

i=1

||u′
i||pi

pi

pi

and

Ψ(u) = −
∫ 1

0

F (s, u1(s), . . . , un(s))ds.
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Then, Φ is a continuously Gâteaux differentiable and sequentially weakly lower semi-
continuous functional whose Gâteaux derivative admits a continuous inverse on X∗,
and Ψ is a continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact. In particular, for u = (u1, . . . , un) ∈ X and v = (v1, . . . , vn) ∈ X, we have

Φ′(u)(v) =

∫ 1

0

n∑

i=1

φpi
(u′

i(s))v
′
i(s)ds

and

Ψ′(u)(v) = −
∫ 1

0

n∑

i=1

fi(s, u1(s), . . . , un(s))vi(s)ds.

Hence, the weak solutions of BVP (1), (2) are exactly the solutions of the equation

Φ′(u) + λΨ′(u) = 0. (21)

Let λ ∈ [0,∞). From (H4) and Lemma 3.1, we see that

Φ(u) + λΨ(u) ≥
n∑

i=1

||u′
i||pi

pi

pi
− λ

∫ 1

0

θ(s)

(

1 +

n∑

i=1

|ui(s)|γi

)

ds

≥
n∑

i=1

||u′
i||pi

pi

pi
− λ

(

1 + ρ

n∑

i=1

||u′
i||γi

pi

)
∫ 1

0

θ(s)ds.

Since γi < pi for i = 1, . . . , n, we have that

lim
||u||→∞

(Φ(u) + λΨ(u)) = ∞.

Lemma 3.1 implies that

sup
t∈[0,1]

n∑

i=1

|ui(t)|pi

pi
≤ ρpi

n∑

i=1

||u′
i||pi

pi

pi
. (22)

Let w and r be as introduced in Lemma 3.2. Then,

Φ(w) =

n∑

i=1

||w′
i||pi

pi

pi
> r =

n∑

i=1

κic
pi

pi
.

Let u0 = (0, . . . , 0), u1 = w, and J = −Ψ. Then, in view of (H5), it is clear that

Φ(u0) = J(u0) = 0, Φ(u1) > r.
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Moreover, from Lemma 3.2 and (22), it follows that

sup
u∈Φ((−∞,r])

(J(u)) = sup
u∈Φ((−∞,r])

(−Ψ(u))

=
∑

n
P

i=1

||u′
i
||

pi
pi

pi
≤r

∫ 1

0

F (s, u1(s), . . . , un(s))ds

≤ max
(t,x1,...,xn)∈K

F (t, x1, . . . , xn)

<

∑n
i=1

κic
pi

pi

∑n
i=1

||w′
i||

pi
pi

pi

∫ 1

0

F (s, w1(s), . . . , wn(s))ds

< r
−Ψ(w)

Φ(w)
= r

J(u1)

Φ(u1)
.

Fix η such that

sup
u∈Φ((−∞,r])

(J(u)) < η < r
J(u1)

Φ(u1)

and define h(λ) = λη for λ ≥ 0. Then, from Lemma 1.1, we have

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + h(λ)) < inf
u∈X

sup
λ≥0

(Φ(x) + λΨ(x) + h(λ)).

Therefore, by Lemma 2, there exist an open interval Λ ⊆ [0,∞) and a positive real
number δ such that, for each λ ∈ Λ, Eq. (21) has at least three solutions

uk = (uk1, . . . , ukn), k = 1, 2, 3,

in X that are three weak solutions of BVP (1), (2) and whose norms are less than δ.
Then, for k = 1, 2, 3, and i = 1, . . . , n, we have

∫ 1

0

n∑

i=1

φpi
(u′

ki(s))v
′
i(s)ds − λ

∫ 1

0

n∑

i=1

fi(s, uk1(s), . . . , ukn(s))vi(s)ds = 0 (23)

for any v = (v1, . . . , vn) ∈ W 1,p1

0 ([0, 1])×W 1,p2

0 ([0, 1])×. . .×W 1,pn

0 ([0, 1]). Recall that, in
one dimension, any weakly differentiable function is absolutely continuous, so that its
classical derivative exists almost everywhere, and that the classical derivative coincides
with the weak derivative. Now, applying integration by parts to (23) yields that

n∑

i=1

∫ 1

0

((φpi
(u′

ki(s)))
′ + λfi(s, uk1(s), . . . , ukn)(s))vi(s)ds = 0,

from which it follows that

(φpi
(u′

ki))
′ + λfi(t, uk1, . . . , ukn) = 0 for a.e. t ∈ (0, 1). (24)

EJQTDE Spec. Ed. I, 2009 No. 10



Existence of Three Solutions 15

Then, by Lemmas 3.3 and 3.4, it is easy to see that

uki(t) =

m∑

j=1

ajuki(tj) +

∫ t

0

φ−1
pi

(

xuk ,i − λ

∫ τ

0

fi(s, uk1(s), . . . , ukn(s))ds

)

dτ,

where xuk,i is the unique solution of Eq. (20) with u = uk. Consequently, uki ∈ C1[0, 1]
and φ(u′

ki) ∈ C1[0, 1], i.e., uk, k = 1, 2, 3, are classical solutions of BVP (1), (2). This
completes the proof of the theorem.

Proof of Corollary 2.1. The conclusion follows directly from Theorem 2.1.

Proof of Corollary 2.2. Let F̃ be defined by (12). Then, from (B1) and (B2), we
see that

F̃ (t, x) =

∫ x

0

g(t)h(ξ)dξ = g(t)H(x) ≥ 0 for (t, x) ∈ [0, 1] × R

and

max
t∈[0,1],|x|<(ρκ)1/pc

F̃ (t, x) = max
t∈[0,1],|x|<ρc(κ)1/p

∫ x

0

g(t)h(ξ)dξ

= max
t∈[0,1]

g(t) max
|x|<ρc(κ)1/p

H(x)

≤
( c

d

)p

H(d)(G((1 + tm)/2) − G(t1/2))

=
( c

d

)p
∫ d

0

h(ξ)dξ

∫ (1+tm)/2

t1/2

g(s)ds

=
( c

d

)p
∫ (1+tm)/2

t1/2

∫ d

0

g(s)h(ξ)dξds

=
( c

d

)p
∫ (1+tm)/2

t1/2

∫ d

0

f(s, ξ)dξds

=
( c

d

)p
∫ (1+tm)/2

t1/2

F̃ (s, d)ds.

Thus, (A1) holds. By (B1) and (B3), we have

F̃ (t, x) =

∫ x

0

g(t)h(ξ)dξ = g(t)H(x) ≤ σg(t)(1 + |x|γ)

for (t, x) ∈ [0, 1]× R. Then (A2) holds with θ(t) = σg(t). The conclusion then readily
follows from Corollary 2.1.

Proof of Corollary 2.3. By taking m = 1, a1 = b1 = 0, and t1 = 1/2, it is easy
to see that the assumption (A1) reduces to (C1). The conclusion then readily follows
from Corollary 2.1.
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