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Abstract

This paper is devoted to study the existence of solutions for a class of ini-

tial value problems for impulsive fractional differential equations involving the
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Mönch’s fixed point theorem and the technique of measures of noncompactness.

Key words and phrases: Initial value problem, impulses, Caputo fractional deriva-
tive, measure of noncompactness, fixed point, integral conditions, Banach space.
AMS (MOS) Subject Classifications: 26A33, 34A37, 34G20

1 Introduction

The theory of fractional differential equations is an important branch of differential
equation theory, which has an extensive physical, chemical, biological, and engineering
background, and hence has been emerging as an important area of investigation in the
last few decades; see the monographs of Kilbas et al. [32], Miller and Ross [37], and the
papers of Agarwal et al. [1, 2], Belarbi et al. [11], Benchohra et al. [12, 13, 15], Delboso
and Rodino [20], Diethelm and Ford [22], El-Sayed et al. [23], Furati and Tatar [25,
26, 27], Momani et al. [38, 39], and Lakshmikantham and Devi [33] . Correspondingly,
applications of the theory of fractional differential equations to different areas were
considered by many authors and some basic results on fractional differential equations
have been obtained see, for example, Gaul et al. [28], Glockle and Nonnenmacher [29],
Hilfer [31], Mainardi [35], Metzler et al. [36] and Podlubny [42], and the references
therein.

On the other hand, the theory of impulsive differential equations has undergone
rapid development over the years and played a very important role in modern applied

EJQTDE Spec. Ed. I, 2009 No. 8



2 M. Benchohra & D. Seba

mathematical models of real processes rising in phenomena studied in physics, popula-
tion dynamics, chemical technology, biotechnology and economics; see for instance the
monographs by Bainov and Simeonov [10], Benchohra et al [14], Lakshmikantham et al
[34], and Samoilenko and Perestyuk [43] and references therein. Moreover, impulsive
differential equations present a natural framework for mathematical modeling of several
real-world problems. However, the theory for fractional differential equations in Ba-
nach spaces has yet been sufficiently developed. Recently, Benchohra et al [16] applied
the measure of noncompactness to a class of Caputo fractional differential equations
of order r ∈ (0, 1] in a Banach space. Lakshmikantham and Devi [33] discussed the
uniqueness and continuous dependence of the solutions of a class of fractional differ-
ential equations using the Riemann-Liouville derivative of order r ∈ (0, 1] on Banach
spaces. Let E be a Banach space with norm ‖ · ‖. In this paper, we study the following
initial value problem (IVP for short), for fractional order differential equations

cDry(t) = f(t, y), for each t ∈ J = [0, T ], t 6= tk, k = 1, . . . , m, 0 < r ≤ 1, (1)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m, (2)

y(0) = y0, (3)

where cDr is the Caputo fractional derivative, f : J × E → E is a given function,
Ik : E → E, k = 1, . . . , m, and y0 ∈ E, 0 = t0 < t1 < . . . < tm < tm+1 =
T, ∆y|t=tk = y(t+k )−y(t−k ), y(t+k ) = lim

h→0+
y(tk +h) and y(t−k ) = lim

h→0−
y(tk +h) represent

the right and left limits of y(t) at t = tk, k = 1, . . . , m. To our knowledge no paper has
considered impulsive fractional differential equations in abstract spaces. This paper
fills the gap in the literature. To investigate the existence of solutions of the problem
above, we use Mönch’s fixed point theorem combined with the technique of measures
of noncompactness, which is an important method for seeking solutions of differential
equations. See Akhmerov et al. [4], Alvàrez [5], Banas̀ et al. [6, 7, 8, 9], El-Sayed and
Rzepka [24], Guo et al. [30], Mönch [40], Mönch and Von Harten [41] and Szufla [44].

2 Preliminaries

In what follows, we first state the following definitions, lemmas and some notation.
Denote by C(J, E) the Banach space of continuous functions J → E, with the usual
supremum norm

‖y‖∞ = sup{‖y(t)‖, t ∈ J}.

Let L1(J, E) be the Banach space of measurable functions y : J → E which are Bochner
integrable, equipped with the norm

‖y‖L1 =

∫

J

‖y(t)‖dt.
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PC(J, E) = {y : J → E : y ∈ C((tk, tk+1], E), k = 0, . . . , m + 1 and there exist y(t−k ) and

y(t+k ), k = 1, . . . , m with y(t−k ) = y(tk)}.

PC(J, E) is a Banach space with norm

‖y‖PC = sup
t∈J

‖y(t)‖.

Set J ′ := [0, T ]\{t1, . . . , tm}.
Moreover, for a given set V of functions v : J → E let us denote by

V (t) = {v(t), v ∈ V }, t ∈ J

and
V (J) = {v(t) : v ∈ V, t ∈ J}.

Now let us recall some fundamental facts of the notion of Kuratowski measure of
noncompactness.

Definition 2.1 ([7]) Let E be a Banach space and ΩE the bounded subsets of E. The
Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] defined by

α(B) = inf{ǫ > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ǫ}; here B ∈ ΩE .

Properties: The Kuratowski measure of noncompactness satisfies some properties
(for more details see [7])

(a) α(B) = 0 ⇔ B is compact ( B is relatively compact ).

(b) α(B) = α(B).

(c) A ⊂ B ⇒ α(A) ≤ α(B).

(d) α(A + B) ≤ α(A) + α(B)

(e) α(cB) = |c|α(B); c ∈ R.

(f) α(convB) = α(B).

For completeness we recall the definition of Caputo derivative of fractional order.
Let ϕr(t) = tr−1

Γ(r)
for t > 0 and ϕr(t) = 0 for t ≤ 0, and ϕr → δ(t) as r → 0, where

δ is the delta function.

Definition 2.2 ([32]) The fractional order integral of the function h ∈ L1([a, b]) of
order r ∈ R+; is defined by

Ir
ah(t) =

1

Γ(r)

∫ t

a

h(s)

(t − s)1−r
dt

where Γ is the gamma function. When a = 0, we write Irh(t) = [h ∗ ϕr](t).
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Definition 2.3 ([32] For a function h given on the interval [a, b], the Caputo fractional-
order derivative of h, of order r > 0 is defined by

cDr
a+h(t) =

1

Γ(n − r)

∫ t

a

h(n)(s)ds

(t − s)1−n+r

Here n = [r] + 1 and [r] denotes the integer part of r.

For example for 0 < r ≤ 1 and h : [a, b] → E an absolutely continuous function, then
the fractional derivative of order r of h exists.

From the definition of Caputo derivative, we can obtain the following auxiliary
results [45].

Lemma 2.1 Let r > 0, then the differential equation

cDrh(t) = 0

has solutions h(t) = c0+c1t+c2t
2+. . .+cn−1t

n−1, ci ∈ E, i = 0, 1, . . . , n−1, n = [r]+1.

Lemma 2.2 Let r > 0, then

IrcDrh(t) = h(t) + c0 + c1t + c2t
2 + . . . + cn−1t

n−1

for some ci ∈ E, i = 0, 1, ..., n − 1, n = [r] + 1.

Definition 2.4 A map f : J × E → E is said to be Carathéodory if

(i) t 7−→ f(t, u) is measurable for each u ∈ E;

(ii) u 7−→ F (t, u) is continuous for almost all t ∈ J.

For our purpose we will only need the following fixed point theorem, and the important
Lemma.

Theorem 2.1 ([3, 40]) Let D be a bounded, closed and convex subset of a Banach
space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2.3 ([44]) Let D be a bounded, closed and convex subset of the Banach space
C(J, E), G a continuous function on J × J and f a function from J × E → E which
satisfies the Carathéodory conditions and assume there exists p ∈ L1(J, R+) such that
for each t ∈ J and each bounded set B ⊂ E we have

lim
k→0+

α(f(Jt,k × B)) ≤ p(t)α(B); here Jt,k = [t − k, t] ∩ J.

If V is an equicontinuous subset of D, then

α

({
∫

J

G(s, t)f(s, y(s))ds : y ∈ V

})

≤

∫

J

‖G(t, s)‖p(s)α(V (s))ds.
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3 Existence of Solutions

First of all, we define what we mean by a solution of the IVP (1)–(3).

Definition 3.1 A function y ∈ PC(J, E) is said to be a solution of (1)–(3) if y satisfies
the equation cDry(t) = f(t, y(t)) on J ′, and conditions

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m,

and
y(0) = y0.

Lemma 3.1 Let 0 < r ≤ 1 and let h : J → E be continuous. A function y is a
solution of the fractional integral equation

y(t) =



























































y0 +
1

Γ(r)

∫ t

0

(t − s)r−1h(s)ds if t ∈ [0, t1],

y0 +
1

Γ(r)

k
∑

i=1

∫ ti

ti−1

(ti − s)r−1h(s)ds

+
1

Γ(r)

∫ t

tk

(t − s)r−1h(s)ds

+
k

∑

i=1

Ii(y(t−i )), if t ∈ (tk, tk+1], k = 1, . . . , m,

(4)
if and only if y is a solution of the fractional IVP

cDry(t) = h(t), for each, t ∈ J ′, (5)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m, (6)

y(0) = y0. (7)

Proof: Assume y satisfies (5)-(7). If t ∈ [0, t1] then
cDry(t) = h(t).

Lemma 2.2 implies

y(t) = y0 +
1

Γ(r)

∫ t

0

(t − s)r−1h(s)ds.

If t ∈ (t1, t2] then Lemma 2.2 implies

y(t) = y(t+1 ) +
1

Γ(r)

∫ t

t1

(t − s)r−1h(s)ds

= ∆y|t=t1 + y(t−1 ) +
1

Γ(r)

∫ t

t1

(t − s)r−1h(s)ds

= I1(y(t−1 )) + y0 +
1

Γ(r)

∫ t1

0

(t1 − s)r−1h(s)ds

+
1

Γ(r)

∫ t

t1

(t − s)r−1h(s)ds.
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If t ∈ (t2, t3], then again Lemma 2.2 implies

y(t) = y(t+2 ) +
1

Γ(r)

∫ t

t2

(t − s)r−1h(s)ds

= ∆y|t=t2 + y(t−2 ) +
1

Γ(r)

∫ t

t2

(t − s)r−1h(s)ds

= I2(y(t−2 )) + I1(y(t−1 )) + y0 +
1

Γ(r)

∫ t1

0

(t1 − s)r−1h(s)ds

+
1

Γ(r)

∫ t2

t1

(t2 − s)r−1h(s)ds +
1

Γ(r)

∫ t

t2

(t − s)r−1h(s)ds.

If t ∈ (tk, tk+1], then again Lemma 2.2 implies (4).
Conversely, assume that y satisfies the impulsive fractional integral equation (4). If

t ∈ [0, t1], then y(0) = y0 and, using the fact that cDr is the left inverse of Ir, we get

cDry(t) = h(t), for each t ∈ [0, t1].

If t ∈ [tk, tk+1), k = 1, . . . , m, and using the fact that cDrC = 0, where C is a constant,
we get

cDry(t) = h(t), for each t ∈ [tk, tk+1).

Also, we can easily show that

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m.

Let us list some conditions on the functions involved in the IVP (1)–(3). Assume
that

(H1) f : J × E → E satisfies the Carathéodory conditions.

(H2) There exists p ∈ L1(J, R+) ∩ C(J, R+), such that,

‖f(t, y)‖ ≤ p(t)‖y‖, for t ∈ J and each y ∈ E.

(H3) There exists c > 0 such that

‖Ik(y)‖ ≤ c‖y‖ for each y ∈ E.

(H4) For each bounded set B ⊂ E we have

α(Ik(B)) ≤ cα(B), k = 1, . . . , m.

(H5) For each t ∈ J and each bounded set B ⊂ E we have

lim
h→0+

α(f(Jt,h × B)) ≤ p(t)α(B); here Jt,h = [t − h, t] ∩ J.
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Theorem 3.1 Assume that assumptions (H1) − (H5) hold. Let p∗ = supt∈J p(t). If

(m + 1)p∗T r

Γ(r + 1)
+ mc < 1, (8)

then the IVP (1)–(3) has at least one solution.

Proof. We shall reduce the existence of solutions of (1)-(3) to a fixed point problem.
To this end we consider the operator N : PC(J, E) −→ PC(J, E) defined by

N(y)(t) = y0 +
1

Γ(r)

∑

0<tk<t

∫ tk

tk−1

(tk − s)r−1f(s, y(s))ds

+
1

Γ(r)

∫ t

tk

(t − s)r−1f(s, y(s))ds

+
∑

0<tk<t

Ik(y(t−k )).

Clearly, the fixed points of the operator N are solution of the problem (1)-(3). Let

r0 ≥
‖y0‖

1 − mc −
(m + 1)p∗T r

Γ(r + 1)

(9)

and consider the set
Dr0

= {y ∈ PC(J, E) : ‖y‖∞ ≤ r0}.

Clearly, the subset Dr0
is closed, bounded and convex. We shall show that N satisfies

the assumptions of Theorem 2.1. The proof will be given in three steps.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in PC(J, E). Then for each t ∈ J

‖N(yn)(t) − N(y)(t)‖ ≤
1

Γ(r)

∑

0<tk<t

∫ tk

tk−1

(tk − s)r−1‖f(s, yn(s)) − f(s, y(s))‖ds

+
1

Γ(r)

∫ t

tk

(t − s)r−1‖f(s, yn(s)) − f(s, y(s))‖ds

+
∑

0<tk<t

‖Ik(yn(t−k )) − Ik(y(t−k ))‖.

Since Ik is continuous and f is of Carathéodory type, then by the Lebesgue dominated
convergence theorem we have

‖N(yn) − N(y)‖∞ → 0 asn → ∞.
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Step 2: N maps Dr0
into itself.

For each y ∈ Dr0
, by (H2) and (8) we have for each t ∈ J

‖N(y)(t)‖ ≤ ‖y0‖ +
1

Γ(r)

∑

0<tk<t

∫ tk

tk−1

(tk − s)r−1‖f(s, y(s))‖ds

+
1

Γ(r)

∫ t

tk

(t − s)r−1‖f(s, y(s))‖ds

+
∑

0<tk<t

‖Ik(y(t−k ))‖

≤ ‖y0‖ +
1

Γ(r)

∑

0<tk<t

∫ tk

tk−1

(tk − s)r−1p(t)‖y‖ds

+
1

Γ(r)

∫ t

tk

(t − s)r−1p(t)‖y‖ds

+
∑

0<tk<t

c‖y‖

≤ ‖y0‖ + r0(
(m + 1)p∗T r

Γ(r + 1)
+ mc)

≤ r0.

Step 3: N(Dr0
) is bounded and equicontinuous.

By Step2, it is obvious that N(Dr0
) ⊂ PC(J, E) is bounded.

For the equicontinuity of N(Dr0
). Let τ1, τ2 ∈ J, τ1 < τ2,, and let y ∈ Dr0

. Then

‖N(y)(τ2) − N(y)(τ1)‖ =
1

Γ(r)

∫ τ1

0

|(τ2 − s)r−1 − (τ1 − s)r−1|‖f(s, y(s))‖ds

+
1

Γ(r)

∫ τ2

τ1

(τ2 − s)r−1‖f(s, y(s))‖ds

+
∑

0<tk<τ2−τ1

‖Ik(y(t−k ))‖

≤
r0p

∗

Γ(r + 1)
[τ r

2 − τ r
1 ]

+
∑

0<tk<τ2−τ1

‖Ik(y(t−k ))‖.

As τ1 −→ τ2, the right-hand side of the above inequality tends to zero.

Now let V be a subset of Dr0
such that V ⊂ conv(N(V ) ∪ {0}).

V is bounded and equicontinuous and therefore the function v → v(t) = α(V (t)) is
continuous on J . By (H4), (H5), Lemma 2.3 and the properties of the measure α we
have for each t ∈ J
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v(t) ≤ α(N(V )(t) ∪ {0})

≤ α(N(V )(t))

≤
1

Γ(r)

∑

0<tk<t

∫ tk

tk−1

(tk − s)r−1p(s)α(V (s))ds

+
1

Γ(r)

∫ t

tk

(t − s)r−1p(s)α(V (s))ds

+
∑

0<tk<t

α(V (s))

≤
1

Γ(r)

∑

0<tk<t

∫ tk

tk−1

(tk − s)r−1p(s)v(s)ds

+
1

Γ(r)

∫ t

tk

(t − s)r−1p(s)v(s)ds

+
∑

0<tk<t

cv(s)

≤ ‖v‖∞(
(m + 1)p∗T r

Γ(r + 1)
+ mc).

This means that

‖v‖∞

(

1−
[(m + 1)p∗T r

Γ(r + 1)
+ mc

])

≤ 0.

By (8) it follows that ‖v‖∞ = 0; that is, v(t) = 0 for each t ∈ J , and then V (t) is
relatively compact in PC(J, E). In view of the Ascoli-Arzelà theorem, V is relatively
compact in Dr0

. Applying now Theorem 2.1 we conclude that N has a fixed point
which is a solution of the problem (1)-(3). �

4 Nonlocal impulsive differential equations

This section is concerned with a generalization of the results presented in the previous
section to nonlocal impulsive fractional differential equations. More precisely we shall
present some existence and uniqueness results for the following nonlocal problem

cDry(t) = f(t, y), for each, t ∈ J = [0, T ], t 6= tk, k = 1, . . . , m, 0 < r ≤ 1, (10)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m, (11)

y(0) + g(y) = y0, (12)

where f, Ik, k = 1, . . . , m are as in Section 3 and g : PC(J, E) → E is a continuous
function. Nonlocal conditions were initiated by Byszewski [19] when he proved the
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existence and uniqueness of mild and classical solutions of nonlocal Cauchy problems.
As remarked by Byszewski [17, 18], the nonlocal condition can be more useful than the
standard initial condition to describe some physical phenomena. For example, in [21],
the author used

g(y) =

p
∑

i=1

ciy(τi) (13)

where ci, i = 1, . . . , p, are given constants and 0 < τ1 < ... < τp ≤ T , to describe the
diffusion phenomenon of a small amount of gas in a transparent tube. In this case,
(13) allows the additional measurements at ti, i = 1, . . . , p.

Let us introduce the following set of conditions.

(H6) There exists a constant M∗∗ > 0 such that

|g(u)| ≤ M∗∗ for each u ∈ PC(J, E).

(H7) For each bounded set B ⊂ PC(J, E) we have

α(g(B)) ≤ M∗∗α(B).

Theorem 4.1 Assume that (H1)-(H7) hold. If

(m + 1)p∗T r

Γ(r + 1)
+ mc + M∗∗ < 1, (14)

then the nonlocal problem (10)-(12) has at least one solution on J .

Proof. Transform the problem (10)–(12) into a fixed point problem. Consider the
operator F̃ : PC(J, E) → PC(J, E) defined by

F̃ (y)(t) = y0 − g(y) +
1

Γ(r)

∑

0<tk<t

∫ tk

tk−1

(tk − s)r−1f(s, y(s))ds

+
1

Γ(r)

∫ t

tk

(t − s)r−1f(s, y(s))ds

+
∑

0<tk<t

Ik(y(t−k )).

Clearly, the fixed points of the operator F̃ are solution of the problem (10)-(12). We
can easily show the conditions of Theorem 2.1 are satisfied by F̃ . �
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5 An Example

In this section we give an example to illustrate the usefulness of our main results. Let
us consider the following impulsive fractional initial value problem,

cDry(t) =
1

10 + et
y(t), t ∈ J := [0, 1], t 6=

1

2
, 0 < r ≤ 1, (15)

∆y|t= 1

2

=
1

5
y

(

1

2

−
)

, (16)

y(0) = 0. (17)

Set

f(t, x) =
1

10 + et
x, (t, x) ∈ J × E,

and

Ik(x) =
1

5
x, x ∈ E.

Clearly conditions (H2) and (H3) hold with p(t) =
1

10 + et
and c =

1

5
.

We shall check that condition (8) is satisfied with T = 1, m = 1 and p∗ =
1

10
.

Indeed
[

(m + 1)p∗T r

Γ(r + 1)
+

1

5

]

< 1 ⇔ Γ(r + 1) >
1

4
, (18)

which is satisfied for some r ∈ (0, 1]. Then by Theorem 3.1 the problem (15)-(17) has
at least one solution on [0, 1] for values of r satisfying (18).

References

[1] R. P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for dif-
ferential inclusions with fractional order, Adv. Stud. Contemp. Math. 12 (2008),
181-196.

[2] R. P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for frac-
tional differential equations, Georgian Math. J. (to appear).

[3] R. P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications,
Cambridge University Press, Cambridge, 2001.

[4] R. R. Akhmerov, M. I. Kamenskii, A. S. Patapov, A. E. Rodkina and B. N.
Sadovskii, Measures of Noncompactness and Condensing Operators, trans. from
the Russian by A. Iacob, Birkhauser Verlag, Basel, 1992.

EJQTDE Spec. Ed. I, 2009 No. 8



12 M. Benchohra & D. Seba
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