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Abstract

Applying a variation of Jacobi iteration we obtain the Green’s function for
the centered partial difference equation

∆wwu(xw−1, yz) + ∆zzu(xw, yz−1) + f(u(xw, yz)) = 0,

which is the result of applying the finite difference method to an associated
nonlinear partial differential equation of the form

uxx + uyy + h(u) = 0.

We show that approximations of the partial differential equation can be found by
applying fixed point theory instead of the standard techniques associated with
solving a system of nonlinear equations.

Key words and phrases: Finite difference method, partial difference equations,
Green’s function.
AMS (MOS) Subject Classifications: 39A12, 37H10.

1 Introduction

The finite difference method is a classical technique used to approximate the solution
of a partial differential equation. An application of the technique yields a nonlinear
system of equations which can be considered as a nonlinear partial difference equation.
Instead of attempting to solve or approximate the solution of the nonlinear system, we
will convert the partial difference equation to a fixed point problem whose inversion
involves the Green’s function of the partial difference equation. The Green’s function
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can be interpreted combinatorially through an adjacency matrix. Finding the Green’s
function for a partial difference equation has been done; for example, see [1, 2, 3, 4, 5,
6, 7, 8, 12, 13], however none of the techniques are simple nor are the formulas easy
to work with when finding solutions which correspond to approximations to partial
differential equations. Also, it is difficult to find bounds on the Green’s function to
establish the existence of solutions for the classical partial difference equation when
these techniques are used. In this paper we apply an elementary iterative technique
based on Jacobi iteration to obtain the Green’s functions. A technique that is easy
to computationally apply to approximate the solution of a partial differential equation
using partial difference equations techniques. Since the Green’s function involves the
sum of nonnegative terms (with a combinatorial interpretation) it is easy to establish
elementary bounds which can be used in existence of solutions arguments. A basic
understanding of difference equations, Green’s functions, and discretization of partial
differential equations is assumed; see Kelley and Peterson [10] for background results.

2 Preliminaries

For designation purposes, we will employ interval notation to denote sets of integers,
such as [1, N ] = {1, 2, . . . , N}, etc.

The partial difference equation

∆wwu(xw−1, yz) + ∆zzu(xw, yz−1) + f(u(xw, yz)) = 0,

when w ∈ [1, N − 1] and z ∈ [1, N − 1], with boundary conditions

u(x, y) = 0 for all x = x0, x = xN , y = y0, or y = yN ,

is the result of applying the finite element method to the nonlinear partial differential
equation

uxx + uyy + h(u) = 0,

with boundary conditions u(0, y) = 0, 0 ≤ y ≤ 1, and u(x, 0) = 0, 0 ≤ x ≤ 1, where
N2f(u) = h(u), xw = w

N
, yz = z

N
. Thus, this is a problem that is of interest to a large

audience extending beyond mathematicians. Note, the arguments throughout can be
modified to suit any bounded domain. The Green’s function is the function whose
domain is [0, N ]2 × [1, N − 1]2 such that for all (r, s) ∈ [1, N − 1]2,

g(w, z, r, s) = 0, if (w, z) ∈ ∂[0, N ]2,

and
∆wwg(w − 1, z, r, s) + ∆zzg(w, z − 1, r, s) = −δw,rδz,s

for all w ∈ [1, N −1] and z ∈ [1, n−1]. Applying classical techniques it can be shown
that any solution of the partial difference equation is a fixed point of the operator T
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defined by

Tu(xw, yz) =

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)f(u(xr, ys)).

3 Finding the Green’s Function

For each fixed (r, s) ∈ [1, N − 1]2, the Green’s function is a solution of

∆wwg(w − 1, z, r, s) + ∆zzg(w, z − 1, r, s) = −δw,rδz,s,

when w ∈ [1, N − 1] and z ∈ [1, N − 1], which we can write as

g(w, z, r, s) =

(

1

4

)

[g(w − 1, z, r, s) + g(w + 1, z, r, s)

+ g(w, z − 1, r, s) + g(w, z + 1, r, s) + δw,rδz,s].

Thus, for each fixed (r, s) ∈ [1, N − 1]2, the Green’s function is a solution of a linear
system of equations which we can write as

Gr,s =

(

A

4

)

Gr,s +
Dr,s

4
.

The column matrix Gr,s consists of the Green’s function terms, that is, for each (r, s) ∈
[1, N−1]2, the element in the ith row of Gr,s is g(w, z, r, s), where i = (w−1)(N−1)+z.
Similarly, for each (r, s) ∈ [1, N − 1]2, the element in the ith row of Dr,s is δw,rδz,s,
where i = (w − 1)(N − 1) + z. The matrix A is the (N − 1)2 × (N − 1)2 adjacency
matrix for the Laplacian molecule. That is, if

i = (wi − 1)(N − 1) + zi and j = (wj − 1)(N − 1) + zj,

then the (i, j)th entry of A is 1, if (wi, zi) is adjacent to (wj, zj), and 0 otherwise. The
vertices (wi, zi) and (wj, zj) are adjacent if

wi = wj and |zi − zj | = 1, or zi = zj and |wi − wj| = 1.

Since A is an adjacency matrix, for all natural numbers k, the (i, j)th entry of Ak is
the number of distinct paths of length k from node i to node j that never leave the
bounded lattice [1, N − 1]2 (see [11] for details), where node i corresponds to the point
(wi, zi) in the lattice, and the node j corresponds to the point (wj , zj) in the lattice,
again where

i = (wi − 1)(N − 1) + zi and j = (wj − 1)(N − 1) + zj.
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For each natural number t and (i, j) ∈ [1, (N − 1)2]2, let a
(t)
i,j represent the i, jth entry

of At. Then the maximum row sum matrix norm is defined by

‖At‖∞ = max
i∈[1,(N−1)2]

(N−1)2
∑

j=1

|a
(t)
i,j |.

In the theorem below we verify that I − A
4

is invertible.

Theorem 3.1 If A is the adjacency matrix corresponding to the centered Laplacian
with zero boundary conditions, then I − A

4
is invertible. Moreover,

(

I −
A

4

)−1

=
∞
∑

k=0

Ak

4k
.

Proof. Let i ∈ [1, (N − 1)2] and (wi, zi) be the lattice point corresponding to the
ith node. For any natural number t, the number of walks in an infinite lattice of length
t from node i is

4t = (1 + 1 + 1 + 1)t =

t
∑

r=0

t−r
∑

l=0

t−r−l
∑

u=0

(

t

r

)(

t− r

l

)(

t− r − l

u

)

,

and if t ≥ ⌈N
2
⌉, then at least one of these walks has left the bounded lattice [1, N −1]2,

since a walk in the direction (all the steps either left, right, up or down) of the closest
boundary will leave the bounded lattice [1, N − 1]2. Hence, if t ≥ ⌈N

2
⌉, then for all

i ∈ [1, N − 1]2,
(N−1)2
∑

j=1

|a
(t)
i,j | ≤ 4t − 1;

that is, the number of walks from node i to any other node in the bounded lattice in t
steps that does not leave the bounded lattice is at most 4t − 1. Therefore,

∥

∥

∥

∥

∥

A⌈N
2
⌉

4⌈
N
2
⌉

∥

∥

∥

∥

∥

∞

≤
4⌈

N
2
⌉ − 1

4⌈
N
2
⌉

which implies that

I −
A⌈N

2
⌉

4⌈
N
2
⌉

is invertible. Since

I −
A⌈N

2
⌉

4⌈
N
2
⌉

=

(

I −
A

4

)

(

I +
A

4
+
A2

42
+ · · · +

A⌈N
2
⌉−1

4⌈
N
2
⌉−1

)
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the invertibility of I − A⌈N
2

⌉

4⌈
N
2

⌉
guarantees the invertibility of I − A

4
as well as the invert-

ibility of I + A
4

+ A2

42 + · · ·+ A⌈N
2

⌉−1

4⌈
N
2

⌉−1
. Moreover, it is well known that if

(

I − A
4

)−1
exists,

then
(

I −
A

4

)−1

=
∞
∑

k=0

Ak

4k
.

Now that we have that I − A
4

is invertible and that

(

I −
A

4

)−1

=

∞
∑

k=0

Ak

4k
,

then, for each fixed (r, s) ∈ [1, N − 1]2, the Green’s function is given by

Gr,s =

(

∞
∑

k=0

Ak

4k

)

Dr,s

4
.

Note, that given that I − A
4

is invertible, then the Green’s function could be found by

Jacobi Iteration. That is, if we let X0 = Dr,s

4
, and for n ≥ 1, let

Xn =

(

A

4

)

Xn−1 +
Dr,s

4

then by iteration, we have

Xn =

(

n
∑

k=0

Ak

4k

)

(

Dr,s

4

)

and hence
Gr,s = lim

n→∞
Xn.

Example 3.1 Suppose N = 4. Then, the adjacency matrix A corresponding to the
centered Laplacian with zero boundary conditions (4 × 4 lattice with the boundary re-
moved which results in a 3 × 3 lattice) is

A =





























0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0
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and since

Gr,s =

(

∞
∑

k=0

Ak

4k

)

(

Dr,s

4

)

,

lower and upper bounds on
∑∞

k=0
Ak

4k will be crucial in existence of solutions argu-
ments as well as iterative arguments to find an approximation of the original partial
differential equation problem.

4 Alternative Inversion Technique

In the literature concerning the existence of positive solutions of various boundary value
problems, the most common procedure is to apply fixed point theorems to operators
analogous to the operator T above. Rather than taking that approach in this paper,
we will establish the existence of a fixed point for a related operator S.

Let P be a space of functions defined on [0, N ]2, and define

S : P → P

by

Sv(w, z) = f

(

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v(r, s)

)

,

for (w, z) ∈ [0, N ]2. We now show that if v ∈ P is a fixed point of S, then

u(w, z) :=
N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v(r, s)

is a fixed point of T (and hence is a solution of the partial difference equation). To see
this, assume v ∈ P is a fixed point of S. Then,

Tu(w, z) =
N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)f(u(r, s))

=

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)f

(

N−1
∑

τ=1

N−1
∑

ψ=1

g(r, s, τ, ψ)v(τ, ψ)

)

=
N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)S(v(r, s))

=

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v(r, s)

= u(w, z).
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Conversely, assume u ∈ P is a fixed point of T . Then,

v(w, z) := f(u(w, z))

is a fixed point of S. To see this, assume u ∈ P is a fixed point of T . Then,

Sv(w, z) = f

(

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v(r, s)

)

= f

(

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)f(u(r, s))

)

= f (Tu(w, z))

= f(u(w, z)) = v(w, z).

It follows easily that there is a one-to-one correspondence between fixed points of T
and the fixed points of S. By applying the definition, in an appropriate function space
context, it can be shown that, if f is continuous, then both S and T are completely
continuous.

5 Application

In this section we will state the definitions that are used in the remainder of the paper.

Definition 5.1 Let E be a real Banach space. A nonempty closed convex set P ⊂ E

is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;

(ii) x ∈ P,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering, ≤, in E given by

x ≤ y if and only if y − x ∈ P.

Definition 5.2 An operator is called completely continuous if it is continuous and
maps bounded sets into pre-compact sets.

Definition 5.3 Let P be a cone in a real Banach space E and D ⊆ E. Then the
operator A : D → E is said to be increasing on D provided x1, x2 ∈ D with x1 ≤ x2

implies Ax1 ≤ Ax2.

Definition 5.4 A cone P of a real Banach space E is said to be normal if there exists
a positive constant δ such that ‖x+ y‖ ≥ δ for all x, y ∈ P with ‖x‖ = ‖y‖ = 1.
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The following theorem is an elementary fact about normal cones. A proof can be
found in [9].

Theorem 5.1 Let P be a cone in a real Banach space E. The cone P is normal if
and only if the norm of the Banach space E is semi-monotone; that is, there exists a
constant N > 0 such that 0 ≤ x ≤ y implies that ‖x‖ ≤ N‖y‖.

The next two theorems concerning the convergence of Picard iterates are restate-
ments of theorems that can be found in [9].

Theorem 5.2 Let P be a normal cone in a real Banach space E and A : P → E be a
completely continuous operator. If u ∈ P with Au ≤ u and there exists a v ∈ P such
that v ≤ Anu for all n ∈ N and A is increasing on [v, u], then

{Anu}∞n=1

is a decreasing sequence bounded below by v ∈ P , and there exists a fixed point u∗ ∈ P

of A such that

u∗ = lim
n→∞

Anu

with

v ≤ u∗ ≤ Anu ≤ An−1u ≤ · · · ≤ Au.

Theorem 5.3 Let P be a normal cone in a real Banach space E and A : P → E be a
completely continuous operator. If u ∈ P with u ≤ Au and there exists a v ∈ P such
that v ≥ Anu for all n ∈ N and A is increasing on [u, v], then

{Anu}∞n=1

is an increasing sequence bounded above by v ∈ P , and there exists a fixed point u∗ ∈ P

of A such that

u∗ = lim
n→∞

Anu

with

v ≥ u∗ ≥ Anu ≥ An−1u ≥ · · · ≥ Au.

We now present our solutions result as a fixed point application.

Theorem 5.4 Suppose there exist positive real numbers m and M , with 0 < m < M ,
and an increasing continuous function f : [m,∞) → [0,∞) such that

f(x) ≤M for x ≤ max
(w,z)∈[1,N−1]2

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s) M
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and

m ≤ f(x) for min
(w,z)∈[1,N−1]2

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)m ≤ x.

Then,
vl = lim

n→∞
vl,n and vu = lim

n→∞
vu,n

are fixed points of S, where for all natural numbers n, vl,n+1 = S(vl,n) and vu,n+1 =
S(vu,n), with

vl,0(w, z) =

{

m, (w, z) ∈ [1, N−1]2,
f(0), otherwise,

and

vu,0(w, z) =

{

M, (w, z) ∈ [1, N−1]2,
f(0), otherwise.

Moreover, this implies that

u∗(w, z) =

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)vu(r, s)

and

u∗(w, z) =
N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)vl(r, s)

are fixed points of the operator T and are therefore solutions (maybe equal) of the
original partial difference equation.

Proof. Let
E := {u : u : [0, N ]2 → R}

and
P := {u : u ∈ E and u ≥ 0}.

Then P is a normal cone in the Banach space E with the maximum norm

‖u‖ = max
(w,z)∈[0,N ]2

u(w, z).

For any v ∈ P , with min(w,z)∈[1,N−1]2 v(w, z) ≥ m,

min
(w,z)∈[1,N−1]2

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)m ≤ min
(w,z)∈[1,N−1]2

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v(r, s),

and for any v ∈ P , with max(w,z)∈[1,N−1]2 v(w, z) ≤M,

max
(w,z)∈[1,N−1]2

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v(r, s) ≤ max
(w,z)∈[1,N−1]2

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)M.
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Therefore, for all (w, z) ∈ [1, N − 1]2, we have

vl,1(w, z) = S(vl,0(w, z)) ≥ m = vl,0(w, z)

and
vu,1(w, z) = S(vu,0(w, z)) ≤M = vu,0(w, z).

Note that, if (w, z) 6∈ [1, N − 1]2 (that is, (w, z) is on the boundary), then

vl,1(w, z) = f(0) = S(vl,0(w, z)) and vu,1(w, z) = f(0) = S(vu,0(w, z)).

Also, for any v1, v2 ∈ P with vl,0 ≤ v1 ≤ v2 ≤ vu,0, and for all (w, z) ∈ [0, N ]2, we have

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v1(r, s) ≤
N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v2(r, s).

Thus, since f is increasing,

f

(

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v1(r, s)

)

≤ f

(

N−1
∑

r=1

N−1
∑

s=1

g(w, z, r, s)v2(r, s)

)

,

and hence S(v1) ≤ S(v2). Therefore, by Theorems 5.2 and 5.3, we have that

vl = lim
n→∞

vl,n and vu = lim
n→∞

vu,n

are fixed points of S. Moreover, we have that

vl,0 ≤ vl,1 ≤ · · · ≤ vl,n ≤ · · · ≤ vl ≤ vu ≤ · · · ≤ vu,n ≤ · · · ≤ vu,1 ≤ vu,0.

Example 5.1 Consider the partial difference equation

∆wwu

(

w − 1

4
,
z

4

)

+ ∆zzu

(

w

4
,
z − 1

4

)

+ 102 arctan
(

u
(w

4
,
z

4

))

= 0,

when w, z ∈ {1, 2, 3}, with boundary conditions

u(0, t) = u(1, t) = u(t, 0) = u(t, 1) = 0,

for all t = k
4
, where k ∈ {0, 1, 2, 3, 4}, which is the result of applying the finite difference

method to the boundary value problem

uxx + uyy + 402 arctan(u) = 0

on the unit square with zero boundary conditions taking horizontal and vertical steps of
size one fourth. For all (w, z) ∈ [1, 3]2, there are at least two adjacent vertices; hence,

3
∑

r=1

3
∑

s=1

g(w, z, r, s)(40π) ≥

(

1

4

)(

1 +
2

4

)

(40π) = 15π,
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which can also be obtained by summing the entries in the ith row of

(

1
∑

k=0

Ak

4k

)

(

1

4

)

,

where i = w(4 − 1) + z, since as noted in Example 3.1,

Gr,s =

(

∞
∑

k=0

Ak

4k

)

(

Dr,s

4

)

.

One can find a solution by iteration to the partial difference equation that approximates
the solution of the partial differential equation applying Theorem 5.4, with M = 50π
and m = 40π, since for all (w, z) ∈ [1, 3]2,

40π < 100 arctan(15π) < 100 arctan

(

3
∑

r=1

3
∑

s=1

g(w, z, r, s)(40π)

)

and

100 arctan

(

3
∑

r=1

3
∑

s=1

g(w, z, r, s)(50π)

)

< 100
(π

2

)

= 50π.

Using Maple 12 we have obtained the following table:

n vl,n(2, 2) vu,n(2, 2)
1 156.3722891740 156.5137544776
2 156.5105038907 156.5111569644
3 156.5111409414 156.5111441617
4 156.5111440813 156.5111440975
5 156.5111440970 156.5111440971

thus
156.5111440970 ≤ vl(2, 2) ≤ vu(2, 2) ≤ 156.5111440971.
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