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Abstract
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1 Introduction

We begin with asking the following questions:

• When does a nonlinear delay difference equation

∆x(n) = −a(n)h(x(n)) +G(n, x(n− τ)), n ∈ Z+, τ ∈ Z+, (1)

have an integer valued periodic solution?

• When does a nonlinear delay differential equation

x′(t) = −a(t)h(x(t)) +G(t, x(t− r(t))), t ∈ R+, 0 < r(t) < t, (2)

have a non-zero positive valued periodic solution?
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Time scale theory has given mathematicians a general perspective of the under-
standing on how to combine and unify the theories of difference and differential equa-
tions under the umbrella of dynamic equations on time scales. Hence, it is natural to
ask the following question which is much more general than the ones above:

• When does a totally nonlinear delay dynamic equation

x∆(t) = −a(t)h(x(t)) +G(t, x(δ(t))), t ∈ T1, (3)

have a non-zero periodic solution which maps a periodic time scale T1 into another
time scale T2?

The expression totally nonlinear implies that the functions h and G of (3) are
nonlinear in x. In earlier time scale papers (e.g., [2], [3], [7]) concerning the existence
of periodic solutions of dynamic equations on a time scale T, sufficient conditions are
given only for the existence of real valued periodic solutions in C(T,R). By doing
so, existence is shown but the existence of positive periodic solutions is handled in a
totally different manner. On the other hand, most of the studies of difference equations
show the existence of real valued solutions x : Z → R. However, when we study some
problem from biology, physics or any other applicable science described by difference
equations, we should have integer valued solutions (see for instance [8], [9]). This, in
return, requires showing the existence of integer valued solutions. The advantage of
handling a problem on two time scales T1 and T2 instead of on a periodic time scale
T and R not only fills this gap but also helps us to understand positivity of solutions.
By this approach it is enough to set the problem on T1 = T2 = Z to obtain existence
of integer valued solutions of a difference equation and it is easy to obtain positivity
of solutions by taking the positive part of the time scale T2 as the range of functions.
It is worth mentioning that existence of periodic solutions of the equation (3) has not
been studied before even for the particular case when T1 is a periodic time scale and
T2 = R.

For clarity, we restate the following definitions, introductory examples, and lemmas
which can be found in [3] and [7].

Definition 1.1 A time scale T is said to be periodic if there exists P > 0 such that
t ± P ∈ T for all t ∈ T. If T 6= R, the smallest positive P is called the period of the
time scale.

Example 1.1 The following time scales are periodic.

i. T = Z has period P = 1;

ii. T = hZ has period P = h;

iii. T = R;
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iv. T =
⋃∞

i=−∞[(2i− 1)h, 2ih], h > 0 has period P = 2h;

v. T = {t = k − qm : k ∈ Z, m ∈ N0, q ∈ (0, 1)} has period P = 1.

Remark 1.1 All periodic time scales are unbounded above and below.

Definition 1.2 Let T 6= R be a periodic time scale with period P . We say that the
function f : T → R is periodic with period T if there exists a natural number n such
that T = nP , f(t ± T ) = f(t) for all t ∈ T and T is the smallest number such that
f(t ± T ) = f(t). If T = R, we say that f is periodic with period T > 0 if T is the
smallest positive number such that f(t± T ) = f(t) for all t ∈ T.

Let T1 be a periodic time scale and T2 a time scale that is closed under addition,
i.e., u+ v ∈ T2 for all u, v ∈ T2. In this paper, using the concept of large contraction,
we study existence of periodic solutions x : T1 → T2 of totally nonlinear dynamic
equations

x∆(t) = −a(t)h(x(t)) +G(t, x(δ(t))), t ∈ T1, (4)

where a : T1 → R, h : T2 → R, G : T1 × T2 → R and δ : T1 → T1 is a strictly
increasing delay function satisfying

δ(t) < t and δ ◦ σ = σ ◦ δ. (5)

In the following, we give some particular time scales with corresponding delay functions.

Time scale Delay function
T = R δ(t) = t− τ, τ ∈ R+

T = hZ = {hk : k ∈ Z} , h > 0 δ(t) = t− hτ, τ ∈ Z+

T = {t = k − qm : k ∈ Z, m ∈ N0, q ∈ (0, 1)} δ(t) = t− τ, τ ∈ Z+

Throughout the paper we suppose that the functions a, h, and G are continuous in
their respective domains and that for at least T > 0

a(t+ T ) = a(t), δ(t+ T ) = δ(t) + T, G(t, .) = G(t+ T, .), t ∈ T1. (6)

To avoid obtaining the zero solution we also suppose that G(t, 0) 6= a(t)h(0) for some
t ∈ T1.

In the analysis, we employ a fixed point theorem in which the notion of a large
contraction is required as one of the sufficient conditions. First, we give the following
definition which can be found in [6].

Definition 1.3 (Large Contraction) Let (M,d) be a metric space and B: M → M.
B is said to be a large contraction if φ, ϕ ∈ M, with φ 6= ϕ then d(Bφ,Bϕ) ≤ d(φ, ϕ)
and if for all ε > 0, there exists a δ < 1 such that

[φ, ϕ ∈ M, d(φ, ϕ) ≥ ε] ⇒ d(Bφ,Bϕ) ≤ δd(φ, ϕ).
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The next theorem, which constitutes a basis for our main result, is a reformulated
version of Krasosel’kii’s fixed point theorem.

Theorem 1.1 [6] Let M be a bounded convex nonempty subset of a Banach space
(B, ‖ · ‖). Suppose that A and B map M into B such that

i. x, y ∈ M, implies Ax+By ∈ M;

ii. A is compact and continuous;

iii. B is a large contraction mapping.

Then there exists z ∈ M with z = Az +Bz.
Define the forward jump operator σ by

σ(t) = inf {s > t : s ∈ T} ,

and the graininess function µ by µ(t) = σ(t) − t. A point t in a time scale is called
right scattered if σ(t) > t. Hereafter, we denote by xσ the composite function x ◦ σ.
Note that in a periodic time scale T with period P the inequality 0 ≤ µ(t) ≤ P holds
for all t ∈ T.

Remark 1.2 If T is a periodic time scale with period ω, then σ(t± nω) = σ(t)± nω.
Consequently, the graininess function µ satisfies µ(t ± nω) = σ(t± nω) − (t± nω) =
σ(t) − t = µ(t) and so, µ is a periodic function with period ω.

Definition 1.4 A function p : T → R is said to be regressive provided 1+µ(t)p(t) 6= 0
for all t ∈ T

κ, where

T
κ =

{

T\(ρ(sup T), sup T] if sup T <∞,
T, if sup T = ∞.

The set of all regressive rd-continuous functions p : T → R is denoted by R while the
set R+ is given by R+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

Let p ∈ R and µ(t) > 0 for all t ∈ T. The exponential function on T is defined by

ep(t, s) = exp

(
∫ t

s

1

µ(z)
Log(1 + µ(z)p(z)) ∆z

)

. (7)

The exponential function y(t) = ep(t, s) is the solution of the initial value problem
y∆ = p(t)y, y(s) = 1. Other properties of the exponential function are given by the
following.
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Lemma 1.1 [3, Lemma 2.7.] If p, q ∈ R, then

ep(t, t) = 1, ep(t, s) = 1/ep(s, t), ep(t, u)ep(u, s) = ep(t, s),

ep(σ(t), s)(1 + µ(t)p(t))ep(t, s), ep(s, σ(t)) =
ep(s, t)

1 + µ(t)p(t)
,

e∆p (., s) = pep(., s), e∆p (s, .) = (⊖p)ep(s, .),

ep⊕q = epeq, ep⊖q =
ep

eq

.

Theorem 1.2 [3, Theorem 2.1.] Let T be a time scale with period ω > 0. If p ∈ Crd(T)
is a periodic function with the period T = nω, then

∫ b+T

a+T

p(t)∆t =

∫ b

a

p(t)∆t, ep(b, a) = ep(b+ T, a + T ) if p ∈ R,

cp := 1 − ep(t+ T, t) is independent of t ∈ T whenever p ∈ R.

Definition 1.5 [5, Definition 1.62] A continuous function f : T → R is called pre-
differentiable with (region of differentiation) D, provided D ⊂ T

κ, T
κ\D is countable

and contains no right scattered elements of T, and f is differentiable at each t ∈ D.

We will resort to the next theorem at several occasions in our further work.

Theorem 1.3 [4, Theorem 1.67-Corollary 1.68] Let f and g be real-valued functions
defined on T, both pre-differentiable with D ⊂ T. Then

1.
∣

∣f∆(t)
∣

∣ ≤ g∆(t) for all t ∈ D

implies
|f(s) − f(r)| ≤ g(s) − g(r) for all r, s ∈ T, r ≤ s. (8)

2. If U is a compact interval with endpoints r, s ∈ T, then

|f(s) − f(r)| ≤ sup
t∈Uκ∩D

∣

∣f∆(t)
∣

∣ |s− r| . (9)

2 Existence of periodic solution

Suppose that T1 is a periodic time scale and that T2 is an arbitrary time scale that is
closed under addition. The space PT (T1,T2), given by

PT (T1,T2) = {ϕ ∈ C(T1,T2) : ϕ(t+ T ) = ϕ(t)},

is a Banach space when it is endowed with the supremum norm

‖x‖ = sup
t∈[0,T ]∩T1

|x(t)| = sup
t∈T1

|x(t)|.
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Determine α ∈ (0,∞) to be a fixed real number such that

Uα = [−α, α] ∩ T2 6= ∅. (10)

We ask for the condition (10) since we need to guarantee that the set Mα given by

Mα = {φ ∈ PT (T1,T2) : ‖φ‖ ≤ α} (11)

(which will be shown to include a solution of (4)) is nonempty. Note that if t ∈ T1 and
φ ∈ Mα, then φ(t) ∈ T2 and −α ≤ φ(t) ≤ α; i.e., φ(t) ∈ Uα. Moreover, Mα is a closed,
bounded, and convex subset of the Banach space PT (T1,T2).

Hereafter, we use the notation γ = −a and assume that γ ∈ R+.

Lemma 2.1 If x ∈ PT (T1,T2), then x is a solution of equation (4) if, and only if,

x (t) = kγ

∫ t+T

t

{a(s)H(x(s)) +G(s, x(δ(s)))} eγ (t+ T, σ (s)) ∆s, (12)

where kγ = (1 − eγ (t+ T, t))−1, γ(t) = −a(t) and

H(x(t)) = x(t) − h(x(t)). (13)

Proof. Let x ∈ PT (T1,T2) be a solution of (4). The equation (4) can be expressed as

x∆ (t) − γ(t)x(t) = a(t)H(x(t)) +G(t, x(δ(t))). (14)

Multiplying both sides of (14) by e⊖γ (σ (t) , t0) we get

{

x∆ (t) − γ(t)x (t)
}

e⊖γ (σ (t) , t0) = {a(t)H(x(t)) +G(t, x(δ(t)))} e⊖γ (σ (t) , t0) .

Since e⊖γ (t, t0)
∆ = −γ(t)e⊖γ (σ (t) , t0) we find

[x (t) e⊖γ (t, t0)]
∆ = {a(t)H(x(t)) +G(t, x(δ(t)))} e⊖γ (σ(t), t0) .

Taking the integral from t− T to t, we arrive at

x (t+ T ) e⊖γ (t+ T, t0) − x (t) e⊖γ (t, t0) =

∫ t+T

t

{a(s)H(x(s))

+G(s, x(δ(s)))} e⊖γ (σ(s), t0)∆s.

Using x (t+ T ) = x (t) for x ∈ PT (T1,T2), and

e⊖γ (t, t0)

e⊖γ (t+ T, t0)
= eγ (t+ T, t) ,

e⊖γ (σ (s) , t0)

e⊖γ (t+ T, t0)
= eγ (t+ T, σ (s)) ,

we obtain (12). Since each step in the above work is reversible, the proof is complete.
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Lemma 2.2 If p ∈ R+, then

0 < ep(t, s) ≤ exp

(
∫ t

s

p(r)∆r

)

(15)

for all t ∈ T.

Proof. If p ∈ R+, then

Log(1 + µ(t)p(t)) = log(1 + µ(t)p(t)) ∈ R.

It follows from (7) that ep(t, s) > 0. On the other hand, since we have exp(u) ≥ 1 + u,
and therefore, u ≥ log(1 + u) for all u ∈ ( − 1,∞), we find

ep(t, s) = exp

(
∫ t

s

1

µ(r)
log(1 + µ(r)p(r)) ∆r

)

≤ exp

(
∫ t

s

p(r) ∆r

)

.

This completes the proof.
We derive the next result from (15).

Corollary 2.1 If p ∈ R+ and p(t) < 0 for all t ∈ T, then for all s ∈ T with s ≤ t we
have

0 < ep(t, s) ≤ exp

(
∫ t

s

p(r)∆r

)

< 1. (16)

As a consequence of Lemma 2.2 we note that for γ ∈ R+, t ∈ [0, T ] ∩ T and
s ∈ [t, t+ T ) ∩ T,

eγ (t+ T, σ (s))

1 − eγ (t+ T, t)
≤

exp
(

∫ t+T

σ(s)
γ(r)∆r

)

|1 − eγ (t+ T, t)|

≤
exp

(

∫ 2T

0
|γ(r)|∆r

)

|1 − eγ (T, 0)|
:= K. (17)

Let the maps A and B be defined by

(Aϕ)(t) =

∫ t+T

t

G(s, ϕ(δ(s)))
eγ (t+ T, σ (s))

1− eγ (t+ T, t)
∆s, t ∈ T1, (18)

and

(Bψ)(t) =

∫ t+T

t

a(s)H(ψ(s))
eγ (t+ T, σ (s))

1 − eγ (t+ T, t)
∆s, t ∈ T1, (19)
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respectively. It is clear from (6) that the maps A and B are T periodic. To make sure
A : Mα → PT (T1,T2) and B : Mα → PT (T1,T2) we also need to ask for the following
condition:

Aφ(t), Bϕ(t) ∈ T2 for all t ∈ T1 and φ, ϕ ∈ Mα. (20)

In the proof of the next result, we use a time scale version of the Lebesgue dominated
convergence theorem. For a detailed study on ∆-Riemann and Lebesgue integrals on
time scales we refer the reader to [5].

Lemma 2.3 Suppose that there exists a positive valued function ξ : T1 → (0,∞) which
is continuous on [0, T ) ∩ T1 such that

|G(t, ϕ(δ(t)))| ≤ ξ(t) for all t ∈ T1 and ϕ ∈ Mα. (21)

Then the mapping A, defined by (18), is continuous on Mα.

Proof. To see that A is a continuous mapping, let {ϕi}i∈N be a sequence of functions
in Mα such that ϕi → ϕ as i → ∞. Since (21) holds, the continuity of G, and the
dominated convergence theorem yield

lim
i→∞

{

sup
t∈[0,T ]∩T1

∣

∣Aϕi(t) −Aϕ(t)
∣

∣

}

≤ K lim
i→∞

∫ T

0

∣

∣G(s, ϕi(δ(s))) −G(s, ϕ(δ(s)))
∣

∣∆s

≤ K

∫ T

0

lim
i→∞

∣

∣G(s, ϕj(δ(s))) −G(s, ϕ(δ(s)))
∣

∣∆s

= 0,

where K is defined as in (17). This shows continuity of the mapping A. The proof is
complete.

One may illustrate with the following example what kind of functions ξ, satisfying
(21), can be chosen to show the continuity of A.

Example 2.1 Assume that G(t, x) satisfies a Lipschitz condition in x; i.e., there is a
positive constant k such that

|G(t, z) −G(t, w)| ≤ k‖z − w‖, for z, w ∈ PT . (22)

Then for ϕ ∈ Mα,

|G(t, ϕ(δ(t)))| = |G(t, ϕ(δ(t))) −G(t, 0) +G(t, 0)|

≤ |G(t, ϕ(δ(t))) −G(t, 0)| + |G(t, 0)|

≤ kα + |G(t, 0)|.

In this case we may choose ξ as

ξ(t) = kα + |G(t, 0)| . (23)
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Another possible ξ satisfying (21) is the following

ξ(t) = |g(t)| + |p(t)| |y(t)|n , (24)

where n is a positive integer and g and p are continuous functions on T1, and y ∈ Mα.

Remark 2.1 Condition (22) is strong since it requires the function G to be globally
Lipschitz. A lesser condition is (21) in which ξ can be directly chosen as in (23) or
(24).

In next two results we assume that for all t ∈ T1 and ψ ∈ Mα,

J :=

∫ t+T

t

{|a(s)||H(ψ(s))|+ ξ(s)}
eγ (t+ T, σ (s))

1 − eγ (t+ T, t)
∆s ≤ α, (25)

where ξ is defined by (21).

Lemma 2.4 In addition to the assumptions of Lemma 2.3, suppose also that (20) and
(25) hold. Then A is continuous in ϕ ∈ Mα and maps Mα into a compact subset of
Mα.

Proof. Let ϕ ∈ Mα. Continuity of A in ϕ ∈ Mα follows from Lemma 2.3. Now,
by (18), (21), and (25) we have |(Aϕ)(t)| < α. Thus, from (20), Aϕ ∈ Mα. Let
ϕi ∈ Mα, i = 1, 2, .... Then from the above discussion we conclude that

||Aϕj|| ≤ α.

This shows A(Mα) is uniformly bounded. It is left to show that A(Mα) is equicontin-
uous. Since ξ is continuous and T -periodic, by (21) and differentiation of (18) with
respect to t ∈ T1 (for the differentiation rule see [1, Lemma 1]) we arrive at

∣

∣(Aϕj)
∆(t)

∣

∣ = |G(t, ϕj(δ(t))) − a(t)(Aϕi)(t)|

≤ ξ(t) + |a(t)| |(Aϕi)(t)|

≤ ξ(t) + ||a|| ||Aϕi|| ≤ L, for t ∈ [0, T ]
T1
,

where L is a positive constant. Thus, the estimation on |(Aϕi)
∆(t)| and (9) imply that

A(Mα) is equicontinuous. Then the Arzela–Ascoli theorem yields compactness of the
mapping A. The proof is complete.

T2 is closed under addition and so (20) implies

(Aφ+Bϕ)(t) ∈ T2 for all t ∈ T1 and φ, ϕ ∈ Mα. (26)

Theorem 2.1 Suppose all assumptions of Lemma 2.4. If B is a large contraction on
Mα, then (4) has a periodic solution in Mα.
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Proof. Let A and B be defined by (18) and (19), respectively. By Lemma 2.4, the
mapping A is compact and continuous. Then using (25), (26), and the periodicity of
A and B, we have

Aϕ+Bψ : Mα → Mα for ϕ, ψ ∈ Mα.

Hence an application of Theorem 1.1 implies the existence of a periodic solution in Mα.
This completes the proof.

The next result gives a relationship between the mappings H and B in the sense of
large contraction.

Lemma 2.5 Let a be a positive valued function. If H is a large contraction on Mα,
then so is the mapping B.

Proof. If H is a large contraction on Mα, then for x, y ∈ Mα, with x 6= y, we have
||Hx−Hy|| ≤ ||x− y||. Since γ = −a ∈ R+ and a is positive valued, γ(t) < 0 for all
t ∈ T. Thus, it follows from the equality

a(s)eγ (t+ T, σ (s)) = [eγ (t+ T, s)]∆s ,

where ∆s indicates the delta derivative with respect to s, and (16), that

|Bx(t) − By(t)| ≤

∫ t+T

t

eγ (t+ T, σ (s))

1 − eγ (t, t+ T )
a(s)|H(x)(s) −H(y)(s)|∆s

≤
||x− y||

1 − eγ (t+ T, t)

∫ t+T

t

a(s)eγ (t+ T, σ (s)) ∆s

= ||x− y||.

Taking the supremum over the set [0, T ]∩T1, we get that ‖Bx−By‖ ≤ ||x− y||. One
may also show in a similar way that

‖Bx− By‖ ≤ δ||x− y||

holds if we know the existence of a 0 < δ < 1 such that for all ε > 0

[x, y ∈ Mα, ||x− y|| ≥ ε] ⇒ ||Hx−Hy|| ≤ δ||x− y||.

The proof is complete.
From Theorem 2.1 and Lemma 2.5, we deduce the following result.

Corollary 2.2 In addition to the assumptions of Theorem 2.1, suppose also that a is
a positive valued function. If H is a large contraction on Mα, then (4) has a periodic
solution in Mα.
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3 Classification and applications

We derive the next result by making use of Theorem 1.3.

Lemma 3.1 Suppose g : T → R is pre-differentiable with D. Suppose U is a compact
interval with endpoints r, s ∈ T and g∆(t) ≥ 0 for all t ∈ Uκ ∩D. Then we have

g(s) − g(r) ≥ |s− r|

{

inf
t∈Uκ∩D

g∆(t)

}

. (27)

Proof. Let the function f : T → R be defined by

f(t) = (t− r)

{

inf
t∈Uκ∩D

g∆(t)

}

for t ∈ T.

Evidently, f is pre-differentiable with D and

∣

∣f∆(t)
∣

∣ = f∆(t) =

{

inf
t∈Uκ∩D

g∆(t)

}

≤ g∆(t).

From (8), we derive

g(s) − g(r) ≥ |f(s) − f(r)| = |s− r|

{

inf
t∈Uκ∩D

g∆(t)

}

as desired. The proof is complete.

Corollary 3.1 Suppose g : T → R is pre-differentiable with D. Suppose U is a com-
pact interval with endpoints r, s ∈ T. g∆(t) ≥ 0 for all t ∈ Uκ ∩D if and only if g is
non-decreasing on U .

Proof. If g∆(t) ≥ 0 for all t ∈ Uκ ∩D, then from (27), we have

g(s) − g(r) ≥ (s− r)

{

inf
t∈Uκ∩D

g∆(t)

}

≥ 0

for s, r ∈ U with s ≥ r. Conversely, let g be non-decreasing on U . For a t ∈ Uκ ∩D,
there are two possible cases:

µ(t) = 0 or µ(t) > 0.

If µ(t) = σ(t) − t > 0, then by [4, Theorem 1.16, (ii)] we have

g∆(t) =
g(σ(t)) − g(t)

µ(t)
> 0.
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If µ(t) = 0, then from [4, Theorem 1.16, (iii), Exercise 1.17] we find

g∆(t) = lim
s→t

g(t) − g(s)

s− t
≥ 0.

This completes the proof.
Corollary 2.2 shows that having a large contraction on a class of periodic functions

plays a substantial role in proving existence of periodic solutions. We deduce by the
next theorem that

H.1. h : T2 → R is continuous on Uα and differentiable on Uκ
α ,

H.2. h is strictly increasing on Uα,

H.3. sup
s∈Uκ

α

h∆(s) ≤ 1

are the conditions implying that the mapping H in (13) is a large contraction on the
set Mα.

Theorem 3.1 Let h : T2 → T2 be a function satisfying (H.1-H.3). Then the mapping
H is a large contraction on the set Mα.

Proof. It is obvious that the function h satisfies the assumptions of Lemma 3.1 on the
compact interval Uα = [−α, α] ∩ T2. Thus, (9) and (27) give

(s− r)

{

sup
t∈Uκ

α

h∆(t)

}

≥ h(s) − h(r) ≥ (s− r)

{

inf
t∈Uκ

α

h∆(t)

}

≥ 0 (28)

for s, r ∈ Uα with s ≥ r. Let φ, ϕ ∈ Mα with φ 6= ϕ. Then φ(t) 6= ϕ(t) for some t ∈ T.
Let us introduce the set

D(φ, ϕ) = {t ∈ T2 : φ(t) 6= ϕ(t)} .

Note that ϕ(t) ∈ Uα for all t ∈ T1 whenever ϕ ∈ Mα. Since h is strictly increasing

h(ϕ(t)) − h(φ(t))

ϕ(t) − φ(t)
=
h(φ(t)) − h(ϕ(t))

φ(t) − ϕ(t)
> 0 (29)

holds for all t ∈ D(φ, ϕ). By (H.3), we have

1 ≥ sup
t∈Uκ

α

h∆(t) ≥ inf
s∈Uκ

α

h∆(s) ≥ 0. (30)

Define the set Ut ⊂ Uα by

Ut =

{

[ϕ(t), φ(t)] ∩ Uα, if φ(t) > ϕ(t),
[φ(t), ϕ(t)] ∩ Uα, if φ(t) < ϕ(t),

for t ∈ D(φ, ϕ).
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Hence, for a fixed t0 ∈ D(φ, ϕ) we get by (28) and (29) that

sup
{

h∆(u) : u ∈ Uκ
t0

}

≥
h(φ(t0)) − h(ϕ(t0))

φ(t0) − ϕ(t0)
≥ inf

{

h∆(u) : u ∈ Uκ
t0

}

.

Since Ut ⊂ Uα for every t ∈ D(φ, ϕ), we find

sup
u∈Uκ

α

h∆(u) ≥ sup
{

h∆(u) : u ∈ Uκ
t0

}

≥ inf
{

h∆(u) : u ∈ Uκ
t0

}

≥ inf
u∈Uκ

α

h∆(u),

and therefore,

1 ≥ sup
u∈Uκ

α

h∆(u) ≥
h(ϕ(t)) − h(φ(t))

ϕ(t) − φ(t)
≥ inf

u∈Uκ
α

h∆(u) ≥ 0 (31)

for all t ∈ D(φ, ϕ). So, (31) yields

|Hφ(t) −Hϕ(t)| = |φ(t) − h(φ(t)) − ϕ(t) + h(ϕ(t))|

= |φ(t) − ϕ(t)|

∣

∣

∣

∣

1 −

(

h(φ(t)) − h(ϕ(t))

φ(t) − ϕ(t)

)
∣

∣

∣

∣

≤ |φ(t) − ϕ(t)|

(

1 − inf
u∈Uκ

α

h∆(u)

)

(32)

for all t ∈ D(φ, ϕ). Thus, (31) and (32) imply that H a large contraction in the supre-
mum norm.

To see this, choose a fixed ε ∈ (0, 1) and assume that φ and ϕ are two functions in
Mα satisfying

‖φ− ϕ‖ = sup
t∈[−a,α]

|φ(t) − ϕ(t)| ≥ ε.

If |φ(t) − ϕ(t)| ≤ ε
2

for some t ∈ D(φ, ϕ), then from (32)

|H(φ(t)) −H(ϕ(t))| ≤ |φ(t) − ϕ(t)| ≤
1

2
‖φ− ϕ‖ . (33)

Since h is continuous and strictly increasing, the function h
(

u+ ε
2

)

− h(u) attains its
minimum on the closed and bounded interval [−α, α]. Thus, if ε

2
< |φ(t) − ϕ(t)| for

some t ∈ D(φ, ϕ), then from (31) and (H.3) we conclude that

1 ≥
h(φ(t)) − h(ϕ(t))

φ(t) − ϕ(t)
> λ,

and therefore,

|Hφ(t) −Hϕ(t)| ≤ |φ(t) − ϕ(t)|

{

1 −

(

h(φ(t)) − h(ϕ(t))

φ(t) − ϕ(t)

)}

≤ (1 − λ) ‖φ(t) − ϕ(t)‖ , (34)
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where

λ :=
1

2α
min

{

h
(

u+
ε

2

)

− h(u) : u ∈ [−α, α]
}

> 0.

Consequently, it follows from (33) and (34) that

|Hφ(t) −Hϕ(t)| ≤ δ ‖φ− ϕ‖ ,

where

δ = max

{

1

2
, 1 − λ

}

< 1.

The proof is complete.
If T2 is a time scale such that the interval Uα = [−α, α] ∩ T2 contains negative

reals, then functions of type h1(t) = 1
2n(α+1)

t2n, n ∈ N, do not satisfy (H.2) since h1

is decreasing on U−
α = [−α, 0] ∩ T2. But functions of type h2(t) = 1

(2n+1)(α+1)
t2n+1,

n ∈ Z+, obey the conditions (H.1-H.3). To show that (H.3) is satisfied for h2 we need

to calculate [t2n]
∆
. For the particular time scale T = R, it is easy to see by the chain

rule,
{

f 2n+1(t)
}∆

= (2n+ 1)f 2n(t)f ′(t),

that

h∆
2 (t) =

(

t

α + 1

)2n

≤

(

α

α + 1

)2n

< 1 for t ∈ Uα.

But for an arbitrary time scale T, it is not that easy since the rule for {fn+1(t)}
∆

is
changed to

{

f 2n+1(t)
}∆

=

{

2n
∑

k=0

f(t)kf(σ(t))2n−k

}

f∆(t). (35)

(see [4, Exercise 1.23]). Throughout the discussion below we shall always assume that
f : T → R is a nondecreasing differentiable function. If f(t)f(σ(t)) = 0 for some t ∈ T,
then (35) implies

[

f(t)2n+1
]∆

=
{

f(t)2n + f(σ(t))2n
}

f∆(t),

and therefore,

(2n+ 1)f(t)2nf∆(t) ≤
[

f 2n+1(t)
]∆

≤ (2n+ 1)f(σ(t))2nf∆(t), n ∈ Z+. (36)

On the other hand, If f(t)f(σ(t)) 6= 0, there are three possibilities: (i) 0 < f(t) ≤
f(σ(t)), (ii) f(t) ≤ f(σ(t)) < 0, and (iii) f(t) < 0 < f(σ(t)). Let us separate these
cases by defining the sets

S+ = {t ∈ D : 0 < f(t) ≤ f(σ(t))} ,

S− = {t ∈ D : f(t) ≤ f(σ(t)) < 0} ,

S0 = {t ∈ D : f(t) < 0 < f(σ(t))} .

The next lemma gives the relationship between [f 2n+1(t)]
∆

and (2n+1)f 2n(t)f∆(t).
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Lemma 3.2 Let f : T → R be a differentiable function in D. If f is a non decreasing
function, then

(2n+ 1)f 2n(t)f∆(t) ≤
[

f 2n+1(t)
]∆

≤ (2n+ 1)f 2n(σ(t))f∆(t) (37)

for t ∈ S+,

(2n+ 1)f 2n(σ(t))f∆(t) ≤
[

f 2n+1(t)
]∆

≤ (2n+ 1)f 2n(t)f∆(t) (38)

for t ∈ S−, and

f(t)2nf∆(t) <
{

f 2n+1(t)
}∆

< (n+ 1)f(σ(t))2nf∆(t) (39)

for t ∈ S0, where n = 1, 2, ....

Proof. We use the formula (35). (37) follows from (35) and the fact that

f 2n(t) ≤ f(t)kf(σ(t))2n−k ≤ f 2n(σ(t)) for t ∈ S+.

On the other hand, for all t ∈ S− we have

f 2n(t) = f(t)2s+1f(t)2n−2s−1 ≥ f(t)2s+1f(σ(t))2n−2s−1

and
f 2n(t) = f(t)2sf(t)2n−2s ≥ f(t)2sf(σ(t))2n−2s

which imply

{

f 2n+1(t)
}∆

=

{

2n
∑

k=0

f(t)kf(σ(t))2n−k

}

f∆(t)

=

{

n
∑

s=0

f(t)2sf(σ(t))2n−2s +

n−1
∑

s=0

f(t)2s+1f(σ(t))2n−2s−1

}

f∆(t)

≤ (2n+ 1)f 2n(t)f∆(t).

Similarly, for t ∈ S−

f 2n(σ(t)) = f(σ(t))2s+1f(σ(t))2n−2s−1 ≤ f(t)2s+1f(σ(t))2n−2s−1

and
f 2n(σ(t)) = f(σ(t))2sf(σ(t))2n−2s ≤ f(t)2sf(σ(t))2n−2s.

So, we get that
{

f 2n+1(t)
}∆

≥ (2n+ 1)f 2n(σ(t))f∆(t)

for all t ∈ S−. If t ∈ S0, we have

−f(σ(t)) < f(t) < 0 < f(σ(t)),
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and hence,

−1 <
f(t)

f(σ(t))
< 0. (40)

Since

{

f 2n+1(t)
}∆

=

{

n
∑

s=0

f(t)2sf(σ(t))2n−2s +
f(t)

f(σ(t))

n−1
∑

s=0

f(t)2sf 2n−2s(σ(t))

}

f∆(t)

=

{

n
∑

s=0

f(t)2sf(σ(t))2n−2s

[

1 +
f(t)

f(σ(t))

]

−
f(t)

f(σ(t))
f(t)2n

}

f∆(t)

and

(n+ 1)f(t)2n <
n

∑

s=0

f(t)2sf(σ(t))2n−2s < (n + 1)f(σ(t))2n,

we obtain
f(t)2nf∆(t) <

{

f 2n+1(t)
}∆

< (n + 1)f(σ(t))2nf∆(t).

The proof is complete.
From (36)-(39) we derive the following result.

Corollary 3.2 Let U = [a, b]∩T be an arbitrary interval. Suppose all assumptions of
Lemma 3.2. If

sup
t∈Uκ

∣

∣f∆(t)
∣

∣ ≤ 1 (41)

holds and there exists a positive integer n ∈ Z+ such that

sup
t∈U

|f(t)| ≤ (2n + 1)−1/2n, (42)

then we have
0 ≤ sup

t∈Uκ

{

[

f 2n+1(t)
]∆

}

≤ 1. (43)

Proof. If f is nondecreasing, then so is f 2n+1. Thus, [f 2n+1(t)]
∆
≥ 0 for all t ∈ T

κ.
From (36)-(39) we find

0 ≤
[

f 2n+1(t)
]∆

≤ (2n+ 1)ζ(t)f∆(t), (44)

where

ζ(t) =

{

f 2n(σ(t)) for t ∈ S+ ∪ S0

f 2n(t) for t ∈ S−
.

Since σ(t) ∈ U for all t ∈ Uκ, taking the supremum over the set Uκ we get by (44) that

0 ≤ sup
t∈Uκ

[

f 2n+1(t)
]∆

≤
2n+ 1

2n+ 1
= 1.

The proof is complete.

EJQTDE Spec. Ed. I, 2009 No. 1



Totally Nonlinear Delay Dynamic Equations 17

Corollary 3.3 Let f : T2 → T2 be a strictly increasing function satisfying (41) and
(42). If the function h : T2 → T2 be defined by

h(u) = f 2n+1(u) for n ∈ Z+, (45)

then the mapping Hx = x− h ◦ x defines a large contraction on the set

Mβ(n) = {φ ∈ P (T1,T2) : ‖φ‖ ≤ β(n)} , (46)

where
β(n) := (2n+ 1)−1/2n. (47)

Proof. We proceed by Theorem 3.1. It is obvious that (H.1) and (H.2) hold whenever
the function h is defined as in (45). Since f satisfies all assumptions of Corollary 3.2,
we get by (43) that

sup
u∈Uκ

α

∣

∣h∆(u)
∣

∣ ≤ 1.

From Theorem 3.1 the proof is completed.
In [6], it was shown by an example that the function Hx(t) = x(t) − x3(t) defines

a large contraction on the set

M1/
√

3=

{

x ∈ P (R+,R) : sup
t∈R+

|x(t)| ≤ 3−1/2

}

.

Also, in [2], the authors constructed a large contraction Hx(t) = x(t) − x5(t) on the
set

M1/ 4
√

5=

{

x ∈ P (R,R) : sup
t∈R+

|x(t)| ≤ 5−1/4

}

.

Evidently, these results can be derived from Corollary 3.3 by choosing the time scales
T1 = T2 = R, and taking n = 1 and n = 3 in (47), respectively.

Theorem 3.2 Let T1 be a periodic time scale. For a fixed n ∈ Z+, set

G(u, x(δ(u))) = b(u)x2n+1(δ(t)) + c(u)

and
h(u) = u2n+1 for u ∈ T2,

and define the mappings A and B as in (18) and (19), respectively. Suppose that the
time scale T2 is closed under addition and that (20) and Uβ(n) = [−β(n), β(n)] ∩ T2 6=
∅, n ∈ Z+, hold. Define the set Mβ(n) and the function h by (46) and (45), respectively.
If a is a positive valued T periodic function and c 6= 0 ∈ PT (T1,R), then

2nβ2n+1(n) +
1

1 − eγ (t+ T, t)

∫ t+T

t

ξ(s)eγ (t+ T, σ (s))∆s ≤ β(n), (48)

implies the existence of non-zero periodic solution x ∈ Mβ(n) of the equation

x∆(t) = −a(t)x2n+1(t) + b(t)x2n+1(δ(t)) + c(t).
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Proof. First, it follows from Corollary 3.3 that the mapping H given by (13) is a large
contraction on Mβ(n). Also for x ∈ Mβ(n), we have

|x(t)|2n+1 ≤ β2n+1(n),

and therefore,
G(u, x(δ(u))) ≤ β2n+1(n)|b(u)| + |c(u)| := ξ(t); (49)

i.e., (21) holds. Using standard techniques of calculus one may verify that

|H(x(t))| =
∣

∣x(t) − x2n+1(t)
∣

∣

≤ 2n(2n+ 1)−(2n+1)/2n = 2nβ2n+1(n).

Since a(t) > 0 and for all x ∈ Mα, we get by (48) that

J ≤
2nβ2n+1(n)

1 − eγ (t+ T, t)

∫ t+T

t

a(s)eγ (t+ T, σ (s)) ∆s

+
1

1 − eγ (t+ T, t)

∫ t+T

t

ξ(s)eγ (t+ T, σ (s))∆s

= 2nβ2n+1(n) +
1

1 − eγ (t+ T, t)

∫ t+T

t

ξ(s)eγ (t+ T, σ (s))∆s ≤ β(n).

Thus, (25) is satisfied. The proof is completed by making use of Corollary 2.2.
Note that in [2] it has been shown that

4(5−5/4) + η

∫ t+T

t

(

5−5/4|b(u)| + |c(u)|
)

e−
R

t+T

u
a(s)dsdu ≤ 5−1/4 (50)

is the condition guaranteeing that the totally nonlinear delay differential equation

x′(t) = −a(t)x(t)5 + b(t)x(t− r(t))5 + c(t) (51)

has a T -periodic solution in M1/ 4
√

5, where a(t) > 0 for all t ∈ R,

η :=
∣

∣

∣
(1 − e−

R

T

0
a(s)ds)−1

∣

∣

∣
,

and c 6= 0 ∈ PT (R,R). Observe that Theorem 3.2 not only contains this result but also
offers a sufficient condition for positivity of existing periodic solution.

Remark 3.1 Despite the fact that Theorem 3.2 can be used to obtain existence of pos-
itive valued non-zero periodic solutions (to see this choose T2 as a time scale consisting
of positive real numbers) of a difference equation of type (1), it cannot be employed to
conclude the existence of integer valued solutions of the difference equation (1) since
Uβ(n) = ∅ whenever T2 = Z. To get over this difficulty we choose α to be a sufficiently
large positive real number such that Uα = [−α, α] ∩ T2 6= ∅ and define the set Mα as
in (11).
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Similar to Corollary 3.2 and Corollary 3.3 one may prove the following results:

Corollary 3.4 In addition to all assumptions of Lemma 3.2 suppose also that

sup
t∈Uκ

∣

∣f∆(t)
∣

∣ ≤ 1

for U = [a, b] ∩ T. If there exists a constant β > 0 such that sup
t∈Uκ

|f(t)| ≤ β, then

0 ≤ sup
t∈Uκ

{

[

f 2n+1(t)

(2n+ 1)(β + 1)2n

]∆
}

≤ 1, n = 1, 2, ....

Example 3.1 Let h : T2 → R be defined by

h(s) =
s2n+1

(2n+ 1)(α + 1)2n
, for s ∈ T2, n = 1, 2, .... (52)

Then the mapping H defined by (13) defines a large contraction on the set Mα.

By choosing T2 = Z in the next result one obtains sufficient conditions for the
existence of integer valued periodic solution of the nonlinear difference equation (1).

Corollary 3.5 Let T1 be a periodic time scale. For a fixed n ∈ Z+ define the function
h by (52) and set

G(t, x(δ(t))) =
b(t)

(2n+ 1)(α + 1)2n
x2n+1(δ(t)) + c(t).

Let the mappings A and B be given by (18) and (19), respectively. Suppose that the
time scale T2 is closed under addition and that the condition (20) holds. If a is positive
valued T periodic function and c 6= 0 ∈ PT (T1,R), then

(α + 1)
1

2n

(

1 −
1

2n+ 1

)

+
1

1 − eγ (t+ T, t)

∫ t+T

t

ξ(s)eγ (t+ T, σ (s))∆s ≤ α,

implies the existence of a non-zero periodic solution x ∈ Mα of the equations

x∆(t) = −
a(t)

(2n+ 1)(α + 1)2n
x2n+1(t) +

b(t)

(2n+ 1)(α+ 1)2n
x2n+1(δ(t)) + c(t).

It is worth mentioning that Theorem 3.5 is given for arbitrary time scales T1 and T2,
where T1 is assumed to be periodic and T2 is a time scale, closed under addition, such
that (20) holds. One may apply this theorem to the particular time scales including
the following cases:

1. T1 = T2 = R;
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2. T1 = T2 = Z;

3. T1 = Z and T2 = R (or hZ);

4. T1 = {t = k − qm : k ∈ Z, m ∈ N0} and T2 = R (or Z).

Note that the first case has been handled by [2] in which some sufficient condi-
tions are offered for the existence of periodic solutions of totally nonlinear differential
equations

x′(t) = −a(t)h(x(t)) +G(t, x(t− r(t))), t ∈ R.

However, the acquired results in this paper are not known for the last three particular
cases.
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