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Abstract. This paper is concerned with semilinear differential equations with

nonlocal conditions in Banach spaces. Using the tools involving the measure of

noncompactness and fixed point theory, existence of mild solutions is obtained

without the assumption of compactness or equicontinuity on the associated linear

semigroup.

1. Introduction and preliminaries

In this paper we discuss the semilinear differential equation with

nonlocal condition

(1.1)
d

dt
x(t) = Ax(t) + f(t, x(t)), t ∈ (0, b],

(1.2) x(0) = x0 + g(x)

where A is the infinitesimal generator of a strongly continuous semi-

group {T (t) : t ≥ 0} of linear operators defined on a Banach space X,

f : [0, b] × X → X and g : C([0, b]; X) → X are appropriate given

functions.

The theory of differential equations with nonlocal conditions was

initiated by Byszewski and it has been extensively studied in the lit-

erature. We infer to some of the papers below. Byszewski ([3, 4]),

Byszewski and Lakshmikantham ([6]) give the existence and unique-

ness of mild solutions and classical solutions when g and f satisfy
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Lipschitz-type conditions with the special type of g. In [5], Byszewski

and Akca give the existence of semilinear functional differential equa-

tion when T (t) is compact, and g is convex and compact on a given ball

of C([0, b]; X). Dong and Li [8, 9] discussed viable domain for semi-

linear functional differential equation when T (t) is compact. Ntouyas

and Tsamatos [14] studied the existence for semilinear evolution equa-

tions with nonlocal conditions. Xue [16] proved the existence results

for nonlinear nonlocal Cauchy problem. In [17], Xue discussed the

semilinear case when f and g are compact and when g is Lipschitz and

T (t) is compact. Fan et al. [7], Guedda[10] and Xue [18] studied some

semilinear equations under the conditions in respect of the measure of

noncompactness.

In this paper, by using the tools involving the measure of noncom-

pactness and fixed point theory, we obtain existence of mild solution

of semilinear differential equation with nonlocal conditions (1.1)-(1.2),

and the compactness of solution set, without the assumption of com-

pactness or equicontinuity on the associated semigroup. Our results

extend and improve the correspondence results in [3, 4, 5, 6, 17]. We

indicate that the method we used in this paper is different from that

in [7] or [10].

Throughout this paper X will represent a Banach space with norm ‖·

‖. As usual, C([a, b]; X) denotes the Banach space of all continuous X-

valued functions defined on [a, b] with norm ‖x‖[a,b] = sups∈[a,b] ‖x(s)‖

for x ∈ C([a, b]; X).

Let A : D(A) ⊂ X → X be the infinitesimal generator of a strongly

continuous semigroup {T (t) : t ≥ 0} of linear operators on X. We

always assume that ‖T (t)‖ ≤ M (M ≥ 1) for every t ∈ [0, b].

For more details of the semigroup theory we refer the readers to [15].

2. Measure of noncompactness

In this section we recall the concept of the measure of noncompact-

ness in Banach spaces.
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Definition 2.1. Let E+ be a positive cone of an ordered Banach space

(E,≤). A function Φ on the collection of all bounded subsets of a Ba-

nach space X with values in E+ is called a measure of noncompactness

if Φ(coB) = Φ(B) for all bounded subset B ⊂ X, where coB stands

for the closed convex hull of B.

A measure of noncompactness Φ is said to be:

(i) monotone if for all bounded subset B1, B2 of X, B1 ⊂ B2 implies

Φ(B1) ≤ Φ(B2);

(ii) nonsingular if Φ({a} ∪ B) = Φ(B) for every a ∈ X and every

nonempty subset B ⊂ X;

(iii) regular if Φ(B) = 0 if and only if B is relatively compact in X.

One of the most important examples of measure of noncompactness

is the Hausdorff ′s measure of noncompactness βY , which is defined

by

βY (B) = inf{r > 0; B can be covered with a finite

number of balls of radii smaller then r}

for bounded set B in a Banach space Y .

The following properties of Hausdorff’s measure of noncompactness

are well known:

Lemma 2.2. ([2]): Let Y be a real Banach space and B, C ⊆ Y be

bounded,the following properties are satisfied :

(1). B is pre-compact if and only if βY (B) = 0 ;

(2). βY (B) = βY (B) = βY (convB) where B and convB mean the

closure and convex hull of B respectively;

(3). βY (B) ≤ βY (C) when B ⊆ C;

(4). βY (B +C) ≤ βY (B)+βY (C) where B +C = {x+ y; x ∈ B, y ∈

C};

(5). βY (B ∪ C) ≤ max{βY (B), βY (C)};

(6). βY (λB) = |λ|βY (B) for any λ ∈ R;

(7). If the map Q : D(Q) ⊆ Y → Z is Lipschitz continuous

with constant k then βZ(QB) ≤ kβY (B) for any bounded subset B ⊆

D(Q),where Z be a Banach space;
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(8). βY (B) = inf{dY (B, C); C ⊆ Y be precompact} = inf{dY (B, C); C ⊆

Y be finite valued}, where dY (B, C) means the nonsymmetric (or

symmetric) Hausdorff distance between B and C in Y .

(9). If {Wn}
+∞
n=1 is a decreasing sequence of bounded closed nonempty

subsets of Y and limn→+∞ βY (Wn) = 0, then
⋂+∞

n=1 Wn is nonempty and

compact in Y .

The map Q : W ⊆ Y → Y is said to be a βY − contraction if there

exists a positive constant k < 1 such that βY (Q(B)) ≤ kβY (B) for any

bounded closed subset B ⊆ W , where Y is a Banach space.

Lemma 2.3. ([12]): Let W ⊂ Y is bounded closed and convex and

Q : W → W is a continuous βY −contraction. If the fixed point set of

Q is bounded, then it is compact.

In this paper we denote by β the Hausdorff ′s measure of noncom-

pactness of X and denote by βc the Hausdorff ′s measure of noncom-

pactness of C([a, b]; X). To discuss the existence we need the following

lemmas in this paper.

Lemma 2.4. ([2]): If W ⊆ C([a, b]; X) is bounded, then

β(W (t)) ≤ βc(W )

for all t ∈ [a, b], where W (t) = {u(t); u ∈ W} ⊆ X.Furthermore if W

is equicontinuous on [a,b], then β(W (t)) is continuous on [a, b] and

βc(W ) = sup{β(W (t)), t ∈ [a, b]}.

Lemma 2.5. ([11, 12]): If {un}
∞
n=1 ⊂ L1(a, b; X) is uniformly inte-

grable, then β({un(t)}
∞
n=1) is measurable and

(2.1) β({

∫ t

a

un(s)ds}∞n=1) ≤ 2

∫ t

a

β({un(s)}
∞
n=1)ds.

Now we consider another measure of noncompactness in the Banach

space C([a, b]; X). For a bounded subset B ∈ C([a, b]; X), we define

χ1(B) = sup
t∈[a,b]

β(B(t)),
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then χ1 is well defined from the properties of Hausdorff’s measure of

noncompactness. We also define

χ2(B) = sup
t∈[a,b]

modC(B(t)),

where modC(B(t)) is the modulus of equicontinuity of the set of func-

tions B at point t given by the formula

modC(B(t)) = lim sup
δ→0

{‖x(t1) − x(t2)‖ : t1, t2 ∈ (t − δ, t + δ), x ∈ B}.

Define

χ(B) = χ1(B) + χ2(B).

Then χ is a monotone and nonsingular measure of noncompactness in

the space C([a, b]; X). Further, χ is also regular by the famous Ascoli-

Arzela’s theorem. Similar definitions with χ1, χ2 and χ can be found

in [2].

The following property of regular measure of noncompactness is use-

ful for our results

Lemma 2.6. Suppose that Φ is a regular measure of noncompactness

in a Banach space Y , and {Bn} is a sequence of nonempty, closed

and bounded subsets in Y satisfying Bn+1 ⊂ Bn for n = 1, 2, · · · . If

limn→∞ Φ(Bn) = 0, B = ∩n≥1Bn 6= ∅ and B is a compact subset in Y .

3. The existence of mild solution

In order to define the concept of mild solution for (1.1)-(1.2), by

comparison with the abstract Cauchy initial value problem

d

dt
x(t) = Ax(t) + f(t), x(0) = x ∈ X,

whose properties are well known [15], we associate (1.1)-(1.2) to the

integral equation

(3.1) x(t) = T (t)(x0 + g(x)) +

∫ t

0

T (t − s)f(s, x(s))ds, t ∈ [0, b].

Definition 3.1. A continuous function x : [0, b] → X is said to be a

mild solution to the nonlocal problem (1.1)-(1.2) if x(0) = x0 + g(x)

and (3.1) is satisfied.
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In this section by using the usual techniques of the measure of non-

compactnes and its applications in differential equations in Banach

spaces (see, e.g. [2], [13]) we give some existence results for the nonlo-

cal problem (1.1)-(1.2). Here we list the following hypotheses.

(Hf):(1) f : [0, b] × X → X satisfies the Carathéodory-type condi-

tion, i.e.,f(·, x) : [0, b] → X is measurable for all x ∈ X and f(t, ·) :

X → X is continuous for a.e. t ∈ [0, b];

(2): There exists a function h : [0, b] × R
+ → R

+ such that h(·, s) ∈

L(0, b; R+) for every s ≥ 0, h(t, ·) is continuous and increasing for a.e.

t ∈ [0, b], and ‖f(t, x)‖ ≤ h(t, ‖x‖) for a.e. t ∈ [0, b] and all x ∈ X, and

for each positive constant K, the following scalar equation

(3.2) m(t) = MK + M

∫ t

0

h(s, m(s))ds, t ∈ [0, b]

has at least one solution;

(3):There exists η ∈ L(0, b; R+) such that:

(3.3) β(T (s)f(t, D)) ≤ η(t)β(D)

for a.e. t, s ∈ [0, b] and any bounded subset D ⊂ X.

(Hg): (1) g : C([0, b]; X) → X is continuous and compact;

(2) There exists a constant N > 0 such that

(3.4) ‖g(x)‖ ≤ N

for all x ∈ X.

Remark 3.2. If the semigroup {T (t) : t ≥ 0} or the function f is

compact (see, e.g.,[5, 17]), or f satisfies Lipschitz-type condition (see,

e.g., [3, 4]), then (Hf)(3) is automatically satisfied.

Now, we give an existence result under the above hypotheses.

Theorem 3.3. Assume the hypotheses (Hf) and (Hg) are satisfied.

Then for each x0 ∈ X, the solution set of the problem (1.1)-(1.2) is a

nonempty compact subset of the space C([0, b]; X).

Proof. Let m : [0, b] → R
+ be a solution of the scalar equation:

(3.5) m(t) = M(‖x0‖ + N) + M

∫ t

0

h(s, m(s))ds, t ∈ [0, b].
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Define a map Γ : C([0, b]; X) → C([0, b]; X) by

Γx(t) = T (t)(x0 + g(x)) +

∫ t

0

T (t − s)f(s, x(s))ds, t ∈ [0, b]

for all x ∈ C([0, b] : X). It is easily seen that x ∈ C([0, b]; X) is a mild

solution of problem (1.1)-(1.2) if and only if x is a fixed point of Γ. We

shall show that Γ has a fixed point by Schauder’s fixed point theorem.

To do this, we first see that Γ is continuous by the usual technique

involving (Hf), (Hg) and Lebesgue’s dominated convergence theorem.

We denote by W0 = {x ∈ C([0, b]; X) : ‖x(t)‖ ≤ m(t), ∀t ∈ [0, b]}.

Then W0 ⊂ C([0, b]; X) is bounded and convex.

Define W1 = convΓW0, where conv means the closure of the convex

hull in C([0, b]; X). Then it is easily seen that W1 ⊂ C([0, b]; X) is

closed and convex. Furthermore, for every x ∈ C([0, b]; X), we have

‖Γx(t)‖ ≤ M(‖x0‖ + N) + M

∫ t

0

h(s, m(s))ds = m(t)

for t ∈ [0, b]. Hence Γx ∈ W0 for all x ∈ W0. It then follows that W1 is

bounded and W1 ⊂ W0.

Define Wn+1 = convΓWn for n = 1, 2, · · · . From the above proof

we have that {Wn}
∞
n=1 is an decreasing sequence of bounded closed,

convex and nonempty subsets in C([0, b]; X).

Now, for every n ≥ 1 and t ∈ (0, b], Wn(t) and ΓWn(t) are bounded

subsets of X. Hence for any ε > 0, there is a sequence {xk}
∞
k=1 ⊂ Wn

such that (see, e.g., [1], pp.125)

β(ΓWn(t)) ≤ 2β({Γxk(t)}
∞
k=1) + ε

≤ 2β(T (t)(x0 + g({xk}
∞
k=1)

+2β(

∫ t

0

T (t − s)f(s, {xk(s)}
∞
k=1)ds) + ε.
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From the compactness of g, Lemma 2.2, Lemma 2.5 and (Hf)(3), we

have

β(Wn+1(t)) = β(ΓWn(t))

≤ 2β(

∫ t

0

T (t − s)f(s, {xk(s)}
∞
k=1)ds) + ε

≤ 2

∫ t

0

β(T (t − s)f(s, {xk(s)}
∞
k=1))ds + ε

≤ 2

∫ t

0

η(s)β({xk(s)}
∞
k=1)ds + ε

≤ 2

∫ t

0

η(s)β(Wn(s))ds + ε.

Since ε > 0 is arbitrary, it follows from the above inequality that

(3.6) β(Wn+1(t)) ≤ 2

∫ t

0

η(s)β(Wn(s))ds

for all t ∈ (0, b]. Define functions fn : [0, b] → [0, +∞) by

fn(t) = β(Wn(t)),

then we obtain from (3.6) that

fn+1(t) ≤ 2

∫ t

0

η(s)fn(s)ds(3.7)

for all t ∈ [0, b].

Notice that χ1(Wn) = sup0≤t≤b β(Wn(t)) = sup0≤t≤b fn(t). Denote

εn = χ1(Wn), then β(Wn(t)) ≤ εn for all t ∈ [0, b]. Now we consider

χ2(Wn). We claim that there is a constant K1 such that χ2(Wn) ≤

K1εn. To do this, it is sufficient to prove that for every t0 ∈ [0, b],

modC(Wn(t0)) ≤ K1εn.

Take ε > 0 arbitrary. First note that, since f(s, (Wn)(s)) is uniformly

integrable on [0, b], there is δ1 > 0 such that

(3.8) ‖

∫ τ2

τ1

T (t − s)f(s, x(s))ds‖ < ε

for 0 < τ2 − τ1 < 2δ1, 0 ≤ s ≤ t ≤ b and every x ∈ Wn. For every

y ∈ Γ(Wn−1), there is an x ∈ Wn−1 such that for all t ∈ [0, b],

y(t) = T (t)(x0 + g(x)) +

∫ t

0

T (t − s)f(s, x(s))ds.
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If 0 < t′ < t then we have

y(t) = T (t − t′)T (t′)(x0 + g(x)) + T (t − t′)

∫ t′

0

T (t′ − s)f(s, x(s))ds

+

∫ t

t′
T (t − s)f(s, x(s))ds

= T (t − t′)y(t′) +

∫ t

t′
T (t − s)f(s, x(s))ds.

It follows that for any t1, t2 ∈ (t0 − δ1, t0 + δ1), (we may assume that

t0 − δ1 > 0),

(3.9) y(t1) = T (t1 − t0 + δ1)y(t0 − δ1) +

∫ t1

t0−δ1

T (t1 − s)f(s, x(s))ds,

(3.10) y(t2) = T (t2 − t0 + δ1)y(t0 − δ1) +

∫ t2

t0−δ1

T (t2 − s)f(s, x(s))ds.

Now, on the basis of the definition of Hausdorff’s measure of non-

compactness and the fact that β(Wn(t0 − δ1)) ≤ εn, we may find

y1, y2, · · · , yk, such that

Wn(t0 − δ1) ⊂
k⋃

i=1

B(yi(t0 − δ1), 2εn),

where B(u, r) denote the ball centered at u and radius r. Hence there

is an i, 1 ≤ i ≤ k such that

(3.11) ‖y(t0 − δ1) − yi(t0 − δ1)‖ < 2εn.

On the other hand, on account of the strong continuity of T (·), there

is a δ > 0 (we may choose δ < δ1) such that

(3.12) ‖T (τ)yi(t0 − δ1) − yi(t0 − δ1)‖ < ε

for all τ ∈ (0, δ) and i = 1, 2, · · · , k. From (3.8)-(3.12), we obtain that

‖y(t1) − y(t2)‖ ≤ ‖T (t1 − t0 + δ1)y(t0 − δ1) − y(t0 − δ1)‖

+2‖y(t0 − δ1) − yi(t0 − δ1)‖

+‖T (t2 − t0 + δ1)y(t0 − δ1) − y(t0 − δ1)‖

+‖

∫ t1

t0−δ1

T (t1 − s)f(s, xs)ds −

∫ t2

t0−δ1

T (t2 − s)f(s, xs)ds‖

≤ 4εn + 4ε
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for t1, t2 ∈ (t0 − δ, t0 + δ). Since ε > 0 is taken arbitrary, we get that

‖y(t1) − y(t2)‖ ≤ 4εn

for t1, t2 ∈ (t0 − δ, t0 + δ), which implies that

modC(Wn(t0)) ≤ 4εn

for every t0 ∈ [0, b]. Accordingly,

(3.13) χ2(Wn) ≤ 4εn = 4χ1(Wn).

Coming back to consider fn, since Wn is decreasing for n, we know

that f(t) = limn→∞ fn(t) exists for t ∈ [0, b]. Taking limit as n → ∞

in (3.7), we have

(3.14) f(t) ≤ 2

∫ t

0

η(s)f(s)ds,

for t ∈ [0, b]. It then follows that f(t) = 0 for all t ∈ [0, b]. This

means that limn→∞ χ1(Wn) = 0. The inequality (3.13) implies that

limn→∞ χ2(Wn) = 0, and hence limn→∞ χ(Wn) = 0. Using Lemma

2.6 we know that W = ∩∞
n=1Wn is convex compact and nonempty

in C([0, b]; X) and ΓW ⊂ W . By the famous Schauder’s fixed point

theorem, there exists at least one fixed point x ∈ W of Γ, which is

the mild solution of (1.1)-(1.2). From the proof we can also see that

all the fixed points of Γ are in W which is compact in C([0, b]; X).

The continuity of the map Γ implies the closeness of the fixed point

set. Hence we conclude that the solution set of problem (1.1)-(1.2) is

compact in the space C([0, b]; X). �

Since {T (t)} is a C0−semigroup, condition (Hf)(3) can be replaced

by

(Hf)(3
′

): There exists η̃ ∈ L(0, b; R+) such that:

(3.15) β(f(t, D)) ≤ η̃(t)/M · β(D)

for a.e. t, s ∈ [0, b] and any bounded subset D ⊂ X.

From Theorem 3.3, we can get the following obvious result:

Theorem 3.4. Assume the hypotheses (Hf)(1)(2)(3
′

) and (Hg) are

satisfied. Then for each x0 ∈ X, the solution set of problem (1.1)-(1.2)

is a nonempty compact subset of the space C([0, b]; X).
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In some of the early related results in references and the two results

above, it is supposed that the map g is uniformly bounded. We in-

dicate here that this condition can be released. Indeed, the fact that

g is compact implies that g is bounded on bounded subset. And the

hypothesis (Hf)(2) may be difficult to be verified sometimes. Here we

give an existence result under another growth condition of f when g

is not uniformly bounded. Precisely, we replace the hypothesis (Hf)(2)

by

(Hf)(2
′

): There exists a function α ∈ L(0, b; R+) and an increasing

function Ω : R
+ → R

+ such that

‖f(t, v)‖ ≤ α(t)Ω(‖v‖)

for a.e. t ∈ [0, b] and all v ∈ X.

Theorem 3.5. Suppose that the hypotheses (Hf)(1)(2
′

)(3) and (Hg)(1)

are satisfied. If

(3.16) lim sup
k→∞

M

k
(γ(k) + Ω(k)

∫ b

0

α(s)ds < 1,

where γ(k) = sup{‖g(x)‖ : ‖x‖ ≤ k}, then for each x0 ∈ X, the

solution set of problem (1.1)-(1.2) is a nonempty compact subset of the

space C([0, b]; X).

Proof. The inequality (3.16) implies that there exists a constant k > 0

such that

M(‖x‖ + γ(k) + Ω(k)

∫ b

0

α(s)ds) < k.

As in the proof of Theorem 3.3, let W0 = {x ∈ X : ‖x‖ ≤ k} and

W1 = convΓW0. Then for any x ∈ W1, we have

‖x(t)‖ ≤ M(‖x‖ + γ(k)) + MΩ(k)

∫ b

0

α(s)ds < k

for t ∈ [0, b]. It follows that W1 ⊂ W0. So we can complete the proof

similarly to Theorem 3.3. �

Remark 3.6. In some previous papers the authors assumed that the

space X is a separable Banach space and the semigroup T (t) is equicon-

tinuous (see, e.g., [17, 18]). We mention here that these assumptions

are not necessary.
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