TOTAL STABILITY IN ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY *

YOSHIYUKI HINO ${ }^{\dagger}$ and SATORU MURAKAMI ${ }^{\ddagger}$
Department of Mathematics and Informatics, Chiba University
1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
E-mail: hino@math.s.chiba-u.ac.jp
and
Department of Applied Mathematics, Okayama University of Science
1-1 Ridai-cho, Okayama 700-0005, Japan
E-mail:murakami@xmath.ous.ac.jp

1. INTRODUCTION

Recently, authors [2] have discussed some equivalent relations for ρ-uniform stabilities of a given equation and those of its limiting equations by using the skew product flow constructed by quasi-processes on a general metric space. In 1992, Murakami and Yoshizawa [6] pointed out that for functional differential equations with infinite delay on a fading memory space $\mathcal{B}=\mathcal{B}\left((-\infty, 0] ; R^{n}\right) \rho$-stability is a useful tool in the study of the existence of almost periodic solutions for almost periodic systems and they proved that ρ-total stability is equivalent to BC-total stability.

The purpose of this paper is to show that equivalent relations established by Murakami and Yoshizawa [6] holds even for functional differential equations with infinite delay on a fading memory space $\mathcal{B}=\mathcal{B}((-\infty, 0] ; X)$ with a general Banach space X.

2. FADING MEMORY SPACES AND SOME DEFINITIONS

[^0]Let X be a Banach space with norm $|\cdot|_{X}$. For any interval $J \subset R:=(-\infty, \infty)$, we denote by $\mathrm{BC}(J ; X)$ the space of all bounded and continuous functions mapping J into X. Clearly $\mathrm{BC}(J ; X)$ is a Banach space with the norm $|\cdot|_{\mathrm{BC}(J ; X)}$ defined by $|\phi|_{\mathrm{BC}(J ; X)}=\sup \left\{|\phi(t)|_{X}: t \in J\right\}$. If $J=R^{-}:=(-\infty, 0]$, then we simply write $\mathrm{BC}(J ; X)$ and $|\cdot|_{\mathrm{BC}(J ; X)}$ as BC and $|\cdot|_{\mathrm{BC}}$, respectively. For any function $u:(-\infty, a) \mapsto X$ and $t<a$, we define a function $u_{t}: R^{-} \mapsto X$ by $u_{t}(s)=u(t+s)$ for $s \in R^{-}$. Let $\mathcal{B}=\mathcal{B}\left(R^{-} ; X\right)$ be a real Banach space of functions mapping R^{-}into X with a norm $|\cdot|_{\mathcal{B}}$. The space \mathcal{B} is assumed to have the following properties:
(A1) There exist a positive constant N and locally bounded functions $K(\cdot)$ and $M(\cdot)$ on $R^{+}:=[0, \infty)$ with the property that if $u:(-\infty, a) \mapsto X$ is continuous on $[\sigma, a)$ with $u_{\sigma} \in \mathcal{B}$ for some $\sigma<a$, then for all $t \in[\sigma, a)$,
(i) $u_{t} \in \mathcal{B}$,
(ii) u_{t} is continuous in t (w.r.t. $|\cdot|_{\mathcal{B}}$),
(iii) $N|u(t)|_{X} \leq\left|u_{t}\right|_{\mathcal{B}} \leq K(t-\sigma) \sup _{\sigma \leq s \leq t}|u(s)|_{X}+M(t-\sigma)\left|u_{\sigma}\right|_{\mathcal{B}}$.
(A2) If $\left\{\phi^{n}\right\}$ is a sequence in $\mathcal{B} \cap \mathrm{BC}$ converging to a function ϕ uniformly on any compact intertval in R^{-}and $\sup _{n}\left|\phi^{n}\right|_{\mathrm{BC}}<\infty$, then $\phi \in \mathcal{B}$ and $\left|\phi^{n}-\phi\right|_{\mathcal{B}} \rightarrow 0$ as $n \rightarrow \infty$.

It is known [3, Proposition 7.1.1] that the space \mathcal{B} contains BC and that there is a constant $\ell>0$ such that

$$
\begin{equation*}
|\phi|_{\mathcal{B}} \leq \ell|\phi|_{\mathrm{BC}}, \quad \phi \in \mathrm{BC} . \tag{1}
\end{equation*}
$$

Set $\mathcal{B}_{0}=\{\phi \in \mathcal{B}: \phi(0)=0\}$ and define an operator $S_{0}(t): \mathcal{B}_{0} \mapsto \mathcal{B}_{0}$ by

$$
\left[S_{0}(t) \phi\right](s)=\left\{\begin{array}{cc}
\phi(t+s) & \text { if } t+s \leq 0 \\
0 & \text { if } t+s>0
\end{array}\right.
$$

for each $t \geq 0$. In virtue of (A1), one gets that the family $\left\{S_{0}(t)\right\}_{t \geq 0}$ is a strongly continuous semigroup of bounded linear operators on \mathcal{B}_{0}. We consider the following properties:

$$
\text { (A3) } \quad \lim _{t \rightarrow \infty}\left|S_{0}(t) \phi\right|_{\mathcal{B}}=0, \quad \phi \in \mathcal{B}_{0}
$$

The space \mathcal{B} is called a fading memory space, if it satisfies (A3) in addition to (A1) and (A2). It is known [3, Proposition 7.1.5] that the functions $K(\cdot)$ and $M(\cdot)$ in (A1) can be chosen as $K(t) \equiv \ell$ and $M(t) \equiv(1+(\ell / N))\left\|S_{0}(t)\right\|$. Here and hereafter, we denote by $\|\cdot\|$ the operator norm of linear bounded operators. Note that (A3) implies $\sup _{t \geq 0}\left\|S_{0}(t)\right\|<\infty$ by the Banach-Steinhaus theorem. Therefore, whenever \mathcal{B} is a
fading memory space, we can assume that the functions $K(\cdot)$ and $M(\cdot)$ in (A1) satisfy $K(\cdot) \equiv K$ and $M(\cdot) \equiv M$, constants.

We provide a typical example of fading memory spaces. Let $g: R^{-} \mapsto[1, \infty)$ be any continuous nonincreasing function such that $g(0)=1$ and $g(s) \rightarrow \infty$ as $s \rightarrow-\infty$. We set

$$
C_{g}^{0}:=C_{g}^{0}(X)=\left\{\phi: R^{-} \mapsto X \text { is continuous with } \lim _{s \rightarrow-\infty}|\phi(s)|_{X} / g(s)=0\right\} .
$$

Then the space C_{g}^{0} equipped with the norm

$$
|\phi|_{g}=\sup _{s \leq 0} \frac{|\phi(s)|_{X}}{g(s)}, \quad \phi \in C_{g}^{0}
$$

is a Banach space and it satisfies (A1)-(A3). Hence the space C_{g}^{0} is a fading memory space. We note that the space C_{g}^{0} is separable whenever X is separable.

Throughout the remainder of this paper, we assume that \mathcal{B} is a fading memory space which is separable.

We now consider the following functional differential equation

$$
\begin{equation*}
\frac{d u}{d t}=A u(t)+F\left(t, u_{t}\right), \tag{2}
\end{equation*}
$$

where A is the infinitesimal generator of a compact semigroup $\{T(t)\}_{t \geq 0}$ of bounded linear operators on X and $F: R^{+} \times \mathcal{B} \rightarrow X$ is continuous. We assume the following conditions on F :
(H1) $F(t, \phi)$ is uniformly continuous on $R^{+} \times S$ for any compact set S in \mathcal{B}.
(H2) For any $H>0$, there is an $L(H)>0$ such that $|F(t, \phi)|_{X} \leq L(H)$ for all $t \in R^{+}$ and $\phi \in \mathcal{B}$ such that $|\phi|_{\mathcal{B}} \leq H$.

For any topological spaces \mathcal{J} and \mathcal{X}, we denote by $C(\mathcal{J} ; \mathcal{X})$ the set of all continuous functions from \mathcal{J} into \mathcal{X}. By virture of (H1) and (H2), it follows that for any $(\sigma, \phi) \in$ $R \times \mathcal{B}$, there exists a function $u \in C\left(\left(-\infty, t_{1}\right) ; X\right)$ such that $u_{\sigma}=\phi$ and the following relation holds:

$$
u(t)=T(t-\sigma) \phi(0)+\int_{\sigma}^{t} T(t-s) F\left(s, u_{s}\right) d s, \quad \sigma \leq t<t_{1}
$$

(cf. [1, Theorem 1]). Such a function u is called a (mild) solution of (2) through (σ, ϕ) defined on $\left[\sigma, t_{1}\right)$ and denoted by $u(t):=u(t, \sigma, \phi, F)$.

In the above, t_{1} can be taken as $t_{1}=\infty$ if $\sup _{\sigma \leq t<t_{1}}|u(t)|_{X}<\infty($ cf. [1, Corollary $2]$). In the following, we always assume the following condition, too:
(H3) Equation (2) has a bounded solution $\bar{u}(t)$ defined on R^{+}such that $\bar{u}_{0} \in \mathrm{BC}$ and $\left|\bar{u}_{t}\right|_{\mathcal{B}} \leq C_{1}$ for all $t \in R^{+}$.

By virtue of [4, Lemma 2], we see that the set $\overline{\left\{\bar{u}(t): t \in R^{+}\right\}}$is compact in $X, \bar{u}(t)$ is uniformly continuous on R^{+}and the set $\overline{\left\{\bar{u}_{t}: t \in R^{+}\right\}}$is compact in \mathcal{B}.

Now we shall give the definition of BC-total stability.
Definition 1 The bounded solution $\bar{u}(t)$ of (2) is said to be BC-totally stable (BCTS) if for any $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ with the property that $\sigma \in R^{+}, \phi \in \mathrm{BC}$ with $\left|\bar{u}_{\sigma}-\phi\right|_{\mathrm{BC}}<\delta(\varepsilon)$ and $h \in \mathrm{BC}([\sigma, \infty) ; \mathrm{X})$ with $\sup _{t \in[\sigma, \infty)}|h(t)|_{X}<\delta(\varepsilon)$ imply $|\bar{u}(t)-u(t, \sigma, \phi, F+h)|_{X}<\varepsilon$ for $t \geq \sigma$, where $u(\cdot, \sigma, \phi, F+h)$ denotes the solution of

$$
\begin{equation*}
\frac{d u}{d t}=A u(t)+F\left(t, u_{t}\right)+h(t), \quad t \geq \sigma \tag{3}
\end{equation*}
$$

through (σ, ϕ).

For any $\phi, \psi \in \mathrm{BC}$, we set

$$
\rho(\phi, \psi)=\sum_{j=1}^{\infty} 2^{-j}|\phi-\psi|_{j} /\left\{1+|\phi-\psi|_{j}\right\}
$$

where $|\cdot|_{j}=|\cdot|_{[-j, 0]]}$. Then (BC, ρ) is a metric space. Furthermore, it is clear that $\rho\left(\phi^{k}, \phi\right) \rightarrow 0$ as $k \rightarrow \infty$ if and only if $\phi^{k} \rightarrow \phi$ compactly on R^{-}. Let U be a closed bounded subset of X whose interior U^{i} contains the set $\overline{\{\bar{u}(t): t \in R\}}$, where \bar{u} is the one in (H3). Whenever $\phi \in \mathrm{BC}$ satisfies $\phi(s) \in U$ for all $s \in R^{-}$, we write as $\phi(\cdot) \in U$, for simply.

We shall give the definition of ρ-total stability.

Definition 2 The bounded solution $\bar{u}(t)$ of (2) is said to be ρ-totally stable with respect to U (ρ-TS w.r.t. U) if for any $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ with the property that $\sigma \in$ $R^{+}, \phi(\cdot) \in U$ with $\rho\left(\bar{u}_{\sigma}, \phi\right)<\delta(\varepsilon)$ and $h \in \mathrm{BC}([\sigma, \infty) ; X)$ with $\sup _{t \in[\sigma, \infty)}|h(t)|_{X}<\delta(\varepsilon)$ imply $\rho\left(\bar{u}_{t}, u_{t}(\sigma, \phi, F+h)\right)<\varepsilon$ for $t \geq \sigma$.

In the above, if the term $\rho\left(u_{t}(\sigma, \phi, F+h), \bar{u}_{t}\right)$ is replaced by $|u(t, \sigma, F+h)-\bar{u}(t)|_{X}$, then we have another concept of ρ-total stability, which will be referred to as the (ρ, X) total stability.

As was shown in [6, Lemma 2], these two concepts of ρ-total stability are equivalent.

3. EQUIVALENCE OF BC-TOTAL STABILITY AND ρ-TOTAL STABILITY

In this section, we shall discuss the equivalence between the BC-total stability and the ρ-total stability, and extend a result due to Murakami and Yoshizawa [6, Theorems 1]) for $X=R^{n}$.

We now state our main result of this section.
Theorem The solution $\bar{u}(t)$ of (2) is BC-TS if and only if it is ρ-TS w.r.t. U for any bounded set U in X such that $U^{i} \supset O_{\bar{u}}:=\overline{\{\bar{u}(t): t \in R\}}$.

In order to prove the theorem, we need a lemma. A subset \mathcal{F} of $C\left(R^{+} ; X\right)$ is said to be uniformly equicontinuous on R^{+}, if
$\sup \left\{|x(t+\delta)-x(t)|_{X}: t \in R^{+}, x \in \mathcal{F}\right\} \rightarrow 0$ as $\delta \rightarrow 0^{+}$. For any set \mathcal{F} in $C\left(R^{+} ; X\right)$ and any set S in \mathcal{B}, we set

$$
\begin{aligned}
R(\mathcal{F}) & =\left\{x(t): t \in R^{+}, x \in \mathcal{F}\right\} \\
W(S, \mathcal{F}) & =\left\{x(\cdot): R \mapsto X: x_{0} \in S,\left.x\right|_{R^{+}} \in \mathcal{F}\right\}
\end{aligned}
$$

and

$$
V(S, \mathcal{F})=\left\{x_{t}: t \in R^{+}, x \in W(S, \mathcal{F})\right\}
$$

Lemma ([5, Lemma 1]) If S is a compact subset in \mathcal{B} and if \mathcal{F} is a uniformly equicontinuous set in $C\left(R^{+} ; X\right)$ such that the set $R(\mathcal{F})$ is relatively compact in X, then the set $V(S, \mathcal{F})$ is relatively compact in \mathcal{B}.

Proof of Theorem The "if" part is easily shown by noting that $\rho(\phi, \psi) \leq|\phi-\psi|_{\mathrm{BC}}$ for $\phi, \psi \in \mathrm{BC}$. We shall establish the "only if" part. We assume that the solution $\bar{u}(t)$ of (2) is BC-TS but not (ρ, X)-TS w.r.t. U; here $U \subset\left\{x \in X:|x|_{X} \leq c\right\}$ for some $c>0$. Since the solution $\bar{u}(t)$ of (2) is not (ρ, X)-TS w.r.t. U, there exist an $\varepsilon \in(0,1)$, sequences $\left\{\tau_{m}\right\} \subset R^{+},\left\{t_{m}\right\}\left(t_{m}>\tau_{m}\right),\left\{\phi^{m}\right\} \subset \mathrm{BC}$ with $\phi^{m}(\cdot) \in U,\left\{h_{m}\right\}$ with $h_{m} \in \mathrm{BC}\left(\left[\tau_{m}, \infty\right)\right)$, and solutions $\left\{u\left(t, \tau_{m}, \phi^{m}, F+h_{m}\right):=\hat{u}^{m}(t)\right\}$ of

$$
\frac{d u}{d t}=A u(t)+F\left(t, u_{t}\right)+h_{m}(t)
$$

such that

$$
\begin{equation*}
\rho\left(\phi^{m}, \bar{u}_{\tau_{m}}\right)<1 / m \text { and }\left|h_{m}\right|_{\left[\tau_{m}, \infty\right)}<1 / m \tag{4}
\end{equation*}
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 13, p. 5
and that

$$
\begin{equation*}
\left|\hat{u}^{m}\left(t_{m}\right)-\bar{u}\left(t_{m}\right)\right|_{X}=\varepsilon \text { and }\left|\hat{u}^{m}(t)-\bar{u}(t)\right|_{X}<\varepsilon \text { on }\left[\tau_{m}, t_{m}\right) \tag{5}
\end{equation*}
$$

for $m \in \mathbf{N}$, where \mathbf{N} denotes the set of all positive integers. For each $m \in \mathbf{N}$ and $r \in R^{+}$, we define $\phi^{m, r} \in \mathrm{BC}$ by

$$
\phi^{m, r}(\theta)=\left\{\begin{array}{cl}
\phi^{m}(\theta) & \text { if }-r \leq \theta \leq 0 \\
\phi^{m}(-r)+\bar{u}\left(\tau_{m}+\theta\right)-\bar{u}\left(\tau_{m}-r\right) & \text { if } \theta<-r
\end{array}\right.
$$

We note that

$$
\begin{equation*}
\sup \left\{\left|\phi^{m, r}-\phi^{m}\right|_{\mathcal{B}}: m \in \mathbf{N}\right\} \rightarrow 0 \text { as } r \rightarrow \infty . \tag{6}
\end{equation*}
$$

Indeed, if (6) is false, then there exist an $\varepsilon>0$ and sequences $\left\{m_{k}\right\} \subset \mathbf{N}$ and $\left\{r_{k}\right\}, r_{k} \rightarrow$ ∞ as $k \rightarrow \infty$, such that $\left|\phi^{m_{k}, r_{k}}-\phi^{m_{k}}\right|_{\mathcal{B}} \geq \varepsilon$ for $k=1,2, \cdots$. Put $\psi^{k}:=\phi^{m_{k}, r_{k}}-\phi^{m_{k}}$. Clearly, $\left\{\psi^{k}\right\}$ is a sequence in BC which converges to zero function compactly on R^{-}and $\sup _{k}\left|\psi^{k}\right|_{\mathrm{BC}}<\infty$. Then Axiom (A2) yield that $\left|\psi^{k}\right|_{\mathcal{B}} \rightarrow 0$ as $k \rightarrow \infty$, a contradiction.

Next we shall show that the set $\left\{\phi^{m}, \phi^{m, r}: m \in \mathbf{N}, r \in R^{+}\right\}$is relatively compact in \mathcal{B}. Since the set $\overline{\left\{\bar{u}_{t}: t \in R^{+}\right\}}$is compact in \mathcal{B} as noted in the preceding section, (4) and Axiom (A2) yield that any sequence $\left\{\phi^{m_{j}}\right\}_{j=1}^{\infty}\left(m_{j} \in \mathbf{N}\right)$ has a convergent subsequence in \mathcal{B}. Therefore, it sufficies to show that any sequence $\left\{\phi^{m_{j}, r_{j}}\right\}_{j=1}^{\infty}\left(m_{j} \in \mathbf{N}, r_{j} \in R^{+}\right)$has a convergent subsequence in \mathcal{B}. We assert that the sequence of functions $\left\{\phi^{m_{j}, r_{j}}(\theta)\right\}_{j=1}^{\infty}$ contains a subsequence which is equicontinuous on any compact set in R^{-}. If this is the case, then the sequence $\left\{\phi^{m_{j}, r_{j}}\right\}_{j=1}^{\infty}$ would have a convergent subsequence in \mathcal{B} by Ascoli's theorem and Axiom (A2), as required. Now, notice that the sequence of functions $\left\{\bar{u}\left(\tau_{m_{j}}+\theta\right)\right\}$ is equicontinuous on any compact set in R^{-}. Then the assertion obviously holds true when the sequence $\left\{m_{j}\right\}$ is bounded. Taking a subsequence if necessary, it is thus sufficient to consider the case $m_{j} \rightarrow \infty$ as $j \rightarrow \infty$. In this case, it follows from (4) that $\phi^{m_{j}}(\theta)-\bar{u}\left(\tau_{m_{j}}+\theta\right)=: w^{j}(\theta) \rightarrow 0$ uniformly on any compact set in R^{-}. Consequently, $\left\{w^{j}(\theta)\right\}$ is equicontinuous on any compact set in R^{-}, and so is $\left\{\phi^{m_{j}}(\theta)\right\}$. Therefore the assertion immediately follows from this observation.

Now, for any $m \in \mathbf{N}$, set $u^{m}(t)=\hat{u}^{m}\left(t+\tau_{m}\right)$ if $t \leq t_{m}-\tau_{m}$ and $u^{m}(t)=u^{m}\left(t-\tau_{m}\right)$ if $t>t_{m}-\tau_{m}$. Moreover, set $u^{m, r}(t)=\phi^{m, r}(t)$ if $t \in R^{-}$and $u^{m, r}(t)=u^{m}(t)$ if $t \in R^{+}$. In what follows, we shall show that $\left\{u^{m}(t)\right\}$ is a family of uniformly equicontinuous functions on R^{+}. To do this, we first prove that

$$
\begin{equation*}
\inf _{m}\left(t_{m}-\tau_{m}\right)>0 . \tag{7}
\end{equation*}
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 13, p. 6

Assume that (7) is false. By taking a subsequence if necessary, we may assume that $\lim _{m \rightarrow \infty}\left(t_{m}-\tau_{m}\right)=0$. If $m \geq 3$ and $0 \leq t \leq \min \left\{t_{m}-\tau_{m}, 1\right\}$, then

$$
\begin{aligned}
\left|u^{m}(t)-\bar{u}\left(t+\tau_{m}\right)\right|_{X}= & \mid T(t) \phi^{m}(0)+\int_{0}^{t} T(t-s)\left\{F\left(s+\tau_{m}, u_{s}^{m}\right)+h_{m}\left(s+\tau_{m}\right)\right\} d s \\
& \quad-T(t) \bar{u}\left(\tau_{m}\right)-\left.\int_{0}^{t} T(t-s) F\left(s+\tau_{m}, \bar{u}_{s+\tau_{m}}\right) d s\right|_{X} \\
\leq & C_{2}\left\{\left|\phi^{m}-\bar{u}_{\tau_{m}}\right|_{1}+\int_{0}^{t}(2 L(H)+1) d s\right\} \\
\leq & C_{2}\{2 /(m-2)+t(2 L(H)+1)\},
\end{aligned}
$$

where $H=\sup \left\{\left|\bar{u}_{s}\right|_{\mathcal{B}},\left|u_{s}^{m}\right|_{\mathcal{B}}: 0 \leq s \leq t_{m}-\tau_{m}, m \in \mathbf{N}\right\}$ and $C_{2}=\sup _{0 \leq s \leq 1}| | T(s)| |$. Then (5) yields that

$$
\varepsilon \leq C_{2}\left\{2 /(m-2)+\left(t_{m}-\tau_{m}\right)(2 L(H)+1)\right\} \rightarrow 0
$$

as $m \rightarrow \infty$, a contradiction. We next prove that the set $O:=\left\{u^{m}(t): t \in R^{+}, m \in \mathbf{N}\right\}$ is relatively compact in X. To do this, for each η such that $0<\eta<\inf _{m}\left(t_{m}-\tau_{m}\right)$ we consider the sets $O_{\eta}=\left\{u^{m}(t): t \geq \eta, m \in \mathbf{N}\right\}$ and $\tilde{O}_{\eta}=\left\{u^{m}(t): 0 \leq t \leq\right.$ $\eta, m \in \mathbf{N}\}$. Then $\alpha(O)=\max \left\{\alpha\left(O_{\eta}\right), \alpha\left(\tilde{O}_{\eta}\right)\right\}$, where $\alpha(\cdot)$ is the Kuratowski's measure of noncompactness of sets in X. For the details of the properties of $\alpha(\cdot)$, see [5; Section 1.4]. Let $0<\nu<\min \{1, \eta\}$. If $\eta \leq t \leq t_{m}-\tau_{m}$, then

$$
\begin{aligned}
u^{m}(t)= & T(t) \phi^{m}(0)+\int_{0}^{t} T(t-s)\left\{F\left(s+\tau_{m}, u_{s}^{m}\right)+h_{m}\left(s+\tau_{m}\right)\right\} d s \\
= & T(\nu)\left[T(t-\nu) u^{m}(0)+\int_{0}^{t-\nu} T(t-\nu-s)\left\{F\left(s+\tau_{m}, u_{s}^{m}\right)+h\left(s+\tau_{m}\right)\right\} d s\right] \\
& +\int_{t-\nu}^{t} T(t-s)\left\{F\left(s+\tau_{m}, u_{s}^{m}\right)+h\left(s+\tau_{m}\right)\right\} d s \\
= & T(\nu) u^{m}(t-\nu)+\int_{t-\nu}^{t} T(t-s)\left\{F\left(s+\tau_{m}, u_{s}^{m}\right)+h\left(s+\tau_{m}\right)\right\} d s .
\end{aligned}
$$

Since the set $T(\nu)\left\{u^{m}(t-\nu): t \geq \eta, m \in \mathbf{N}\right\}$ is relatively compact in X because of the compactness of the semigroup $\{T(t)\}_{t \geq 0}$, it follows that

$$
\alpha\left(O_{\eta}\right) \leq C_{2}\{L(H)+1\} \nu .
$$

Letting $\nu \rightarrow 0$ in the above, we get $\alpha\left(O_{\eta}\right)=0$ for all η such that $0<\eta<\inf _{m}\left(t_{m}-\tau_{m}\right)$. Observe that the set $\left\{T(t) \phi^{m}(0): 0 \leq t \leq \eta, m \in \mathbf{N}\right\}$ is relatively compact in X. Then

$$
\begin{aligned}
\alpha(O) & =\alpha\left(\tilde{O}_{\eta}\right) \\
& =\alpha\left(\left\{T(t) \phi^{m}(0)+\int_{0}^{t} T(t-s)\left\{F\left(s+\tau_{m}, u_{s}^{m}\right)+h\left(s+\tau_{m}\right)\right\} d s: 0 \leq t \leq \eta, m \in \mathbf{N}\right\}\right) \\
& =\alpha\left(\left\{\int_{0}^{t} T(t-s)\left\{F\left(s+\tau_{m}, u_{s}^{m}\right)+h\left(s+\tau_{m}\right)\right\} d s: 0 \leq t \leq \eta, m \in \mathbf{N}\right\}\right) \\
& =C_{2}(L(H)+1) \eta
\end{aligned}
$$

for all η such that $0<\eta<\inf _{m}\left(t_{m}-\tau_{m}\right)$, which shows $\alpha(O)=0$; consequently O must be relatively compact in X.

Now, in order to establish the uniform equicontinuity of the family $\left\{u^{m}(t)\right\}$ on R^{+}, let $\sigma \leq s \leq t \leq s+1$ and $t \leq t_{m}-\tau_{m}$. Then

$$
\begin{aligned}
\left|u^{m}(t)-u^{m}(s)\right|_{X} \leq & \left|T(t-s) u^{m}(s)-u^{m}(s)\right|_{X}+\mid \int_{s}^{t} T(t-\tau)\left\{F\left(\tau+\tau_{m}, u_{\tau}^{m}\right)\right. \\
& \left.+h\left(\tau+\tau_{m}\right)\right\}\left.d \tau\right|_{X} \\
\leq & \sup \left\{|T(t-s) z-z|_{X}: z \in O\right\}+C_{2}\{L(H)+1\}|t-s|
\end{aligned}
$$

Since the set O is relatively compact in $X, T(\tau) z$ is uniformly continuous in $\tau \in[0,1]$ uniformly for $z \in O$. This leads to $\sup \left\{\left|u^{m}(t)-u^{m}(s)\right|_{X}: 0 \leq s \leq t \leq s+1, m \in \mathbf{N}\right\} \rightarrow 0$ as $|t-s| \rightarrow 0$, which proves the uniform equicontinuity of $\left\{u^{m}\right\}$ on R^{+}.

Since $\left\{\phi^{m}, \phi^{m, r}: m \in \mathbf{N}, r \in R^{+}\right\}$is relatively compact in $\mathcal{B},\left|u_{t}^{m}\right|_{\mathcal{B}} \leq K\{1+$ $\left.|\bar{u}|_{[0, \infty)}\right\}+M\left|\phi^{m}\right|_{\mathcal{B}} \leq K\left\{1+|\bar{u}|_{[0, \infty)}\right\}+M \ell c$ by (1) and (A1-iii), and the family $\left\{u^{m}(t)\right\}$ is uniformly equicontinuous on R^{+}, it follows from Lemma that the set $W:=\overline{\left\{u_{t}^{m, r}, u_{t}^{m}: m \in \mathbf{N}, t \in R^{+}, r \in R^{+}\right\}}$is compact in \mathcal{B}. Hence $F(t, \phi)$ is uniformly continuous on $R^{+} \times W$. Define a continuous function $q_{m, r}$ on R^{+}by $q_{m, r}(t)=F(t+$ $\left.\tau_{m}, u_{t}^{m}\right)-F\left(t+\tau_{m}, u_{t}^{m, r}\right)$ if $0 \leq t \leq t_{m}-\tau_{m}$, and $q_{m, r}(t)=q_{m, r}\left(t_{m}-\tau_{m}\right)$ if $t>t_{m}-\tau_{m}$. Since $\left|u_{t}^{m, r}-u_{t}^{m}\right|_{\mathcal{B}} \leq M\left|\phi^{m, r}-\phi^{m}\right|_{\mathcal{B}}\left(t \in R^{+}, m \in \mathbf{N}\right)$ by (A1-iii), it follows from (6) that $\sup \left\{\left|u_{t}^{m, r}-u_{t}^{m}\right|_{\mathcal{B}}: t \in R^{+}, m \in \mathbf{N}\right\} \rightarrow 0$ as $r \rightarrow \infty$; hence one can choose an $r=r(\varepsilon) \in \mathbf{N}$ in such a way that

$$
\sup \left\{\left|q_{m, r}(t)\right|_{X}: m \in \mathbf{N}, t \in R^{+}\right\}<\delta(\varepsilon / 2) / 2
$$

where $\delta(\cdot)$ is the one for BC-TS of the solution $\bar{u}(t)$ of (2). Moreover, for this r, select an $m \in \mathbf{N}$ such that $m>2^{r}(1+\delta(\varepsilon / 2)) / \delta(\varepsilon / 2)$. Then $2^{-r}\left|\phi^{m}-\bar{u}_{t_{m}}\right|_{r} /\left[1+\left|\phi^{m}-\bar{u}_{t_{m}}\right|_{r}\right] \leq$ $\rho\left(\phi^{m}, \bar{u}_{t_{m}}\right)<2^{-r} \delta(\varepsilon / 2) /[1+\delta(\varepsilon / 2)]$ by (4), which implies that

$$
\left|\phi^{m}-\bar{u}_{t_{m}}\right|_{r}<\delta(\varepsilon / 2) \text { or }\left|\phi^{m, r}-\bar{u}_{t_{m}}\right|_{\mathrm{BC}}<\delta(\varepsilon / 2) .
$$

The function $u^{m, r}$ satisfies $u_{0}^{m, r}=\phi^{m, r}$ and

$$
\begin{aligned}
u^{m, r}(t) & =u^{m}(t) \\
& =T(t) \phi^{m, r}(0)+\int_{0}^{t} T(t-s)\left\{F\left(s+\tau_{m}, u_{s}^{m}\right)+h_{m}\left(s+\tau_{m}\right)\right\} d s \\
& =T(t) \phi^{m}(0)+\int_{0}^{t} T(t-s)\left\{F\left(s+\tau_{m}, u_{s}^{m, r}\right)+q_{m, r}(s)+h_{m}\left(s+\tau_{m}\right)\right\} d s
\end{aligned}
$$

for $t \in\left[0, t_{m}-\tau_{m}\right)$. Since $\bar{u}^{m}(t)=\bar{u}\left(t+\tau_{m}\right)$ is a BC-TS solution of

$$
\frac{d u}{d t}=A u(t)+F\left(t+\tau_{m}, u_{t}\right)
$$

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 13, p. 8
with the same $\delta(\cdot)$ as the one for $\bar{u}(t)$, from the fact that $\sup _{t \geq 0}\left|q_{m, r}(t)+h_{m}\left(\tau_{m}+t\right)\right|_{X}<$ $\delta(\varepsilon / 2) / 2+1 / m<\delta(\varepsilon / 2)$ it follows that $\left|u^{m, r}(t)-\bar{u}\left(t+\tau_{m}\right)\right|_{X}<\varepsilon / 2$ on $\left[0, t_{m}-\tau_{m}\right)$. In particular, we have $\left|u^{m, r}\left(t_{m}-\tau_{m}\right)-\bar{u}\left(t_{m}\right)\right|_{X}<\varepsilon$ or $\left|\hat{u}^{m}\left(t_{m}\right)-\bar{u}\left(t_{m}\right)\right|_{X}<\varepsilon$, which contradicts (5).

REFERENCES

[1] H. R. Henríquez, Periodic solutions of quasi-linear partial functional differential equations with unbounded delay, Funkcial. Ekvac. Vol. 37 (1994), 329-343.
[2] Y. Hino and S. Murakami, Quasi-processes and stabilities in functional equations, to appear.
[3] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Math. No. 1473, Springer-Verlag, Berlin -Heidelberg, 1991.
[4] Y. Hino, S. Murakami and T. Yoshizawa, Stability and existence of almost periodic solutions for abstract functional differential equations with infinite delay, Tohoku Math. J., Vol. 49 (1997) 133-147
[5] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford-New York, 1981.
[6] S. Murakami and T. Yoshizawa, Relationships between BC-stabilities and ρ-stabilities in functional differential equations with infinite delay, Tohoku Math. J., Vol. 44 (1992), 45-57.

[^0]: *This paper is in final form and no version of it will be submitted for publication elsewhere.
 ${ }^{\dagger}$ Partly supported in part by Grant-in-Aid for Scientific Research (C), No.12640155, Japanese Ministry of Education, Science, Sports and Culture.
 ${ }^{\ddagger}$ Partly supported in part by Grant-in-Aid for Scientific Research (C), No.11640191, Japanese Ministry of Education, Science, Sports and Culture.

