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Abstract. This article furnishes qualitative properties for solutions to two-point bound-
ary value problems (BVPs) which are systems of singular, second-order, nonlinear ordi-
nary differential equations. The right-hand side of the differential equation is allowed
to be unrestricted in the growth of its variables and may depend on the derivative of
the solution, which incurs additional difficultly in the mathematical proofs. A new
approach is introduced by using a singular differential inequality that ensures that all
possible solutions satisfy certain a priori bounds, including their “derivatives”, to the
singular BVP under consideration. Topological methods, in particular Schauder’s fixed
point theorem are then applied to generate new existence results for solutions to the
singular boundary value problems. Many of the results are novel for both the singular
and the nonsingular cases.
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1 Introduction

This work focuses on achieving novel a priori bounds and existence results to systems of
nonlinear, singular, second order boundary value problems (BVPs) given by:

1
p(t)

(p(t)y′(t))′ = q(t)f(t, y(t), p(t)y′(t)), 0 < t < T; (1.1)

with various forms of the boundary conditions

−αy(0) + β lim
t→0+

p(t)y′(t) = c; (1.2)

y(T) = d. (1.3)

The study of these singular BVPs are partially motivated by their application in modelling a
variety of physical phenomena, some examples can be found in [11, 22]. The strategy used
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to achieve a priori bounds herein is to consider the BVP as an integral representation and use
novel differential inequalities to yield a priori bounds on solutions. To prove the existence of
solutions, the application of Schauder’s fixed point theorem [24] is utilised once these bounds
are known.

In the above, f : [0, T] ×Rn ×Rn → Rn is a continuous function, c, d ∈ Rn are vector
valued constants and the functions p, q satisfy

p ∈ C([0, T]; R) ∩ C1((0, T); R) with p > 0 on (0, T); (1.4)

q ∈ C((0, T); R) with q > 0 on (0, T). (1.5)

For u ∈ Rn, we define ‖u‖ := 〈u, u〉1/2 where 〈·, ·〉 is the usual Euclidean dot product
in Rn.

A solution to (1.1)–(1.3) is defined to be a function, y ∈ C2((0, T); Rn) ∩ C([0, T]; Rn) and
py′ ∈ C([0, T]; Rn) such that y satisfies (1.1)–(1.3).

One of the contributions of this work is that it removes the widely used, Nagumo condition
[20] in obtaining a priori bounds of solutions to derivative dependent nonlinear systems of
singular BVPs. The use of the Nagumo condition has been studied extensively by [4,6,7,12,18,
26]. In a recent paper by Fewster-Young [9], the singular vector-valued version of the Nagumo
condition is introduced, that is: there is a positive continuous function φ : [0, ∞)→ (0, ∞) such
that

‖u‖ ≤ R, ‖p(t)q(t)f(t, u, v)‖ ≤ φ(‖v‖), and
∫ x

φ(x)
dx = ∞. (1.6)

However, it is not too hard to produce an example where (1.6) does not hold like the next
problem.

Example 1.1. Consider the singular BVP for 0 < t < 1,

1
t1/2 (t

1/2y′(t))′ =
1
t

(
t3/2y1(t)[y′2(t)]

2 + y1(t), y2(t)e−t[y′1(t)]
2
+ y2(t) cos2(y2(t))

)
; (1.7)

lim
t→0+

p(t)y′(t) = 1, y(1) = 0. (1.8)

In this BVP, the functions p(t) = t1/2, q(t) = 1/t and

f(t, u, v) :=
(

t1/2u1[v2]
2 + u1, u2e−[v1]

2
+ u2 cos2(u2)

)
.

Now, by considering (1.6) for this example, the function φ does not exist when ‖u‖ ≤ R,
t ∈ [0, 1] since

‖p(t)q(t)f(t, u, v)‖ = 1
t1/2

√
(t1/2u1v2

2 + u1)2 + (u2e−v2
1 + u2 cos2 u2)2

≤ 1
t1/2

√
u2

1(tv
4
2 + 1 + 2t1/2v2

2) + u2
2(e
−v2

1 + cos2 u2)2

≤ 1
t1/2

√
u2

1(tv
4
2 + 2t1/2v2

2) + u2
1 + 4u2

2

≤ R
t1/2

√
(tv4

2 + 2t1/2v2
2) +

2‖u‖
t1/2

≤ R
t1/2

√
t(v4

2 + 2v2
1v2

2 + v4
1) + 2t1/2(v2

1 + v2
2) +

2‖u‖
t1/2

≤ R‖v‖2 +

√
2R

t1/4 ‖v‖+
2R
t1/2 .
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Also, Fewster-Young & Tisdell [10] used a Hartman inequality [15], namely

‖f(t, u, v)‖ ≤ 2V
(
〈u, f(t, u, v)〉+ ‖v‖2)+ W, for all (t, u, v) ∈ [0, T]×R2n (1.9)

where V, W are non–negative constants to produce a priori bounds and existence results for
singular BVPs. They showed for singular BVPs that the Nagumo condition could be replaced
by the assumption introduced by Hartman [15]: 2VR < 1 where R is a non-negative constant
and all solutions satisfy maxt∈[0,T] ‖y(t)‖ ≤ R. However, the condition 2VR < 1 is a difficult
assumption to satisfy since the constant R depends on V and can be very large. The first result
builds off this idea and relaxes this condition to 2V‖d‖ < 1, a very manageable assumption
for applications. In addition, Hartman [15] only deals with Dirichlet boundary conditions
where herein a Sturm–Liouville and a Dirichlet boundary condition are dealt with.

The final new result increases the freedom of the differential inequality by stating it in
a general form using Lyapunov functions. This means the growth of the function f can be
unrestricted and leads to many more examples able to be discussed. In the example below,
the inequality (1.9) is not satisfied. In addition, in the scalar case, Bobisud [4] introduced a
sufficient condition on the relationship between the functions p, q to be p2q ≤ 1 on [0, T]. This
new result removes this condition, thus expanding the possible scenarios. For instance, the
following scalar example fails both conditions and will be used to illustrate the new result.

Example 1.2. Consider the singular BVP:

1
t1/4 (t

1/4y′)′ =
1
t
(
ty′2 + y3) , 0 < t < 1, lim

t→0+
t1/4y′(t) = 0, y(1) = 1/3. (1.10)

In this BVP, the functions p(t) = t1/4, q(t) = 1/t and f (t, u, v) = t1/2v2 + u3. Notice that the
condition p2q ≤ 1 on [0, T] does not hold. In addition, suppose that g is a positive function
such that g(u) ≥ −u for all u ∈ R. See that the inequality (1.9) does not necessarily hold
because

| f (t, u, v)| = |t1/2v2 + u3| ≤ ut1/2v2 + u4 + 1 + (1 + g(u))t1/2v2

≤ u f (t, u, v) + v2 + g(u)t1/2v2 + 1

for (t, u, v) ∈ (0, 1)×R2 and the term: g(u)v2 can not be bounded for all u, v ∈ R.

The work presented herein complements the advancements made in singular BVPs by
[1, 2, 5, 21, 23]. In addition, the results herein are novel in the non-singular setting when
p ≡ 1 ≡ q on [0, T] and extends the contributions made by [8, 13, 16, 17, 19, 25].

2 Main results

In this section, the main results are presented and the approach is to provide the a priori
bounds on all possible solutions to (1.1)–(1.3) first then to follow with the existence of at least
one solution to (1.1)–(1.3). The first result was proved by Fewster-Young & Tisdell [10] and
provides an a priori bound on solutions to (1.1)–(1.3). It can be stated as follows.

Theorem 2.1. Let f ∈ C([0, T]×R2n; Rn). Let α/β ≥ 0 (β 6= 0), (1.4), (1.5) hold and let

K1 :=
∫ T

0

ds
p(s)

< ∞, K2 :=
∫ T

0
p(s)q(s) ds < ∞ (2.1)
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with p2q ≤ 1 on [0, T]. If there exist non-negative constants V, W such that

‖f(t, u, v)‖ ≤ 2V
(
〈u, f(t, u, v)〉+ ‖v‖2)+ W, for all (t, u, v) ∈ [0, T]×R2n (2.2)

then all solutions y = y(t) to the singular BVP (1.1), (1.2), (1.3) satisfy

max
t∈[0,T]

‖y(t)‖ ≤ R := ‖d‖+ A1 + V‖d‖2 + VK2
1‖c‖2/[β(β + 2K1α)] + K1K2W,

where

A1 := K1
‖c‖+ |α|(‖d‖+ V‖d‖2 + VK2

1‖c‖2/[β(β + 2K1α)] + K1K2W)∣∣∣α ∫ T
0 ds/p(s) + β

∣∣∣ .

Theorem 2.2. If the conditions of Theorem 2.1 are satisfied and 2V‖d‖ < 1 then all solutions y = y(t)
to the singular BVP (1.1)–(1.3) satisfy

sup
t∈(0,T)

‖p(t)y′(t)‖ ≤ S :=
‖c‖+ |α|(‖d‖+ V‖d‖2 +

VK2
1‖c‖2

β(β+2K1α)
+ K1K2W)

|αK1 + β| + K2W

+ 2V
[
‖d‖R + ‖d‖+ V[R2 − ‖d‖2] + K1K2W

1− 2V‖d‖ +
R‖c‖
|β|

]
.

Proof. Let y = y(t) be any solution to the singular BVP (1.1)–(1.3). From [22, p. 14], the BVP
(1.1)–(1.3) has the equivalent integral equation given by

y(t) = d−A
∫ T

t

ds
p(s)

−
∫ T

t

1
p(s)

∫ s

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx ds, (2.3)

for all t ∈ [0, T] and where

A :=
c + α

(
d−

∫ T
0

1
p(s)

∫ s
0 p(x)q(x)f(x, y(x), p(x)y′(x)) dx ds

)
α
∫ T

0
ds

p(s) + β
. (2.4)

Let

κ :=
∥∥∥∥∫ T

0

1
p(s)

∫ s

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx ds

∥∥∥∥ .

We now claim that

κ ≤ V‖d‖2 +
VK2

1‖c‖2

β(β + 2K1α)
+ K1K2W. (2.5)

If r(t) := ‖y(t)‖2 where y is a solution to (1.1) then for all t ∈ (0, T): we have

(p(t)r′(t))′ = 2
[〈

y(t), p(t)q(t)f(t, y(t), p(t)y′(t)
〉
+ p(t)‖y′(t)‖2] . (2.6)

If we estimate κ and use (2.2) then

κ ≤
∫ T

0

1
p(s)

∫ s

0
p(x)q(x)

[
2V
(〈

y(x), f(x, y(x), p(x)y′(x))
〉
+ p2(x)‖y′(x)‖2)+ W

]
dx ds

The condition p2q ≤ 1 on [0, T], the integral conditions (2.1) and (1.1) yields

κ ≤
∫ T

0

1
p(s)

∫ s

0
2V
(〈

y(x), (p(x)y′(x))′
〉
+ p(x)‖y′(x)‖2) dx ds + K1K2W.
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Substituting (2.6) gives

κ ≤ V
∫ T

0

1
p(s)

∫ s

0
(p(x)r′(x))′ dx ds + K1K2W.

Integrating yields

κ ≤ V(r(T)− r(0))− K1V lim
s→0+

p(s)r′(s) + K1K2W

= V(‖y(T)‖2 − ‖y(0)‖2)− 2K1V
〈

y(0), lim
s→0+

p(s)y′(s)
〉
+ K1K2W.

Substituting the boundary conditions (1.2), (1.3) gives

κ ≤ V(‖d‖2 − ‖y(0)‖2)− 2K1Vα‖y(0)‖2

β
− 2K1V 〈y(0), c/β〉+ K1K2W.

If we apply the Schwarz inequality [14] to the last term then

κ ≤ V‖d‖2 −V‖y(0)‖2
(

2K1α

β
+ 1
)
+ 2K1V‖y(0)‖‖c/β‖+ K1K2W. (2.7)

Consider the inequality:

2ab ≤ εa2 + b2/ε; a, b ∈ R and ε > 0.

For a = ‖y(0)‖, b = K1‖c/β‖, ε = 1 + 2K1α/β > 0, we have

2K1‖y(0)‖‖c/β‖ ≤ ‖y(0)‖2
(

2K1α

β
+ 1
)
+

K2
1‖c‖2

β(β + 2K1α)
. (2.8)

By employing the inequality (2.8) in (2.7) obtains the desired bound on κ, that is (2.5). From
the integral representation of solutions to (1.1)–(1.3), that is (2.3), differentiating obtains the
equivalent integral equation

p(t)y′(t) = A +
∫ t

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx, for all t ∈ [0, T]. (2.9)

We now claim that

η :=
∥∥∥∥∫ T

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx

∥∥∥∥
≤ 2V

[
‖d‖

(
R + ‖d‖+ V[R2 − ‖d‖2] + K1K2W

1− 2V‖d‖

)
+

R‖c‖
|β|

]
+ K2W.

The essence of the procedure is to show ‖ limt→T− p(t)y′(t)‖ is bounded. Consider the integral
equation:

lim
t→T−

p(t)y′(t) =
y(T)− y(0) +

∫ T
0

1
p(s)

∫ T
s (p(x)y′(x))′ dx ds

K1
(2.10)

Next, consider the equation (2.10) and apply (2.2) to see that∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥ ≤ R + ‖d‖+ V

∫ T
0

1
p(s)

∫ T
s (p(x)r′(x))′ dx ds + K1K2W

K1

=
R + ‖d‖+ V[r(0)− r(T)]

K1
+ V lim

t→T−
p(t)r′(t) + K2W.
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Since r(t) = ‖y(t)‖2 and r′(t) = 2 〈y(t), y′(t)〉, this gives∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥ ≤ R + ‖d‖+ V[R2 − ‖d‖2]

K1
+ 2V

〈
y(T), lim

t→T−
p(t)y′(t)

〉
+ K2W.

By applying the Schwarz inequality, we have∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥ ≤ R + ‖d‖+ V[R2 − ‖d‖2]

K1
+ 2V‖d‖

∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥+ K2W.

By using the condition, 2V‖d‖ < 1, we can rearrange this inequality to yield an a priori bound:∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥ ≤ R + ‖d‖+ V[R2 − ‖d‖2] + K1K2W

1− 2V‖d‖ .

Now, if we estimate η and use (2.2), p2q ≤ 1 on [0, T] then

η ≤
∫ T

0
2V
(〈

y(x), p(x)q(x)f(x, y(x), p(x)y′(x))
〉
+ p(x)‖y′(x)‖2) dx ds + K2W.

Substituting (2.6) and integrating yields

η ≤ V
[

lim
t→T−

p(t)r′(t)− lim
t→0+

p(t)r′(t)
]
+ K2W

= 2V
[〈

y(T), lim
t→T−

p(t)y′(t)
〉
−
〈

y(0), lim
t→0+

p(t)y′(t)
〉]

+ K2W.

By employing the boundary condition (1.2), this results in

η ≤ 2V
[〈

y(T), lim
t→T−

p(t)y′(t)
〉
−
〈

y(0),
c
β

〉]
+ K2W.

If we apply the Schwarz inequality and employ our bounds on the terms then this produces:

η ≤ 2V
[
‖y(T)‖

∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥+ ‖y(0)‖‖c/β‖

]
+ K2W

≤ 2V
[
‖d‖

(
R + ‖d‖+ V[R2 − ‖d‖2] + K1K2W

1− 2V‖d‖

)
+

R‖c‖
|β|

]
+ K2W.

So far, we have achieved bounds on η and κ. Now, if we estimate (2.9) then the bounds on κ

and η imply

sup
t∈(0,T)

‖p(t)y′(t)‖ ≤ ‖c‖+ |α|(‖d‖+ κ)∣∣∣α ∫ T
0

ds
p(s) + β

∣∣∣ + η

≤
‖c‖+ |α|

[
‖d‖+

(
V‖d‖2 +

VK2
1‖c‖2

β(β+2K1α)
+ K1K2W

)]
|αK1 + β| + K2W

+ 2V
[
‖d‖R + ‖d‖+ V[R2 − ‖d‖2] + K1K2W

1− 2V‖d‖ +
R‖c‖
|β|

]
.
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By combining the two previous results, the following result now proves the existence of
solutions to the BVP (1.1)–(1.3).

Theorem 2.3. If the conditions of Theorem 2.2 are satisfied then exists at least one solution to the
singular BVP (1.1)–(1.3).

Proof. Define the norm

‖u‖1 := max

{
sup

t∈[0,T]
‖u(t)‖, sup

t∈(0,T)
‖p(t)u′(t)‖

}
.

Recall

R := ‖d‖+ A1 + V‖d‖2 + VK2
1‖c‖2/[β(β + 2K1α)] + K1K2W

and

S :=
‖c‖+ |α|

[
‖d‖+

(
V‖d‖2 +

VK2
1‖c‖2

β(β+2K1α)
+ K1K2W

)]
|αK1 + β| + K2W

+ 2V
[
‖d‖R + ‖d‖+ V[R2 − ‖d‖2] + K1K2W

1− 2V‖d‖ +
R‖c‖
|β|

]
.

Consider the Banach space:

X :=
{

u ∈ C([0, T]; Rn) : pu′ ∈ C([0, T]; Rn) with norm ‖u‖1
}

and the convex set in X,
U := {y ∈ X : ‖y‖1 ≤ max{R, S}}.

Define the operator T : U → X by

Ty := d−A
∫ T

t

ds
p(s)

−
∫ T

t

1
p(s)

∫ s

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx ds,

for t ∈ [0, T] and where A is given in (2.4). Consequently the solutions to (1.1)–(1.3) are the
fixed points of the operator T. The aim now is to use the Schauder fixed point theorem [24] to
prove the existence of fixed points of T. This requires T to be a continuous compact mapping
from U to U. Now, the integral conditions (2.1) and f is continuous on X implies that T is
a continuous mapping. To prove that T is compact, see that for any bounded set V ⊂ X, T
maps V to a bounded set in X by the assumptions (2.1) and f is continuous. Furthermore, this
means there is a positive constant M such that

max
(t,u,v)∈Ω

‖f(t, u, v)‖ ≤ M

where
Ω :=

{
(t, u, v) ∈ [0, T]×R2n : ‖u‖ ≤ max{R, S}, ‖v‖ ≤ max{R, S}

}
.

Furthermore, consider y ∈ U, r, t ∈ [0, T] where t ≥ r; so this gives

‖Ty(t)− Ty(r)‖ ≤ ‖A‖
∫ t

r

ds
p(s)

+
∫ t

r

1
p(s)

∫ s

0
p(x)q(x)‖f(x, y(x), p(x)y′(x))‖ dx ds.

Also, this gives

‖p(t)(Ty)′(t)− p(t)(Ty)′(r)‖ ≤
∫ t

r
p(x)q(x)‖f(x, y(x), p(x)y′(x))‖ dx ds.
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The condition (2.1) implies that the functions

ψ1(t) =
∫ t

0

ds
p(s)

, ψ2(t) :=
∫ t

0
p(s)q(s) ds and ψ3(t) =

∫ t

0

1
p(s)

∫ s

0
p(x)q(x) dx ds

are continuous for t ∈ [0, T]. This means that there is a δ ≥ |t− r| such that

|ψ1(t)− ψ1(r)| ≤
ε(|αK1 + β|)

2(‖c‖+ |α|(‖d‖+ K1K2M))
,

|ψ2(t)− ψ2(r)| ≤
ε

M
, |ψ3(t)− ψ3(r)| ≤

ε

2M
,

where ε > 0. Thus, it follows that

‖Ty(t)− Ty(r)‖1 ≤ ε, whenever |t− r| ≤ δ

and so T is equicontinuous. Consequently, the Arzelà–Ascoli theorem [3] implies that
T : U → X is a continuous compact mapping. We now show that for any y ∈ U, Ty ∈ U,
that is T(U) ⊂ U. The assumptions of Theorem 2.2 hold, this means by the proof of that
Theorem 2.2 that

κ :=
∥∥∥∥∫ T

0

1
p(s)

∫ s

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx ds

∥∥∥∥
≤ V‖d‖2 +

VK2
1‖c‖2

β(β + 2K1α)
+ K1K2W,

and

η :=
∥∥∥∥∫ T

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx

∥∥∥∥
≤ 2V

[
‖d‖

(
R + ‖d‖+ V[R2 − ‖d‖2] + K1K2W

1− 2V‖d‖

)
+

R‖c‖
|β|

]
+ K2W.

By estimating ‖Ty‖1, we obtain

sup
t∈[0,T]

‖Ty(t)‖ ≤ ‖d‖+ K1
(‖c‖+ α(‖d‖+ κ))

|αK1 + β| + κ

and

sup
t∈(0,T)

‖p(t)(Ty)′(t)‖ ≤ (‖c‖+ α(‖d‖+ κ))

|αK1 + β| + η.

By using the bounds on κ, η, it follows that

‖Ty(t)‖1 ≤ max{R, S}.

This means for any y ∈ U, Ty ∈ U. By applying Schauder’s fixed point theorem, the
operator T has at least one fixed point. Moreover, the integral representation implies that
y ∈ C2((0, T); Rn), py′ ∈ C([0, T]; Rn) and y satisfies the boundary conditions (1.2), (1.3). This
proves that there is at least one solution to the BVP (1.1)–(1.3).

The Example 1.1 is next examined by applying the previous results to show the existence
of at least one solution to the singular BVP (1.7), (1.8).
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Example 2.4. Consider the singular BVP: (1.7), (1.8). Notice that the functions here are p(t) =
t1/2, q(t) = 1/t and

f(t, u, v) :=
(

t1/2u1[v2]
2 + u1, u2e−[v1]

2
+ u2 cos2(u2)

)
for (t, u, v) ∈ [0, 1]×R2 ×R2.

See that the conditions relating to the functions p, q are satisfied since

K1 = 2 = K2 and p2(t)q(t) = 1 for t ∈ [0, 1].

In next part of the proof, the following inequalities are used:

ae−b2 ≤ a2e−b2
+

1
4

, for a, b ∈ R and |x| ≤ x2 +
1
4

, for x ∈ R.

The next condition to check is the inequality (2.2), if we choose V = 1/2 and W = 3/4 then

‖f(t, u, v)‖ ≤ | f1(t, u1, u2, v1, v2)|+ | f2(t, u1, u2, v1, v2)|

≤ |t1/2u1[v2]
2 + u1|+

∣∣∣u2e−[v1]
2
+ u2 cos2(u2)

∣∣∣
≤ [v2]

2
(
|u1|t1/2 + 1− t1/2

4

)
+ |u1|+ |u2|e−[v1]

2
+ |u2| cos2(u2)

≤ [v2]
2(|u1|2t1/2 + 1) + |u1|2 +

1
4
+ |u2|2e−[v1]

2
+

1
4
+ cos2(u2)(|u2|2 +

1
4
)

≤ [v2]
2(u2

1t1/2 + 1) + u2
1 + u2

2e−[v1]
2
+ u2

2 cos2(u2) + [v1]
2 +

3
4

= u1 f1(t, u1, u2, v1, v2) + u2 f2(t, u1, u2, v1, v2) + [v1]
2 + [v2]

2 +
3
4

= 2V
(
〈u, f(t, u, v)〉+ ‖v‖2)+ W.

In this example, ‖d‖ = 0, so the condition 2V‖d‖ < 1 is satisfied and finally by applying
Theorem 2.3 there exists at least one solution to the singular BVP (1.7), (1.8) and they satisfy

max
t∈[0,1]

‖y(t)‖ ≤ 4
√

2 + 3, and sup
t∈(0,1)

‖p(t)y′(t)‖ ≤ 4
√

2 +
19
2

.

The next result removes the condition, p2q ≤ 1 on [0, T] and generalises the differential
inequality (2.2) in the previous result by using a general Lyapunov function. The Lyapunov
function is of two variables t and u := ‖y(t)‖2, namely it is r(t, u) ∈ C2((0, T) × R; R) ∩
C([0, T]×R; R), where prt, ru ∈ C([0, T]×R; R). A condition is imposed for all functions in
the solution space, y ∈ C2((0, T); Rn) ∩ C([0, T]; Rn) and py′ ∈ C([0, T]; Rn) of which

‖(p(t)y′(t))′‖ ≤ (p(t)r′(t, ‖y(t)‖2))′ for all t ∈ (0, T). (2.11)

Theorem 2.5. Let R0, R̃, S̃ be non-negative constants. Let y ∈ C2((0, T); Rn) ∩ C([0, T]; Rn) and
py′ ∈ C([0, T]; Rn) and let (1.4), (1.5), (2.1) hold. If r(t, u) ∈ C2((0, T)×R; R)∩ C([0, T]×R; R),
prt, ru ∈ C([0, T] ×R; R) where u := ‖y(t)‖2 and B is a non-negative constant such that (2.11)
holds,

K1 lim
t→0+

p(t)r′(t, ‖y(t)‖2) + r(0, ‖y(0)‖2) + B ≥ 0 (2.12)

and
2‖d‖|ru(T, ‖d‖2)| < 1 (2.13)



10 N. Fewster-Young

then all possible solutions y = y(t) for t ∈ [0, T] to the singular BVP (1.1)–(1.3) satisfy

max
t∈[0,T]

‖y(t)‖ ≤ R̃ := ‖d‖+
‖c‖+ |α|

[
‖d‖+ (r(T, ‖d‖2) + B)

]
|αK1 + β| + r(T, ‖d‖2) + B,

|r(0, ‖y(0)‖2)| ≤ R0, when ‖y(0)‖ ≤ R̃

and

sup
t∈(0,T)

‖p(t)y′(t)‖ ≤ S̃ := 2‖d‖
[

R̃ + ‖d‖+ R0 − r(T, ‖d‖2) + K1L + K1K2W
K1(1− 2‖d‖|ru(T, ‖d‖2)|)

]

+
‖c‖+ |α|

[
‖d‖+ (r(T, ‖d‖2) + B)

]∣∣∣α ∫ T
0

ds
p(s) + β

∣∣∣ + L +
R0 + B

K1
,

where L := limt→T− p(t)rt(t, ‖y(t)‖2).

Proof. Let y = y(t) be any solution to (1.1)–(1.3), which has the integral representation given
by (2.3). We now wish to estimate the terms κ and η as in Theorem 2.1. See that by the
differential equation (1.1), we have

κ ≤
∫ T

0

1
p(s)

∫ s

0
‖p(t)q(t)f(t, y(t), p(t)y′(t))‖ dx ds

=
∫ T

0

1
p(s)

∫ s

0
‖(p(x)y′(x))′‖ dx ds.

By using (2.11) instead of (2.2), we have

κ ≤
∫ T

0

1
p(s)

∫ s

0
(p(x)r′(x, ‖y(x)‖2))′ dx ds

≤ r(T, ‖y(T)‖2)− r(0, ‖y(0)‖2)− K1 lim
t→0+

p(t)r′(t, ‖y(t)‖2).

The condition (2.12) and the boundary condition (1.2) implies

κ ≤ r(T, ‖d‖2) + B.

Thus, if we estimate the integral representation (2.3) then we obtain

max
t∈[0,T]

‖y(t)‖ ≤ R̃ := ‖d‖+
‖c‖+ |α|

[
‖d‖+ (r(T, ‖d‖2) + B)

]
|αK1 + β| + r(T, ‖d‖2) + B. (2.14)

Notice that the a priori bound (2.14) and because the function r is continuous, implies there is
non–negative constant R0 such that

|r(0, ‖y(0)‖2)| ≤ R0, when ‖y(0)‖ ≤ R̃.

Differentiating (2.3) gives an equivalent integral representation for the derivative of a solution
to (1.1)–(1.3) given by equation (2.9). It now suffices to find an estimate for η, namely:

η :=
∥∥∥∥∫ T

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx

∥∥∥∥ .
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Consider the integral equation (2.10) and see that for a solution y to our singular BVP (1.1)–
(1.3), we have

∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥ ≤ R̃ + ‖d‖+

∫ T
0

1
p(s)

∫ T
s ‖(p(x)y′(x))′‖ dx ds

K1
.

If we apply (2.11) and integrate then we obtain∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥ ≤ R̃ + ‖d‖+ [r(0, ‖y(0)‖2)− r(T, ‖y(T)‖2)]

K1

+ lim
t→T−

p(t)r′(t, ‖y(t)‖2) + K2W.

Let u := ‖y(t)‖2 and notice that by the chain rule,

r′(t, u) = rt(t, u) + 2
〈
y(t), y′(t)

〉
ru(t, u). (2.15)

By substituting (2.15) and applying Schwarz’s inequality gives∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥ ≤ R̃ + ‖d‖+ [R0 − r(T, ‖y(T)‖2)]

K1
+ lim

t→T−
p(t)rt(t, ‖y(t)‖2)

+ 2‖d‖
∥∥∥∥ lim

t→T−
p(t)y′(t)

∥∥∥∥|ru(T, ‖d‖2)|+ K2W.

Due to condition (2.13), we can rearrange and this yields∥∥∥∥ lim
t→T−

p(t)y′(t)
∥∥∥∥ ≤ R̃ + ‖d‖+ R0 − r(T, ‖d‖2) + K1L + K1K2W

K1(1− 2‖d‖|ru(T, ‖d‖2)|) (2.16)

where
L := lim

t→T−
p(t)rt(t, ‖y(t)‖2).

If we estimate η and use (2.11) then

η ≤
∫ T

0
p(x)q(x)‖f(x, y(x), p(x)y′(x))‖ dx =

∫ T

0
‖(p(x)y′(x))′‖ dx ≤

∫ T

0
(p(x)r′(x))′ dx.

By integrating and applying the condition (2.12) to η, we obtain

η ≤ lim
t→T−

p(t)r′(t, ‖y(t)‖2)− lim
t→0+

p(t)r′(t, ‖y(t)‖2)

≤ lim
t→T−

p(t)r′(t, ‖y(t)‖2) +
r(0, ‖y(0)‖2) + B

K1
.

By the assumptions prt, ru ∈ C([0, T]×R; R), (2.14) and (2.16), we have

η ≤ 2
〈

y(T), lim
t→T−

p(t)y′(t)
〉

ru(T, ‖y(T)‖2) + L +
R0 + B

K1
.

≤ 2‖d‖
[

R̃ + ‖d‖+ R0 − r(T, ‖d‖2) + K1L + K1K2W
K1(1− 2‖d‖|ru(T, ‖d‖2)|)

]
|ru(T, ‖d‖2)|

+ L +
R0 + B

K1
.
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Finally, we can estimate (2.9) with our estimates for κ and η to obtain

sup
t∈(0,T)

‖p(t)y′(t)‖ ≤ η + ‖A‖

≤ 2‖d‖
[

R̃ + ‖d‖+ R0 − r(T, ‖d‖2) + K1L + K1K2W
K1(1− 2‖d‖|ru(T, ‖d‖2)|)

]
+
‖c‖+ |α|

[
‖d‖+ (r(T, ‖d‖2) + B)

]∣∣∣α ∫ T
0

ds
p(s) + β

∣∣∣ + L +
R0 + B

K1
.

Remark 2.6. To obtain the same inequality as in Theorem 2.2, the condition p2q ≤ 1 on [0, T]
is imposed, the function r(t, u) := Vu + W

∫ t
0

1
p(s)

∫ s
0 p(x)q(x) dx ds, and the constant

B :=
VK2

1‖c‖2

β(β + 2K1α)
.

The final result is the accompanying existence result to the previous theorem.

Theorem 2.7. If the conditions of Theorem 2.5 are satisfied then the singular BVP (1.1)–(1.3) has at
least one solution.

Proof. The proof is identical to Theorem 2.3 except the convex set in X is

U := {y ∈ X : ‖y‖1 ≤ max{R̃, S̃}}.

The remainder of the proof is therefore omitted.

The end of this paper is finished with applying the last two results to the Example 1.2.

Example 2.8. Consider the singular BVP (1.10). The functions relating to theory in this paper
are p(t) = t1/4, q(t) = 1

t and f (t, w, z) = t1/2z2 + w3. To check the conditions of Theorem 2.5
hold, choose the function r(t, u) := Veau + W

∫ t
0

1
p(s)

∫ s
0 p(x)q(x) dx ds. See that the integral

conditions in (2.1) are satisfied since K1 = 4/5 and K2 = 4/7. It now suffices to show that the
inequality (2.5) is satisfied, that is

|(p(t)y′(t))′| ≤ 2aVea|y(t)|2
[
y(t)(p(t)y′(t))′ + p(t)|y′(t)|2 + 2ap(t)

(
y(t)y′(t)

)2
]
+ W p(t)q(t)

for all t ∈ (0, 1). Furthermore, for solutions to (1.1), it suffices to show that

|p2(t)q(t) f (t, w, z)| ≤ 2aVea|w|2
[
wp2(t)q(t) f (t, w, z) + |z|2 + 2a (wz)2

]
+ W p2(t)q(t)

for (t, w, z) ∈ (0, T) × R × R. To show this holds for the desired functions, see that the
following inequality holds for all x ∈ R:

1 + x + x2 ≥ 3
4
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and choose V = 2, W = 1, a = 1/2 such that

|p2(t)q(t) f (t, w, z)| = |t
1/2z2 + w3|

t1/2

≤ z2 +
|w|3
t1/2

≤ z2
[
2ew2/2 (1 + w + w2)]+ |w|4 + 1

t1/2

≤ 2
[

z2 (w + 1 + w2)+ w4

t1/2

]
e|w|

2/2 +
1

t1/2

≤ 2aVea|w|2
[
wp2(t)q(t) f (t, w, z) + |z|2 + 2a (wz)2

]
+ W p2(t)q(t).

Next is to show that the conditions (2.12), (2.13) are satisfied. Notice that

p(t)r′(t, |y(t)|2) = 2aV
(

y(t)p(t)y′(t)ea|y(t)|2
)
+ W

∫ t

0
p(s)q(s) ds.

The condition (2.12) is satisfied with B = 0 since by substituting the boundary condition,

lim
t→0+

p(t)y′(t) = 0

results in
K1 lim

t→0+
p(t)r′(t, |y(t)|2) + r(0, |y(0)|2) + B = Vea|y(0)|2 > 0.

Also, the condition (2.13) is satisfied since from the boundary condition, y(1) = 1/3 = d and
thus

2|d|ru(1, |d|2) = 2aV|d|ea|d|2 =
2
3

e1/18 < 1.

Thus, all the conditions of Theorem 2.5 are satisfied and so Theorem 2.7 implies there exists
at least one solution to the singular BVP 1.10 and they satisfy

max
t∈[0,1]

‖y(t)‖ ≤ R̃ :=
37
63

+ 2e1/18,

and

sup
t∈(0,1)

‖p(t)y′(t)‖ ≤ 5
2

[
R̃ + 313/315 + 2eR̃/2 − 2e1/18

(3− 2e1/18)

]
+

4
7
+

5eR̃/2

2
.
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