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Abstract

Using the theory of fixed point theorem in cone, this paper presents the existence
of positive solutions for the singular m-point boundary value problem











x′′(t) + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1,

x′(0) = 0, x(1) =
m−2
∑

i=1

αix(ξi),

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, αi ∈ [0, 1), i = 1, 2, · · ·, m − 2 , with

0 <

m−2
∑

i=1

αi < 1 and f may change sign and may be singular at x = 0 and x′ = 0.

Keywords: m-point boundary value problem; Singularity; Positive solutions; Fixed
point theorem
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1. Introduction

The study of multi-point BVP (boundary value problem) for linear second-order ordinary

differential equations was initiated by Il’in and Moiseev [3-4]. Since then, many authors

studied more general nonlinear multi-point BVP, for examples [2, 5-8], and references

therein. In [7], Gupta, Ntouyas, and Tsamatos considered the existence of a C1[0, 1]

solution for the m-point boundary value problem











x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x′(0) = 0, x(1) =
m−2
∑

i=1

aix(ξi),
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where ξi ∈ (0, 1), i = 1, 2, · · ·, m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai ∈ R,

i = 1, 2, · · ·, m − 2, have the same sign,
m−2
∑

i=1

ai 6= 1, e ∈ L1[0, 1], f : [0, 1] × R2 → R

is a function satisfying Carathéodory’s conditions and a growth condition of the form

| f(t, u, v) |≤ p1(t)|u| + q1(t)|v| + r1(t) with p1, q1, r1 ∈ L1[0, 1]. Recently, using Leray-

Schauder continuation theorem, R.Ma and Donal O’Regan proved the existence of positive

solutions of C1[0, 1) solutions for the above BVP, where f : [0, 1] × R2 → R satisfies the

Carathéodory’s conditions (see [8]).

Motivated by the works of [7,8], in this paper, we discuss the equation











x′′(t) + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1,

x′(0) = 0, x(1) =
m−2
∑

i=1

αix(ξi),
(1.1)

where 0 < ξi < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, αi ∈ [0, 1) with 0 <
m−2
∑

i=1

αi < 1 and f

may change sign and may be singular at x = 0 and x′ = 0.

Our main features are as follows. Firstly, the nonlinearity af possesses singularity,

that is, a(t)f(t, x, x′) may be singular at t = 0, t = 1, x = 0 and x′ = 0; also the degree of

singularity in x and x′ may be arbitrary(i. e., if f contains
1

xα
and

1

(−x′)γ
, α and γ may

be big enough). Secondly, f is allowed to change sign. Finally, we discuss the maximal

and minimal solutions for equations (1.1). Some ideas come from [11-12].

2. Preliminaries

Now we list the following conditions for convenience .

(H1) β, a, k ∈ C((0, 1), R+), F ∈ C(R+, R+), G ∈ C(R−, R+), ak ∈ L[0, 1];

(H2) F is bounded on any interval [z, +∞), z > 0;

(H3)
∫ −1

−∞

1

G(y)
dy = +∞;

and the following conditions are satisfied

(P1) f ∈ C((0, 1) × R+ × R−, R);

(P2) 0 <
m−2
∑

i=1

αi < 1, 0 < ξi < 1 and |f(t, x, y)| ≤ k(t)F (x)G(y);

(P3) There exists δ > 0 such that f(t, x, y) ≥ β(t), y ∈ (−δ, 0);

where R+ = (0, +∞), R− = (−∞, 0), R = (−∞, +∞).

Lemma 2.1[1] Let E be a Banach space, K a cone of E, and BR = {x ∈ E : ‖x‖ < R},

where 0 < r < R. Suppose that F : K ∩ BR\Br = KR,r → K is a completely continuous

operator and the following conditions are satisfied

(1) ‖F (x)‖ ≥ ||x|| for any x ∈ K with ‖x‖ = r.

(2) If x 6= λF (x) for any x ∈ K with ‖x‖ = R and 0 < λ < 1.

Then F has a fixed point in KR,r.
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Let C[0, 1] = {x : [0, 1] → R|x(t) is continuous on [0, 1]} with norm ‖y‖ = max
t∈[0,1]

|y(t)|.

Then C[0, 1] is a Banach space.

Lemma 2.2 Let (H1)-(P3) hold. For each given natural number n > 0, there exists

yn ∈ C[0, 1] with yn(t) ≤ −
1

n
such that

yn(t) = −
1

n
−

∫ t

0
a(s)f(s, (Ayn)(s) +

1

n
, yn(s))ds, t ∈ [0, 1], (2.1)

where

(Ay)(t) =
1

1 −
∑m−2

i=1 αi

∫ 1

0
−y(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −y(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−y(τ)dτ, t ∈ [0, 1].

Proof. For y ∈ P = {y ∈ C[0, 1] : y(t) ≤ 0, t ∈ [0, 1]}, define a operator as follows

(Tny)(t) = −
1

n
+ min{0,−

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds}, t ∈ [0, 1],

(2.2)

where n > 0 is a natural number. For y ∈ P , we have

(Ay)(t) =
1

1 −
∑m−2

i=1 αi

∫ 1

0
−y(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −y(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−y(τ)dτ

≥
1

1 −
∑m−2

i=1 αi

∫ 1

0
−y(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −y(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ 1

0
−y(τ)dτ

≥

∑m−2
i=1 αi

1 −
∑m−2

i=1 αi

∫ 1

0
−y(τ)dτ −

∑m−2
i=1 αi

∫ ξm−2

0 −y(τ)dτ

1 −
∑m−2

i=1 αi

≥

∑m−2
i=1 αi

1 −
∑m−2

i=1 αi

∫ 1

ξm−2

−y(τ)dτ

≥ 0, t ∈ [0, 1].

Let

c(y(t)) = −
∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds, t ∈ [0, 1],

c(yk(t)) = −
∫ t

0
a(s)f(s, (Ayk)(s) +

1

n
, min{yk(s),−

1

n
})ds, t ∈ [0, 1].

By the equality min{c, 0} =
c − |c|

2
, it is easy to know

(Tny)(t) = −
1

n
+

c(y(t)) − |c(y(t)|

2
, t ∈ [0, 1].

Let yk, y ∈ P with limk→+∞ ‖yk − y‖ = 0. Then, there exists a constant h > 0, such

that ‖yk‖ ≤ h and ‖y‖ ≤ h. Thus, |min{yk(s),−
1

n
}−min{y(s),−

1

n
}| → 0, uniformly for

s ∈ [0, 1] as k → +∞. Therefore, |(Ayk)(s)+
1

n
−((Ay)(s)+

1

n
)| → 0 for all s ∈ [0, 1] as k →

+∞. (P1) implies that {a(s)f(s, (Ayk)(s) +
1

n
, min{yk(s),−

1

n
})} → {a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})}, for s ∈ (0, 1) as k → +∞. By the Lebesgue dominated convergence
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theorem (the dominating function a(s)k(s)F [
1

n
, +∞)G[−h −

1

n
,−

1

n
]), we have ‖cyk −

cy‖ → 0, which yields that

‖Tnyk − Tny‖ = ‖
c(yk) − c(y) − |c(yk)| + |c(y)|

2
‖

≤ ‖
c(yk) − c(y) + |c(yk) − c(y)|

2
‖

≤ ‖c(yk) − c(y)‖ → 0, as k → +∞.

Consequently, Tn is a continuous operator.

Let C be a bounded set in P , i.e., there exists h1 > 0 such that ‖y‖ ≤ h1, for any

y ∈ C. For any t1, t2 ∈ [0, 1], t1 < t2, y ∈ C,

|(Tny)(t2) − (Tny)(t1)|

= |
−

∫ t2

t1

a(s)f(s, (Ay)(s) +
1

n
, min{y(s),−

1

n
}ds

2

+
|
∫ t2

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
)ds| − |

∫ t1

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
)ds|

2
|

≤ |
−

∫ t2

t1

a(s)f(s, (Ay)(s) +
1

n
, min{y(s),−

1

n
}ds

2
|

+
|
∫ t2

t1

a(s)f(s, (Ay)(s), min{y(s),−
1

n
}ds|

2

≤ |
∫ t2

t1

a(s)k(s)ds| supF [
1

n
, +∞) supG[−h1 −

1

n
,−

1

n
].

According to the absolute continuity of the Lebesgue integral, for any ε > 0, there exists

δ > 0 such that |
∫ t2
t1

a(s)k(s)ds| < ε, |t2 − t1| < δ. Therefore, {Tny, y ∈ C} is equicontin-

uous.

|(Tny)(t)| = | −
1

n
+ min{0,−

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds}|

≤ |
1

n
| + |

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds|

≤ 1 +
∫ t

0
a(s)|f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
}|)ds

≤ 1 +
∫ 1

0
a(s)k(s)ds sup F [

1

n
, +∞)G[−h −

1

n
,
1

n
], t ∈ [0, 1].

Therefore {Tny, y ∈ C} is bounded.

Hence Tn is a completely continuous operator.

By (H3), choose a sufficiently large Rn > 1 to fit
∫ −1

−Rn

dy

G(y)
>

∫ 1

0
a(s)k(s)ds supF [

1

n
, +∞).

For n >
1

δ
, we prove that

y(t) 6= λ(Tny)(t) =
−λ

n
+λ min{0,−

∫ t

0
a(s)f(s, (Ay)(s)+

1

n
, min{y(s),−

1

n
})ds}, t ∈ [0, 1],

(2.3)
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for any y ∈ P with ||y|| = Rn and 0 < λ < 1.

In fact, if there exists y ∈ P with ‖y‖ = Rn and 0 < λ < 1 such that

y(t) =
−λ

n
+ λ min{0,−

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds}, t ∈ [0, 1]. (2.4)

y(0) =
−λ

n
. Since n >

1

δ
, we have −δ < y(0) < 0, which implies there exists δ0 > 0 such

that y(t) > −δ, t ∈ (0, δ0). (P3) implies

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds > 0, t ∈ [0, 1].

Let t∗ = sup{s ∈ [0, 1]|
∫ t

0
a(τ)f(τ, (Ay)(τ) +

1

n
, min{y(τ),−

1

n
})dτ > 0, 0 ≤ t ≤ s}.

We show that t∗ = 1. If t∗ < 1, we have















∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds > 0, t ∈ (0, t∗),

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds = 0, t = t∗,

y(t) =
−λ

n
− λ

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds, t ∈ (0, t∗], (2.5)

y(t∗) =
−λ

n
> −δ. (2.6)

(2.6) and (P3) imply there exists r > 0 such that f(t, x, y) ≥ β(t), t ∈ (t∗ − r, t∗). So

y(t∗) =
−λ

n
− λ

∫ t∗

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds

≤
−λ

n
− λ

∫ t∗−r

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds − λ

∫ t∗

t∗−r
a(s)β(s)ds,

∫ t∗−r

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds +

∫ t∗

t∗−r
a(s)β(s)ds < 0,

which is a contradiction. Then, t∗ = 1. Hence,

y(t) =
−λ

n
− λ

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, min{y(s),−

1

n
})ds, t ∈ [0, 1]. (2.7)

Since ‖y‖ = Rn > 1 and y ∈ P , there exists a t0 ∈ (0, 1) with y(t0) = −Rn < −1 and

a t1 ∈ (0, 1) such that y(t) < −1 < −
1

n
, t ∈ (t0, t1], which together with (2.7) implies that

y(t) =
−λ

n
− λ

∫ t

0
a(s)f(s, (Ay)(s) +

1

n
, y(s))ds, t ∈ (t0, t1]. (2.8)

Differentiating (2.8) and using (H2), we obtain

−y′(t) = λa(t)f(t, (Ay)(t) +
1

n
, y(t)) ≤ a(t)F ((Ay)(t) +

1

n
)G(y(t)), t ∈ (t0, t1].

EJQTDE, 2009 No. 43, p. 5



And then

−y′(t)

G(y(t))
≤ a(t)k(t) sup F [(Ay)(t) +

1

n
, +∞) ≤ a(t)k(t) sup F [

1

n
, +∞), t ∈ (t0, t1). (2.9)

Integrating for (2.9) from t0 to t1, we have

∫ y(t1)

y(t0)

dy

G(y)
≤

∫ t1

t0

a(s)k(s)ds sup F [
1

n
, +∞), t ∈ (t0, t1). (2.10)

Then
∫ −1

−Rn

dy

G(y)
≤

∫ y(t1)

−Rn

dy

G(y)
≤

∫ t1

t0

a(s)k(s)ds supF [
1

n
, +∞) ≤

∫ 1

0
a(s)k(s)ds sup F [

1

n
, +∞),

which contradicts
∫ −1

−Rn

dy

G(y)
>

∫ 1

0
a(s)k(s)ds supF [

1

n
, +∞).

Hence(2.3) holds. Then put r =
1

n
, Lemma 2.1 leads to the desired result. This completes

the proof.

Lemma 2.3[10] Let {xn(t)} be an infinite sequence of bounded variation function on

[a, b] and {xn(t0)}(t0 ∈ [a, b]) and {V (xn)} be bounded(V (x) denotes the total variation of

x). Then there exists a subsequence {xnk
(t)} of {xn(t)}, i 6= j, ni 6= nj, such that {xnk

(t)}

converges everywhere to some bounded variation function x(t) on [a, b].

Lemma 2.4[9](Zorn) If X is a partially ordered set in which every chain has an upper

bound, then X has a maximal element.

3. Main results

Theorem 3.1 Let (H1)-(P3) hold. Then the m-point boundary value problem (1.1)

has at least one positive solution.

Proof. Put Mn = min{yn(t) : t ∈ [0, ξm−2]}, (H1) implies γ = sup{Mn} < 0. In fact,

if γ = 0, there exists nk > N > 0 such that Mnk
→ 0 and −δ < ynk

< 0. (H1) implies

ynk
(t) = −

1

n
−

∫ t

0
a(s)f(s, (Aynk

)(s) +
1

n
, ynk

(s))ds

< −
1

n
−

∫ t

0
a(s)β(s)ds

< −
∫ t

0
a(s)β(s)ds, t ∈ [0, ξm−2].

Then ynk
(ξm−2) < −

∫ ξm−2

0
a(s)β(s)ds, which contradicts to Mnk

→ 0.

Set τ = max{γ,−δ,−
∫ ξm−2

0
a(s)β(s)}. In the remainder of the proof, assume n > − 1

τ

.

1). First, we prove there exists a tn ∈ (0, ξm−2] with yn(tn) = τ. In fact, since

yn(0) = −
1

n
> τ, there exists δ0 > 0 such that yn(t) > τ, t ∈ (0, δ0). Let tn = sup{t|s ∈
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[0, t], yn(s) > τ} .Then yn(tn) = τ . If tn > ξm−2, we have yn(t) > τ > −δ, t ∈ [0, ξm−2] .

(H1) shows that

yn(t) = −
1

n
−

∫ t

0
a(s)f(s, (Ayn)(s) +

1

n
, yn(s))ds

≤ −
1

n
−

∫ t

0
a(s)β(s)ds

≤ −
∫ t

0
a(s)β(s)ds, t ∈ [0, ξm−2].

Then τ < yn(ξm−2) ≤ −
∫ ξm−2

0 a(s)β(s)ds < τ , which is a contradiction.

Second, we prove

yn(t) ≤ τ, t ∈ [tn, 1]. (3.1)

In fact, if there exists a t ∈ (tn, 1] such that yn(t) > τ, and we choose t′, t′′ ∈ [tn, 1], t′ < t′′

to fit yn(t′) = τ, τ < yn(t) < −
1

n
, t ∈ (t′, t′′], from (2.1)

0 <
∫ t′′

t′
a(s)f(s, (Ayn)(s) +

1

n
, yn(s))ds = yn(t

′) − yn(t′′) < 0.

This contradiction implies that (3.1) holds. Then











yn(t) ≤ −
∫ t

0
a(s)β(s)ds, t ∈ [0, tn],

yn(t) ≤ τ, t ∈ [tn, 1].

Let W (t) = max{−
∫ t
0 a(s)β(s)ds, τ}, t ∈ (0, 1). Obviously, W (t) is bounded on [

1

3k
, 1 −

1

3k
] and yn(t) ≤ W (t), t ∈ [0, 1].

2). {yn(t)} is equicontinuous on [
1

3k
, 1−

1

3k
](k ≥ 1 is a natural number) and uniformly

bounded on [0, 1].

Notice that

(Ayn)(t) +
1

n
=

1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −yn(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−yn(τ)dτ +

1

n

>

∑m−2
i=1 αi

1 −
∑m−2

i=1 αi

∫ 1

ξ
−yn(τ)dτ ≥

∑m−2
i=1 αi

1 −
∑m−2

i=1 αi

(−τ)(1 − ξ) = Θ, t ∈ [0, 1].

We know from (2.9)

∫ − 1

n

yn(t)

dyn

G(yn)
≤

∫ t

0
a(s)k(s)ds sup F [Θ, +∞), t ∈ [0, 1]. (3.2)

Now (H3) and (3.2) show that ω(t) = inf{yn(t)} > −∞ is bounded on [0, 1]. On the other

hand, it follows from (2.1) and (3.1) that

|y′
n(t)| ≤ k(t)a(t) sup F [Θ, +∞) supG[ωk, max{τ, W (

1

3k
)}], (n ≥ k), (3.3)
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where ωk = inf{ω(t), t ∈ [
1

3k
, 1−

1

3k
]}. Thus (3.3) and the absolute continuity of Lebesgue

integral show that {yn(t)} is equicontinuous on [
1

3k
, 1 −

1

3k
]. Now the Arzela-Ascoli

theorem guarantees that there exists a subsequence of {y(k)
n (t)}, which converges uniformly

on [
1

3k
, 1 −

1

3k
]. When k = 1, there exists a subsequence {y(1)

n (t)} of {yn(t)}, which

converges uniformly on [
1

3
,
2

3
].When k = 2, there exists a subsequence {y(2)

n (t)} of {y(1)
n (t)},

which converges uniformly on [
1

6
,
5

6
]. In general, there exists a subsequence {y(k+1)

n (t)}

of {y(k)
n (t)}, which converges uniformly on [

1

3(k + 1)
, 1 −

1

3(k + 1)
]. Then the diagonal

sequence {y
(k)
k (t)} converges pointwise in (0, 1) and it is easy to verify that {y

(k)
k (t)}

converges uniformly on any interval [c, d] ⊆ (0, 1). Without loss of generality, let {y
(k)
k (t)}

be itself of {yn(t)} in the rest. Put y(t) = lim
n→∞

yn(t), t ∈ (0, 1). Then y(t) is continuous

on (0, 1) and since yn(t) ≤ W (t) < 0, we have y(t) ≤ 0, t ∈ (0, 1).

3) Now (3.2) shows

sup{max{−yn(t), t ∈ [0, 1]}} < +∞.

We have

lim
t→0+

sup{
∫ t

0
−yn(s)ds} = 0, lim

t→1−
sup{

∫ 1

t
−yn(s)ds} = 0, t ∈ [0, 1], (3.4)

and

(Ayn)(t) =
1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −yn(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−yn(τ)dτ

<
1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn(τ)dτ

< +∞, t ∈ [0, 1].

(3.5)

Since (3.4) and (3.5) hold, the Fatou theorem of the Lebesgue integral implies (Ay)(t) <

+∞, for any fixed t ∈ (0, 1).

4) y(t) satisfies the following equation

y(t) = −
∫ t

0
a(s)f(s, (Ay)(s), y(s))ds, t ∈ (0, 1). (3.6)

Since yn(t) converges uniformly on [a, b] ⊂ (0, 1), (3.4) implies that (Ayn)(s) converges

to (Ay)(s) for any s ∈ (0, 1). For fixed t ∈ (0, 1) and any d , 0 < d < t, we have

yn(t) − yn(d) = −
∫ t

d
a(s)f(s, (Ayn)(s) +

1

n
, yn(s))ds. (3.7)

for all n > k. Since yn(s) ≤ max{τ, W (d)} , (Ayn)(s) +
1

n
≥ Θ , s ∈ [d, t] , {(Ayn)(s)}

and {yn(s)} are bounded and equicontinuous on [d, t]

y(t) − y(d) = −
∫ t

d
a(s)f(s, (Ay)(s), y(s))ds. (3.8)
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Putting t = d in (3.2), we have

∫ − 1

n

yn(d)

dyn

G(yn)
≤

∫ d

0
a(s)k(s)ds sup F [Θ, +∞). (3.9)

Letting n → ∞ and d → 0+, we obtain

y(0+) = lim
d→0+

y(d) = 0.

Letting d → 0+ in (3.8), we have

y(t) = −
∫ t

0
a(s)f(s, (Ay)(s), y(s))ds, t ∈ (0, 1), (3.10)

and

(Ay)(1) =
m−2
∑

i=1

αi(Ay)(ξi).

Hence x(t) = (Ay)(t) is a positive solution of (1.1). 2

Theorem 3.2 Suppose that (H1)-(P3) hold. Then the set of positive solutions of

(1.1) is compact in C1[0, 1].

Proof Let M = {y ∈ C[0, 1]: (Ay)(t) is a positive solution of equation (1.1) }. We

show that

(1) M is not empty;

(2) M is relatively compact(bounded, equicontinuous);

(3) M is closed.

Obviously, Theorem 3.1 implies M is not empty.

First, we show that M ⊂ C[0, 1] is relatively compact. For any y ∈ M , differentiating

(3.10) and using (H2), we obtain

−y′(t) = a(t)f(t, (Ay)(t), y(t))
≤ a(t)|f(t, (Ay)(t), y(t))|

≤ a(t)k(t)F [Θ, +∞)G(y(t)), t ∈ (0, 1),

−y′(t)

G(y(t))
≤ a(t)k(t) sup F [(Ay)(t), +∞)

≤ a(t)k(t) sup F [Θ, +∞), t ∈ [0, 1].
(3.11)

Integrating for (3.11) from 0 to t, we have

∫ 0

y(t)

dy

G(y)
≤

∫ 1

0
a(s)k(s)ds sup F [Θ, +∞), t ∈ [0, 1]. (3.12)

Now (H3) and (3.12) show that for any y ∈ M , there exists K > 0 such that |y(t)| <

K,∀ t ∈ [0, 1]. Then M is bounded.

For any y ∈ M , we obtain from (3.11)

−y′(t) = a(t)f(t, (Ay)(t), y(t))
≤ a(t)|f(t, (Ay)(t), y(t))|

≤ a(t)k(t)F [Θ, +∞)G(y(t)), t ∈ (0, 1),
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and
y′(t) = −a(t)f(t, (Ay)(t), y(t))

≤ a(t)|f(t, (Ay)(t), y(t))|
≤ a(t)k(t)F [Θ, +∞)G(y(t)), t ∈ (0, 1),

which yields
−y′(t)

G(y(t)) + 1
≤ a(t)k(t) sup F [Θ, +∞), t ∈ (0, 1), (3.13)

and
y′(t)

G(y(t)) + 1
≤ a(t)k(t) sup F [Θ, +∞), t ∈ (0, 1). (3.14)

Notice that the rights are always positive in (3.13) and (3.14). Let I(y(t)) =
∫ y(t)

0

dy

G(y) + 1
.

For any t1, t2 ∈ [0, 1], integrating for (3.13) and (3.14) from t1 to t2 ,we obtain

|I(y(t1)) − I(y(t2))| ≤
∫ t2

t1

a(t)k(t)F [Θ, +∞)dt. (3.15)

Since I−1 is uniformly continuous on [I(−K), 0], for any ε > 0, there is a ε′ > 0 such that

|I−1(s1) − I−1(s2)| < ε, ∀|s1 − s2| < ε′, s1, s2 ∈ [I(−K), 0]. (3.16)

And (3.15) guarantees that for ε′ > 0, there is a δ′ > 0 such that

|I(y(t1)) − I(y(t2))| < ε′, ∀|t1 − t2| < δ′, t1, t2 ∈ [0, 1]. (3.17)

Now (3.16) and (3.17) yield that

|y(t1) − y(t2)| = |I−1(I(y(t1)) − I−1(I(y(t2))| < ε, t1, t2 ∈ [0, 1], (3.18)

which means that M is equicontinuous. So M is relatively compact.

Second, we show that M is closed. Suppose that {yn} ⊆ M and lim
n→+∞

max
t∈[0,1]

|yn(t) −

y0(t)| = 0. Obviously y0 ∈ C[0, 1] and lim
n→+∞

(Ayn)(t) = (Ay0)(t), t ∈ [0, 1]. Moreover,

(Ayn)(t) =
1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −yn(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−yn(τ)dτ

<
1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn(τ)dτ

<
K

1 −
∑m−2

i=1 αi

, t ∈ [0, 1].

(3.19)

For yn ∈ M , from (3.10) we obtain

yn(t) = −
∫ t

0
a(s)f(s, (Ayn)(s), yn(s))ds, t ∈ (0, 1). (3.20)

For fixed t ∈ (0, 1) , there exists 0 < d < t such that

yn(t) − yn(d) = −
∫ t

d
a(s)f(s, (Ayn)(s), yn(s))ds. (3.21)
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Since yn(s) ≤ max{τ, W (d)}, (Ayn)(s) ≥ Θ, s ∈ [d, t], the Lebesgue Dominated Conver-

gence Theorem yields that

y0(t) − y0(d) = −
∫ t

d
a(s)f(s, (Ay0)(s), y0(s))ds, t ∈ (0, 1). (3.22)

From (3.10), we have

−y′
n(t) = a(t)f(t, (Ayn)(s), yn(s))

≤ a(t)k(t)F [Θ, +∞)G(yn(t)), t ∈ (0, 1),

which yields
−y′

n(t)

G(yn(t))
≤ a(t)k(t) sup F [Θ, +∞), t ∈ (0, 1).

Integrating from 0 to d

∫ 0

yn(d)

dyn

G(yn)
≤

∫ d

0
a(s)k(s)ds sup F [Θ, +∞). (3.23)

Letting n → ∞ and d → 0+, we obtain

y0(0
+) = lim

d→0+
y0(d) = 0.

Letting d → 0+ in (3.22), we have

y0(t) = −
∫ t

0
a(s)f(s, (Ay0)(s), y0(s))ds, t ∈ (0, 1), (3.24)

and

(Ay0)(1) =
m−2
∑

i=1

αi(Ay0)(ξi).

Then x0(t) = (Ay0)(t) is a positive solution of (1.1). So y0 ∈ M and M is a closed set.

Hence {Ay, y ⊆ M} ∈ C1[0, 1] is compact.

Theorem 3.3 Suppose (H1)-(P3) hold. Then (1.1) has a minimal positive solution

and a maximal positive solution in C1[0, 1].

Proof. Let Ω = {x(t) : x(t) is a C1[0, 1] positive solution of (1.1)}. Theorem 3.1

implies that is nonempty. Define a partially ordered ≤ in Ω : x ≤ y iff x(t) ≤ y(t) for

any t ∈ [0, 1]. We prove only that any chain in < Ω,≤> has a lower bound in Ω. The

rest is obtained from Zorn’s lemma. Let {xα(t)} be a chain in < Ω,≤>. Since C[0, 1]

is a separable Banach space, there exists countable set at most {xn(t)}, which is dense

in {xα(t)}. Without loss of generality, we may assume that {xn(t)} ⊆ {xα(t)}. Put

zn(t) = min{x1(t), x2(t), · · · , xn(t)}. Since {xα(t)} is a chain, zn(t) ∈ Ω for any n (in fact,

zn(t) equals one of xn(t)) and zn+1(t) ≤ zn(t) for any n. Put z(t) = lim
m→+∞

zn(t). We prove

that z(t) ∈ Ω.

By Lemma 2.2, there exists yn(t) (e.g., yn(t) may be z′n(t)), which is a solution of

(Ty)(t) = −
∫ t

0
a(s)f(s, (Ay)(s), y(s))ds t ∈ [0, 1],
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such that

zn(t) =
1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −yn(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−yn(τ)dτ.

(3.2) imply that {‖yn‖} is bounded. From Lemma 2.3, there exists a subsequence {ynk
(t)}

of {yn(t)}, i 6= j, ni 6= nj , which converges everywhere on [0, 1]. Without loss of generality,

let {ynk
(t)} be itself of {yn(t)}. Put y0(t) = lim

m→+∞
yn(t), t ∈ [0, 1]. Use yn(t), y0(t), and 0

in place of yn(t), y(t), and 1/n in Theorem 3.1, respectively. A similar argument to show

Theorem 3.1 yields that y0(t) is a solution of

y(t) = −
∫ t

0
a(s)f(s, (Ay)(s), yn(s))ds, t ∈ [0, 1].

The boundedness of {‖yn‖} leads to

z(t) = lim
m→+∞

zn(t)

= lim
m→+∞

[
1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −yn(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−yn(τ)dτ ]

=
1

1 −
∑m−2

i=1 αi

∫ 1

0
−y0(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −y0(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−y0(τ)dτ.

Hence z ∈ Ω. By Lemma 2.2, for any x ∈ {xα}, there exists {xnk
} ⊆ {xn} such that

‖xnk
− x‖ → 0. Notice that xnk

(t) ≥ znk
(t) ≥ z(t), t ∈ [0, 1]. Letting k → +∞, we

have x(t) ≥ z(t), t ∈ [0, 1]; i.e.,{xα} has lower boundedness in Ω. Zorn’s lemma shows

that (1.1) has a minimal C1[0, 1] positive solution. By a similar proof, we can get the a

maximal C1[0, 1] positive solution. The proof is complete.

Theorem 3.4 Suppose that (H1)-(P3) hold , f(t, x, z) is decreasing in x for all (t, z) ∈

[0, 1]×R−, a(0)f(0, x, z) 6= 0 and lim
t→0

f(t, x, y) 6= +∞. Then (1.1) has an unique positive

solution in C1[0, 1].

Proof. Assume that x1 and x2 are two positive different solutions to (1.1), i.e., there

exists t0 ∈ (0, 1] such that x1(t0) 6= x2(t0). Without loss of generality, assume that

x1(t0) > x2(t0). Let ϕ(t) = x1(t)− x2(t) for all t ∈ [0, 1]. Obviously, ϕ ∈ C[0, 1]∩C1(0, 1]

with ϕ(t0) > 0.

Let t∗ = inf{0 < t < t0|ϕ(s) > 0 for all s ∈ t ∈ [t, t0]} and t∗ = sup{t0 < t < 1|ϕ(s) >

0 for all s ∈ t ∈ [t0, t]}. It is easy to see that ϕ(t) > 0 for all t ∈ (t∗, t
∗) and ϕ has

maximum in [t∗, t
∗]. Let t′ satisfying that ϕ(t′) = maxt∈[t∗,t∗] ϕ(t). There are three cases:

(1) t′ ∈ (t∗, t
∗); (2) t′ = t∗ = 1;(3) t′ = 0.

(1) t′ ∈ (t∗, t
∗). It is easy to see that ϕ′′(t′) ≤ 0 and ϕ′(t′) = 0. Then ϕ′′(t′) =

x′′
1(t

′) − x′′
2(t

′)

= −a(t′)f(t′, x1(t
′), x′

1(t
′)) + a(t′)f(t′, x2(t

′), x′
2(t

′)) > 0,

a contradiction.
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(2) t′ = t∗ = 1. Since t′ = t∗ = 1, we have
m−2
∑

i=1

αi max{ϕ(ξi)} >
m−2
∑

i=1

αiϕ(ξi) = ϕ(1), a

contradiction to 0 <
m−2
∑

i=1

αi < 1.

(3) t′ = 0. Since t′ = 0 and x1 and x2 are solutions, the proof of lemma 2.2 implies

that there exist xn,1 and xn,2 such that

‖xn,1 − x1‖ <
ϕ(0)

2
, ‖xn,2 − x2‖ <

ϕ(0)

2

where

xn,1(t) =
1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn,1(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −yn,1(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−yn,1(τ)dτ, t ∈ [0, 1],

xn,2(t) =
1

1 −
∑m−2

i=1 αi

∫ 1

0
−yn,2(τ)dτ −

∑m−2
i=1 αi

∫ ξi

0 −yn,2(τ)dτ

1 −
∑m−2

i=1 αi

−
∫ t

0
−yn,2(τ)dτ, t ∈ [0, 1],

and

yn,1(t) = −
1

n
−

∫ t

0
a(s)f(s, xn,1(s) +

1

n
, yn,1(s))ds, t ∈ [0, 1],

yn,2(t) = −
1

n
−

∫ t

0
a(s)f(s, xn,2(s) +

1

n
, yn,2(s))ds, t ∈ [0, 1],

yn,1(t) ≤ −
1

n
, yn,2(t) ≤ −

1

n
for all t ∈ [0, 1].

By a similar proof with above, there exists t1 ∈ (0, 1] such that xn,1(t1) 6= xn,2(t1).

Without loss of generality, assume that xn,1(t1) > xn,2(t1). Let ϕn(t) = xn,1(t) − xn,2(t)

for all t ∈ [0, 1]. Obviously, ϕn ∈ C[0, 1] ∩ C1(0, 1] with ϕn(t1) > 0. Let t∗ = inf{0 < t <

t1|ϕn(s) > 0 for all s ∈ t ∈ [t, t1]} and t∗ = sup{t1 < t < 1|ϕn(s) > 0 for all s ∈ t ∈ [t1, t]}.

It is easy to see that ϕn(t) > 0 for all t ∈ (t1∗, t
1∗) and ϕn has maximum in [t1∗, t

1∗]. Let

t′′ satisfying that ϕ(t′′) = maxt∈[t1∗,t1∗] ϕ(t). There are three cases: 1) t′′ ∈ (t1∗, t
1∗); 2)

t′′ = t∗ = 1; 3) t′′ = 0.

The proof of 1) and 2) are similar with (1) and (2).

3) t′′ = 0. We have ϕn(t) < ϕn(0), t ∈ (0, 1], ϕ′
n(0) = 0, ϕ′

n(tξ) < 0, tξ ∈ (0, 1). Then

limtξ→0+ϕ′′
n(t) = limtξ→0+

ϕ′
n(tξ) − ϕ′

n(0)

tξ − 0
≤ 0.

On the other hand, since ϕ′′
n(0) = x′′

n,1(0) − x′′
n,2(0)

= −a(0)f(0, xn,1(0) +
1

n
, x′

n,1(0)) + a(0)f(0, xn,2(0) +
1

n
, x′

n,2(0)) > 0,

a contradiction. Then (1.1) has at most one solution. The proof is complete.

Example 3.1. In (1.1), let f(t, x, y) = k(t)[1+x−γ+(−y)−σ−(−y) ln(−y)], a(t) = t−
1

3 ,

and

k(t) = t−
1

2 , 0 < t < 1,
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where γ > 0, σ < −2, and let F (x) = 1 + x−γ , G(y) = 1 + (−y)−σ − (−y) ln(−y). Then

f(t, x, y) ≤ k(t)F (x)G(y), δ = 1, β(t) = k(t),

and
∫ −1

−∞

dy

G(y)
= +∞.

By Theorem 3.1, (1.1) at least has a positive solution and Corollary 3.1 implies the set of

solutions is compact.
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