# Positive Solutions for Singular m-Point Boundary Value Problems with Sign Changing Nonlinearities Depending on $x^{\prime *}$ 

Ya Ma, Baoqiang Yan ${ }^{\dagger}$

Department of Mathematics, Shandong Normal University, Jinan, 250014, P.R. China


#### Abstract

Using the theory of fixed point theorem in cone, this paper presents the existence of positive solutions for the singular $m$-point boundary value problem $$
\left\{\begin{array}{l} x^{\prime \prime}(t)+a(t) f\left(t, x(t), x^{\prime}(t)\right)=0,0<t<1 \\ x^{\prime}(0)=0, \quad x(1)=\sum_{i=1}^{m-2} \alpha_{i} x\left(\xi_{i}\right) \end{array}\right.
$$ where $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1, \alpha_{i} \in[0,1), i=1,2, \cdots, m-2$, with $0<\sum_{i=1}^{m-2} \alpha_{i}<1$ and $f$ may change sign and may be singular at $x=0$ and $x^{\prime}=0$. Keywords: m-point boundary value problem; Singularity; Positive solutions; Fixed point theorem Mathematics subject classification: 34B15, 34B10


## 1. Introduction

The study of multi-point BVP (boundary value problem) for linear second-order ordinary differential equations was initiated by Il'in and Moiseev [3-4]. Since then, many authors studied more general nonlinear multi-point BVP, for examples [2, 5-8], and references therein. In [7], Gupta, Ntouyas, and Tsamatos considered the existence of a $C^{1}[0,1]$ solution for the $m$-point boundary value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), 0<t<1, \\
x^{\prime}(0)=0, x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right)
\end{array}\right.
$$

[^0]where $\xi_{i} \in(0,1), i=1,2, \cdots, m-2,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1, a_{i} \in R$, $i=1,2, \cdots, m-2$, have the same sign, $\sum_{i=1}^{m-2} a_{i} \neq 1, e \in L^{1}[0,1], f:[0,1] \times R^{2} \rightarrow R$ is a function satisfying Carathéodory's conditions and a growth condition of the form $|f(t, u, v)| \leq p_{1}(t)|u|+q_{1}(t)|v|+r_{1}(t)$ with $p_{1}, q_{1}, r_{1} \in L^{1}[0,1]$. Recently, using LeraySchauder continuation theorem, R.Ma and Donal O'Regan proved the existence of positive solutions of $C^{1}[0,1)$ solutions for the above BVP, where $f:[0,1] \times R^{2} \rightarrow R$ satisfies the Carathéodory's conditions (see [8]).

Motivated by the works of $[7,8]$, in this paper, we discuss the equation

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+a(t) f\left(t, x(t), x^{\prime}(t)\right)=0,0<t<1  \tag{1.1}\\
x^{\prime}(0)=0, \quad x(1)=\sum_{i=1}^{m-2} \alpha_{i} x\left(\xi_{i}\right)
\end{array}\right.
$$

where $0<\xi_{i}<1,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1, \alpha_{i} \in[0,1)$ with $0<\sum_{i=1}^{m-2} \alpha_{i}<1$ and $f$ may change sign and may be singular at $x=0$ and $x^{\prime}=0$.

Our main features are as follows. Firstly, the nonlinearity af possesses singularity, that is, $a(t) f\left(t, x, x^{\prime}\right)$ may be singular at $t=0, t=1, x=0$ and $x^{\prime}=0$; also the degree of singularity in $x$ and $x^{\prime}$ may be arbitrary(i. e., if $f$ contains $\frac{1}{x^{\alpha}}$ and $\frac{1}{\left(-x^{\prime}\right)^{\gamma}}, \alpha$ and $\gamma$ may be big enough). Secondly, $f$ is allowed to change sign. Finally, we discuss the maximal and minimal solutions for equations (1.1). Some ideas come from [11-12].

## 2. Preliminaries

Now we list the following conditions for convenience .
$\left(\mathrm{H}_{1}\right) \beta, a, k \in C\left((0,1), R_{+}\right), F \in C\left(R_{+}, R_{+}\right), G \in C\left(R_{-}, R_{+}\right), a k \in L[0,1] ;$
$\left(\mathrm{H}_{2}\right) F$ is bounded on any interval $[z,+\infty), z>0$;
$\left(\mathrm{H}_{3}\right) \int_{-\infty}^{-1} \frac{1}{G(y)} d y=+\infty ;$
and the following conditions are satisfied
$\left(\mathrm{P}_{1}\right) f \in C\left((0,1) \times R_{+} \times R_{-}, R\right)$;
$\left(\mathrm{P}_{2}\right) 0<\sum_{i=1}^{m-2} \alpha_{i}<1,0<\xi_{i}<1$ and $|f(t, x, y)| \leq k(t) F(x) G(y) ;$
$\left(\mathrm{P}_{3}\right)$ There exists $\delta>0$ such that $f(t, x, y) \geq \beta(t), y \in(-\delta, 0)$;
where $R_{+}=(0,+\infty), R_{-}=(-\infty, 0), R=(-\infty,+\infty)$.
Lemma 2.1 ${ }^{[1]}$ Let $E$ be a Banach space, $K$ a cone of $E$, and $B_{R}=\{x \in E:\|x\|<R\}$, where $0<r<R$. Suppose that $F: K \cap \overline{B_{R} \backslash B_{r}}=K_{R, r} \rightarrow K$ is a completely continuous operator and the following conditions are satisfied
(1) $\|F(x)\| \geq\|x\|$ for any $x \in K$ with $\|x\|=r$.
(2) If $x \neq \lambda F(x)$ for any $x \in K$ with $\|x\|=R$ and $0<\lambda<1$.

Then $F$ has a fixed point in $K_{R, r}$.

Let $C[0,1]=\{x:[0,1] \rightarrow R \mid x(t)$ is continuous on $[0,1]\}$ with norm $\|y\|=\max _{t \in[0,1]}|y(t)|$. Then $C[0,1]$ is a Banach space.

Lemma 2.2 Let $\left(\mathrm{H}_{1}\right)-\left(\mathrm{P}_{3}\right)$ hold. For each given natural number $n>0$, there exists $y_{n} \in C[0,1]$ with $y_{n}(t) \leq-\frac{1}{n}$ such that

$$
\begin{equation*}
y_{n}(t)=-\frac{1}{n}-\int_{0}^{t} a(s) f\left(s,\left(A y_{n}\right)(s)+\frac{1}{n}, y_{n}(s)\right) d s, \quad t \in[0,1], \tag{2.1}
\end{equation*}
$$

where

$$
(A y)(t)=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y(\tau) d \tau, \quad t \in[0,1] .
$$

Proof. For $y \in P=\{y \in C[0,1]: y(t) \leq 0, t \in[0,1]\}$, define a operator as follows

$$
\begin{equation*}
\left(T_{n} y\right)(t)=-\frac{1}{n}+\min \left\{0,-\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s\right\}, \quad t \in[0,1] \tag{2.2}
\end{equation*}
$$

where $n>0$ is a natural number. For $y \in P$, we have

$$
\begin{aligned}
& (A y)(t)=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y(\tau) d \tau \\
& \geq \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{1}-y(\tau) d \tau \\
& \geq \frac{\sum_{i=1}^{m-2} \alpha_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi-2}-y(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}} \\
& \geq \frac{\sum_{i=1}^{m-1} \alpha_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{\xi_{m-2}}^{1}-y(\tau) d \tau \\
& \geq 0, \quad t \in[0,1] .
\end{aligned}
$$

Let

$$
\begin{array}{cc}
c(y(t))=-\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s, & t \in[0,1], \\
c\left(y_{k}(t)\right)=-\int_{0}^{t} a(s) f\left(s,\left(A y_{k}\right)(s)+\frac{1}{n}, \min \left\{y_{k}(s),-\frac{1}{n}\right\}\right) d s, & t \in[0,1] .
\end{array}
$$

By the equality $\min \{c, 0\}=\frac{c-|c|}{2}$, it is easy to know

$$
\left(T_{n} y\right)(t)=-\frac{1}{n}+\frac{c(y(t))-\mid c(y(t) \mid}{2}, \quad t \in[0,1] .
$$

Let $y_{k}, y \in P$ with $\lim _{k \rightarrow+\infty}\left\|y_{k}-y\right\|=0$. Then, there exists a constant $h>0$, such that $\left\|y_{k}\right\| \leq h$ and $\|y\| \leq h$. Thus, $\left|\min \left\{y_{k}(s),-\frac{1}{n}\right\}-\min \left\{y(s),-\frac{1}{n}\right\}\right| \rightarrow 0$, uniformly for $s \in[0,1]$ as $k \rightarrow+\infty$. Therefore, $\left|\left(A y_{k}\right)(s)+\frac{1}{n}-\left((A y)(s)+\frac{1}{n}\right)\right| \rightarrow 0$ for all $s \in[0,1]$ as $k \rightarrow$ $+\infty$. $\left(\mathrm{P}_{1}\right)$ implies that $\left\{a(s) f\left(s,\left(A y_{k}\right)(s)+\frac{1}{n}, \min \left\{y_{k}(s),-\frac{1}{n}\right\}\right)\right\} \rightarrow\{a(s) f(s,(A y)(s)+$ $\left.\left.\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right)\right\}$, for $s \in(0,1)$ as $k \rightarrow+\infty$. By the Lebesgue dominated convergence
theorem (the dominating function $a(s) k(s) F\left[\frac{1}{n},+\infty\right) G\left[-h-\frac{1}{n},-\frac{1}{n}\right]$ ), we have $\| c y_{k}-$ $c y \| \rightarrow 0$, which yields that

$$
\begin{aligned}
\left\|T_{n} y_{k}-T_{n} y\right\| & =\left\|\frac{c\left(y_{k}\right)-c(y)-\left|c\left(y_{k}\right)\right|+|c(y)|}{2}\right\| \\
& \leq\left\|\frac{c\left(y_{k}\right)-c(y)+\left|c\left(y_{k}\right)-c(y)\right|}{2}\right\| \\
& \leq\left\|c\left(y_{k}\right)-c(y)\right\| \rightarrow 0, \text { as } k \rightarrow+\infty .
\end{aligned}
$$

Consequently, $T_{n}$ is a continuous operator.
Let $C$ be a bounded set in $P$, i.e., there exists $h_{1}>0$ such that $\|y\| \leq h_{1}$, for any $y \in C$. For any $t_{1}, t_{2} \in[0,1], t_{1}<t_{2}, y \in C$,

$$
\begin{aligned}
& \left|\left(T_{n} y\right)\left(t_{2}\right)-\left(T_{n} y\right)\left(t_{1}\right)\right| \\
& =\left\lvert\, \frac{-\int_{t_{1}}^{t_{2}} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\} d s\right.}{2}\right. \\
& \left.+\frac{\left\lvert\, \int_{0}^{t_{2}} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right) d s|-| \int_{0}^{t_{1}} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \left.\min \left\{y(s),-\frac{1}{n}\right) d s \right\rvert\,\right.\right.\right.}{2} \right\rvert\, \\
& \leq\left|\frac{-\int_{t_{1}}^{t_{2}} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\} d s\right.}{2}\right| \\
& +\frac{\left\lvert\, \int_{t_{1}}^{t_{2}} a(s) f\left(s,(A y)(s), \left.\min \left\{y(s),-\frac{1}{n}\right\} d s \right\rvert\,\right.\right.}{2} \\
& \leq\left|\int_{t_{1}}^{t_{2}} a(s) k(s) d s\right| \sup F\left[\frac{1}{n},+\infty\right) \sup G\left[-h_{1}-\frac{1}{n},-\frac{1}{n}\right] .
\end{aligned}
$$

According to the absolute continuity of the Lebesgue integral, for any $\epsilon>0$, there exists $\delta>0$ such that $\left|\int_{t_{1}}^{t_{2}} a(s) k(s) d s\right|<\epsilon,\left|t_{2}-t_{1}\right|<\delta$. Therefore, $\left\{T_{n} y, y \in C\right\}$ is equicontinuous.

$$
\begin{aligned}
& \left|\left(T_{n} y\right)(t)\right|=\left|-\frac{1}{n}+\min \left\{0,-\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s\right\}\right| \\
& \leq\left|\frac{1}{n}\right|+\left|\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s\right| \\
& \leq 1+\int_{0}^{t} a(s) \left\lvert\, f\left(s,(A y)(s)+\frac{1}{n}, \left.\min \left\{y(s),-\frac{1}{n}\right\} \right\rvert\,\right) d s\right. \\
& \leq 1+\int_{0}^{1} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right) G\left[-h-\frac{1}{n}, \frac{1}{n}\right], \quad t \in[0,1] .
\end{aligned}
$$

Therefore $\left\{T_{n} y, y \in C\right\}$ is bounded.
Hence $T_{n}$ is a completely continuous operator.
By $\left(\mathrm{H}_{3}\right)$, choose a sufficiently large $R_{n}>1$ to fit $\int_{-R_{n}}^{-1} \frac{d y}{G(y)}>\int_{0}^{1} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right)$.
For $n>\frac{1}{\delta}$, we prove that
$y(t) \neq \lambda\left(T_{n} y\right)(t)=\frac{-\lambda}{n}+\lambda \min \left\{0,-\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s\right\}, \quad t \in[0,1]$,
for any $y \in P$ with $\|y\|=R_{n}$ and $0<\lambda<1$.
In fact, if there exists $y \in P$ with $\|y\|=R_{n}$ and $0<\lambda<1$ such that

$$
\begin{equation*}
y(t)=\frac{-\lambda}{n}+\lambda \min \left\{0,-\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s\right\}, t \in[0,1] \tag{2.4}
\end{equation*}
$$

$y(0)=\frac{-\lambda}{n}$. Since $n>\frac{1}{\delta}$, we have $-\delta<y(0)<0$, which implies there exists $\delta_{0}>0$ such that $y(t)>-\delta, t \in\left(0, \delta_{0}\right) .\left(\mathrm{P}_{3}\right)$ implies

$$
\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s>0, \quad t \in[0,1] .
$$

Let $t^{*}=\sup \left\{s \in[0,1] \left\lvert\, \int_{0}^{t} a(\tau) f\left(\tau,(A y)(\tau)+\frac{1}{n}, \min \left\{y(\tau),-\frac{1}{n}\right\}\right) d \tau>0\right.,0 \leq t \leq s\right\}$.
We show that $t^{*}=1$. If $t^{*}<1$, we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s>0, t \in\left(0, t^{*}\right), \\
\int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s=0, t=t^{*},
\end{array}\right. \\
& y(t)=\frac{-\lambda}{n}-\lambda \int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s, t \in\left(0, t^{*}\right],  \tag{2.5}\\
& y\left(t^{*}\right)=\frac{-\lambda}{n}>-\delta . \tag{2.6}
\end{align*}
$$

(2.6) and $\left(\mathrm{P}_{3}\right)$ imply there exists $r>0$ such that $f(t, x, y) \geq \beta(t), t \in\left(t^{*}-r, t^{*}\right)$. So

$$
\begin{aligned}
y\left(t^{*}\right)= & \frac{-\lambda}{n}-\lambda \int_{0}^{t^{*}} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s \\
\leq & \frac{-\lambda}{n}-\lambda \int_{0}^{t^{*}-r} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s-\lambda \int_{t^{*}-r}^{t^{*}} a(s) \beta(s) d s, \\
& \int_{0}^{t^{*}-r} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s+\int_{t^{*}-r}^{t^{*}} a(s) \beta(s) d s<0,
\end{aligned}
$$

which is a contradiction. Then, $t^{*}=1$. Hence,

$$
\begin{equation*}
y(t)=\frac{-\lambda}{n}-\lambda \int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, \min \left\{y(s),-\frac{1}{n}\right\}\right) d s, t \in[0,1] \tag{2.7}
\end{equation*}
$$

Since $\|y\|=R_{n}>1$ and $y \in P$, there exists a $t_{0} \in(0,1)$ with $y\left(t_{0}\right)=-R_{n}<-1$ and a $t_{1} \in(0,1)$ such that $y(t)<-1<-\frac{1}{n}, t \in\left(t_{0}, t_{1}\right]$, which together with (2.7) implies that

$$
\begin{equation*}
y(t)=\frac{-\lambda}{n}-\lambda \int_{0}^{t} a(s) f\left(s,(A y)(s)+\frac{1}{n}, y(s)\right) d s, t \in\left(t_{0}, t_{1}\right] . \tag{2.8}
\end{equation*}
$$

Differentiating (2.8) and using $\left(\mathrm{H}_{2}\right)$, we obtain

$$
-y^{\prime}(t)=\lambda a(t) f\left(t,(A y)(t)+\frac{1}{n}, y(t)\right) \leq a(t) F\left((A y)(t)+\frac{1}{n}\right) G(y(t)), t \in\left(t_{0}, t_{1}\right]
$$

And then

$$
\begin{equation*}
\frac{-y^{\prime}(t)}{G(y(t))} \leq a(t) k(t) \sup F\left[(A y)(t)+\frac{1}{n},+\infty\right) \leq a(t) k(t) \sup F\left[\frac{1}{n},+\infty\right), t \in\left(t_{0}, t_{1}\right) \tag{2.9}
\end{equation*}
$$

Integrating for (2.9) from $t_{0}$ to $t_{1}$, we have

$$
\begin{equation*}
\int_{y\left(t_{0}\right)}^{y\left(t_{1}\right)} \frac{d y}{G(y)} \leq \int_{t_{0}}^{t_{1}} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right), t \in\left(t_{0}, t_{1}\right) \tag{2.10}
\end{equation*}
$$

Then
$\int_{-R_{n}}^{-1} \frac{d y}{G(y)} \leq \int_{-R_{n}}^{y\left(t_{1}\right)} \frac{d y}{G(y)} \leq \int_{t_{0}}^{t_{1}} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right) \leq \int_{0}^{1} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right)$, which contradicts

$$
\int_{-R_{n}}^{-1} \frac{d y}{G(y)}>\int_{0}^{1} a(s) k(s) d s \sup F\left[\frac{1}{n},+\infty\right)
$$

Hence(2.3) holds. Then put $r=\frac{1}{n}$, Lemma 2.1 leads to the desired result. This completes the proof.

Lemma 2.3 ${ }^{[10]}$ Let $\left\{x_{n}(t)\right\}$ be an infinite sequence of bounded variation function on $[a, b]$ and $\left\{x_{n}\left(t_{0}\right)\right\}\left(t_{0} \in[a, b]\right)$ and $\left\{V\left(x_{n}\right)\right\}$ be bounded $(V(x)$ denotes the total variation of $x)$. Then there exists a subsequence $\left\{x_{n_{k}}(t)\right\}$ of $\left\{x_{n}(t)\right\}, i \neq j, n_{i} \neq n_{j}$, such that $\left\{x_{n_{k}}(t)\right\}$ converges everywhere to some bounded variation function $x(t)$ on $[a, b]$.

Lemma $2.4^{[9]}$ (Zorn) If $X$ is a partially ordered set in which every chain has an upper bound, then $X$ has a maximal element.

## 3. Main results

Theorem 3.1 Let $\left(\mathrm{H}_{1}\right)-\left(\mathrm{P}_{3}\right)$ hold. Then the $m$-point boundary value problem (1.1) has at least one positive solution.

Proof. Put $M_{n}=\min \left\{y_{n}(t): t \in\left[0, \xi_{m-2}\right]\right\},\left(\mathrm{H}_{1}\right)$ implies $\gamma=\sup \left\{M_{n}\right\}<0$. In fact, if $\gamma=0$, there exists $n_{k}>N>0$ such that $M_{n_{k}} \rightarrow 0$ and $-\delta<y_{n_{k}}<0$. ( $\mathrm{H}_{1}$ ) implies

$$
\begin{aligned}
y_{n_{k}}(t) & =-\frac{1}{n}-\int_{0}^{t} a(s) f\left(s,\left(A y_{n_{k}}\right)(s)+\frac{1}{n}, y_{n_{k}}(s)\right) d s \\
& <-\frac{1}{n}-\int_{0}^{t} a(s) \beta(s) d s \\
& <-\int_{0}^{t} a(s) \beta(s) d s, \quad t \in\left[0, \xi_{m-2}\right] .
\end{aligned}
$$

Then $y_{n_{k}}\left(\xi_{m-2}\right)<-\int_{0}^{\xi_{m-2}} a(s) \beta(s) d s$, which contradicts to $M_{n_{k}} \rightarrow 0$.
Set $\tau=\max \left\{\gamma,-\delta,-\int_{0}^{\xi_{m-2}} a(s) \beta(s)\right\}$. In the remainder of the proof, assume $n>-\frac{1}{\tau}$
1). First, we prove there exists a $t_{n} \in\left(0, \xi_{m-2}\right]$ with $y_{n}\left(t_{n}\right)=\tau$. In fact, since $y_{n}(0)=-\frac{1}{n}>\tau$, there exists $\delta_{0}>0$ such that $y_{n}(t)>\tau, t \in\left(0, \delta_{0}\right)$. Let $t_{n}=\sup \{t \mid s \in$
$\left.[0, t], y_{n}(s)>\tau\right\}$. Then $y_{n}\left(t_{n}\right)=\tau$. If $t_{n}>\xi_{m-2}$, we have $y_{n}(t)>\tau>-\delta, t \in\left[0, \xi_{m-2}\right]$. $\left(H_{1}\right)$ shows that

$$
\begin{aligned}
y_{n}(t) & =-\frac{1}{n}-\int_{0}^{t} a(s) f\left(s,\left(A y_{n}\right)(s)+\frac{1}{n}, y_{n}(s)\right) d s \\
& \leq-\frac{1}{n}-\int_{0}^{t} a(s) \beta(s) d s \\
& \leq-\int_{0}^{t} a(s) \beta(s) d s, \quad t \in\left[0, \xi_{m-2}\right] .
\end{aligned}
$$

Then $\tau<y_{n}\left(\xi_{m-2}\right) \leq-\int_{0}^{\xi_{m-2}} a(s) \beta(s) d s<\tau$, which is a contradiction.
Second, we prove

$$
\begin{equation*}
y_{n}(t) \leq \tau, \quad t \in\left[t_{n}, 1\right] . \tag{3.1}
\end{equation*}
$$

In fact, if there exists a $t \in\left(t_{n}, 1\right]$ such that $y_{n}(t)>\tau$, and we choose $t^{\prime}, t^{\prime \prime} \in\left[t_{n}, 1\right], t^{\prime}<t^{\prime \prime}$ to fit $y_{n}\left(t^{\prime}\right)=\tau, \tau<y_{n}(t)<-\frac{1}{n}, t \in\left(t^{\prime}, t^{\prime \prime}\right]$, from (2.1)

$$
0<\int_{t^{\prime}}^{t^{\prime \prime}} a(s) f\left(s,\left(A y_{n}\right)(s)+\frac{1}{n}, y_{n}(s)\right) d s=y_{n}\left(t^{\prime}\right)-y_{n}\left(t^{\prime \prime}\right)<0 .
$$

This contradiction implies that (3.1) holds. Then

$$
\begin{cases}y_{n}(t) \leq-\int_{0}^{t} a(s) \beta(s) d s, & t \in\left[0, t_{n}\right] \\ y_{n}(t) \leq \tau, & t \in\left[t_{n}, 1\right]\end{cases}
$$

Let $W(t)=\max \left\{-\int_{0}^{t} a(s) \beta(s) d s, \tau\right\}, t \in(0,1)$. Obviously, $W(t)$ is bounded on $\left[\frac{1}{3 k}, 1-\right.$ $\left.\frac{1}{3 k}\right]$ and $y_{n}(t) \leq W(t), t \in[0,1]$.
2). $\left\{y_{n}(t)\right\}$ is equicontinuous on $\left[\frac{1}{3 k}, 1-\frac{1}{3 k}\right](k \geq 1$ is a natural number) and uniformly bounded on $[0,1]$.

Notice that

$$
\begin{aligned}
\left(A y_{n}\right)(t)+\frac{1}{n} & =\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n}(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y_{n}(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y_{n}(\tau) d \tau+\frac{1}{n} \\
& >\frac{\sum_{i=1}^{m-1} \alpha_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{\xi}^{1}-y_{n}(\tau) d \tau \geq \frac{\sum_{i=1}^{m-2} \alpha_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}(-\tau)(1-\xi)=\Theta, t \in[0,1] .
\end{aligned}
$$

We know from (2.9)

$$
\begin{equation*}
\int_{y_{n}(t)}^{-\frac{1}{n}} \frac{d y_{n}}{G\left(y_{n}\right)} \leq \int_{0}^{t} a(s) k(s) d s \sup F[\Theta,+\infty), t \in[0,1] \tag{3.2}
\end{equation*}
$$

Now $\left(\mathrm{H}_{3}\right)$ and (3.2) show that $\omega(t)=\inf \left\{y_{n}(t)\right\}>-\infty$ is bounded on $[0,1]$. On the other hand, it follows from (2.1) and (3.1) that

$$
\begin{equation*}
\left|y_{n}^{\prime}(t)\right| \leq k(t) a(t) \sup F[\Theta,+\infty) \sup G\left[\omega_{k}, \max \left\{\tau, W\left(\frac{1}{3 k}\right)\right\}\right], \quad(n \geq k) \tag{3.3}
\end{equation*}
$$

where $\omega_{k}=\inf \left\{\omega(t), t \in\left[\frac{1}{3 k}, 1-\frac{1}{3 k}\right]\right\}$. Thus (3.3) and the absolute continuity of Lebesgue integral show that $\left\{y_{n}(t)\right\}$ is equicontinuous on $\left[\frac{1}{3 k}, 1-\frac{1}{3 k}\right]$. Now the Arzela-Ascoli theorem guarantees that there exists a subsequence of $\left\{y_{n}^{(k)}(t)\right\}$, which converges uniformly on $\left[\frac{1}{3 k}, 1-\frac{1}{3 k}\right]$. When $k=1$, there exists a subsequence $\left\{y_{n}^{(1)}(t)\right\}$ of $\left\{y_{n}(t)\right\}$, which converges uniformly on $\left[\frac{1}{3}, \frac{2}{3}\right]$. When $k=2$, there exists a subsequence $\left\{y_{n}^{(2)}(t)\right\}$ of $\left\{y_{n}^{(1)}(t)\right\}$, which converges uniformly on $\left[\frac{1}{6}, \frac{5}{6}\right]$. In general, there exists a subsequence $\left\{y_{n}^{(k+1)}(t)\right\}$ of $\left\{y_{n}^{(k)}(t)\right\}$, which converges uniformly on $\left[\frac{1}{3(k+1)}, 1-\frac{1}{3(k+1)}\right]$. Then the diagonal sequence $\left\{y_{k}^{(k)}(t)\right\}$ converges pointwise in $(0,1)$ and it is easy to verify that $\left\{y_{k}^{(k)}(t)\right\}$ converges uniformly on any interval $[c, d] \subseteq(0,1)$. Without loss of generality, let $\left\{y_{k}^{(k)}(t)\right\}$ be itself of $\left\{y_{n}(t)\right\}$ in the rest. Put $y(t)=\lim _{n \rightarrow \infty} y_{n}(t), t \in(0,1)$. Then $y(t)$ is continuous on $(0,1)$ and since $y_{n}(t) \leq W(t)<0$, we have $y(t) \leq 0, t \in(0,1)$.
3) Now (3.2) shows

$$
\sup \left\{\max \left\{-y_{n}(t), t \in[0,1]\right\}\right\}<+\infty
$$

We have

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \sup \left\{\int_{0}^{t}-y_{n}(s) d s\right\}=0, \quad \lim _{t \rightarrow 1^{-}} \sup \left\{\int_{t}^{1}-y_{n}(s) d s\right\}=0, \quad t \in[0,1] \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
\left(A y_{n}\right)(t) & =\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n}(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y_{n}(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y_{n}(\tau) d \tau \\
& <\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n}(\tau) d \tau  \tag{3.5}\\
& <+\infty, t \in[0,1]
\end{align*}
$$

Since (3.4) and (3.5) hold, the Fatou theorem of the Lebesgue integral implies $(A y)(t)<$ $+\infty$, for any fixed $t \in(0,1)$.
4) $y(t)$ satisfies the following equation

$$
\begin{equation*}
y(t)=-\int_{0}^{t} a(s) f(s,(A y)(s), y(s)) d s, \quad t \in(0,1) \tag{3.6}
\end{equation*}
$$

Since $y_{n}(t)$ converges uniformly on $[a, b] \subset(0,1),(3.4)$ implies that $\left(A y_{n}\right)(s)$ converges to $(A y)(s)$ for any $s \in(0,1)$. For fixed $t \in(0,1)$ and any $d, 0<d<t$, we have

$$
\begin{equation*}
y_{n}(t)-y_{n}(d)=-\int_{d}^{t} a(s) f\left(s,\left(A y_{n}\right)(s)+\frac{1}{n}, y_{n}(s)\right) d s \tag{3.7}
\end{equation*}
$$

for all $n>k$. Since $y_{n}(s) \leq \max \{\tau, W(d)\},\left(A y_{n}\right)(s)+\frac{1}{n} \geq \Theta, s \in[d, t],\left\{\left(A y_{n}\right)(s)\right\}$ and $\left\{y_{n}(s)\right\}$ are bounded and equicontinuous on $[d, t]$

$$
\begin{equation*}
y(t)-y(d)=-\int_{d}^{t} a(s) f(s,(A y)(s), y(s)) d s \tag{3.8}
\end{equation*}
$$

Putting $t=d$ in (3.2), we have

$$
\begin{equation*}
\int_{y_{n}(d)}^{-\frac{1}{n}} \frac{d y_{n}}{G\left(y_{n}\right)} \leq \int_{0}^{d} a(s) k(s) d s \sup F[\Theta,+\infty) \tag{3.9}
\end{equation*}
$$

Letting $n \rightarrow \infty$ and $d \rightarrow 0^{+}$, we obtain

$$
y\left(0^{+}\right)=\lim _{d \rightarrow 0^{+}} y(d)=0
$$

Letting $d \rightarrow 0^{+}$in (3.8), we have

$$
\begin{equation*}
y(t)=-\int_{0}^{t} a(s) f(s,(A y)(s), y(s)) d s, \quad t \in(0,1) \tag{3.10}
\end{equation*}
$$

and

$$
(A y)(1)=\sum_{i=1}^{m-2} \alpha_{i}(A y)\left(\xi_{i}\right)
$$

Hence $x(t)=(A y)(t)$ is a positive solution of (1.1).
Theorem 3.2 Suppose that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{P}_{3}\right)$ hold. Then the set of positive solutions of (1.1) is compact in $C^{1}[0,1]$.

Proof Let $M=\{y \in C[0,1]:(A y)(t)$ is a positive solution of equation (1.1) $\}$. We show that
(1) $M$ is not empty;
(2) $M$ is relatively compact(bounded, equicontinuous);
(3) $M$ is closed.

Obviously, Theorem 3.1 implies $M$ is not empty.
First, we show that $M \subset C[0,1]$ is relatively compact. For any $y \in M$, differentiating (3.10) and using $\left(\mathrm{H}_{2}\right)$, we obtain

$$
\begin{align*}
-y^{\prime}(t) & =a(t) f(t,(A y)(t), y(t)) \\
& \leq a(t)|f(t,(A y)(t), y(t))| \\
& \leq a(t) k(t) F[\Theta,+\infty) G(y(t)), t \in(0,1) \\
\frac{-y^{\prime}(t)}{G(y(t))} & \leq a(t) k(t) \sup F[(A y)(t),+\infty)  \tag{3.11}\\
& \leq a(t) k(t) \sup F[\Theta,+\infty), t \in[0,1]
\end{align*}
$$

Integrating for (3.11) from 0 to $t$, we have

$$
\begin{equation*}
\int_{y(t)}^{0} \frac{d y}{G(y)} \leq \int_{0}^{1} a(s) k(s) d s \sup F[\Theta,+\infty), t \in[0,1] \tag{3.12}
\end{equation*}
$$

Now $\left(\mathrm{H}_{3}\right)$ and (3.12) show that for any $y \in M$, there exists $K>0$ such that $|y(t)|<$ $K, \forall t \in[0,1]$. Then $M$ is bounded.

For any $y \in M$, we obtain from (3.11)

$$
\begin{aligned}
-y^{\prime}(t) & =a(t) f(t,(A y)(t), y(t)) \\
& \leq a(t)|f(t,(A y)(t), y(t))| \\
& \leq a(t) k(t) F[\Theta,+\infty) G(y(t)), t \in(0,1)
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime}(t) & =-a(t) f(t,(A y)(t), y(t)) \\
& \leq a(t)|f(t,(A y)(t), y(t))| \\
& \leq a(t) k(t) F[\Theta,+\infty) G(y(t)), t \in(0,1)
\end{aligned}
$$

which yields

$$
\begin{equation*}
\frac{-y^{\prime}(t)}{G(y(t))+1} \leq a(t) k(t) \sup F[\Theta,+\infty), t \in(0,1) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{y^{\prime}(t)}{G(y(t))+1} \leq a(t) k(t) \sup F[\Theta,+\infty), t \in(0,1) \tag{3.14}
\end{equation*}
$$

Notice that the rights are always positive in (3.13) and (3.14). Let $I(y(t))=\int_{0}^{y(t)} \frac{d y}{G(y)+1}$. For any $t_{1}, t_{2} \in[0,1]$, integrating for (3.13) and (3.14) from $t_{1}$ to $t_{2}$, we obtain

$$
\begin{equation*}
\left|I\left(y\left(t_{1}\right)\right)-I\left(y\left(t_{2}\right)\right)\right| \leq \int_{t_{1}}^{t_{2}} a(t) k(t) F[\Theta,+\infty) d t \tag{3.15}
\end{equation*}
$$

Since $I^{-1}$ is uniformly continuous on $[I(-K), 0]$, for any $\bar{\epsilon}>0$, there is a $\epsilon^{\prime}>0$ such that

$$
\begin{equation*}
\left|I^{-1}\left(s_{1}\right)-I^{-1}\left(s_{2}\right)\right|<\bar{\epsilon}, \forall\left|s_{1}-s_{2}\right|<\epsilon^{\prime}, s_{1}, s_{2} \in[I(-K), 0] . \tag{3.16}
\end{equation*}
$$

And (3.15) guarantees that for $\epsilon^{\prime}>0$, there is a $\delta^{\prime}>0$ such that

$$
\begin{equation*}
\left|I\left(y\left(t_{1}\right)\right)-I\left(y\left(t_{2}\right)\right)\right|<\epsilon^{\prime}, \forall\left|t_{1}-t_{2}\right|<\delta^{\prime}, t_{1}, t_{2} \in[0,1] . \tag{3.17}
\end{equation*}
$$

Now (3.16) and (3.17) yield that

$$
\begin{equation*}
\left|y\left(t_{1}\right)-y\left(t_{2}\right)\right|=\mid I^{-1}\left(I\left(y\left(t_{1}\right)\right)-I^{-1}\left(I\left(y\left(t_{2}\right)\right) \mid<\bar{\epsilon}, t_{1}, t_{2} \in[0,1],\right.\right. \tag{3.18}
\end{equation*}
$$

which means that $M$ is equicontinuous. So $M$ is relatively compact.
Second, we show that $M$ is closed. Suppose that $\left\{y_{n}\right\} \subseteq M$ and $\lim _{n \rightarrow+\infty} \max _{t \in[0,1]} \mid y_{n}(t)-$ $y_{0}(t) \mid=0$. Obviously $y_{0} \in C[0,1]$ and $\lim _{n \rightarrow+\infty}\left(A y_{n}\right)(t)=\left(A y_{0}\right)(t), t \in[0,1]$. Moreover,

$$
\begin{align*}
\left(A y_{n}\right)(t) & =\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n}(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y_{n}(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y_{n}(\tau) d \tau \\
& <\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n}(\tau) d \tau \\
& <\frac{K}{1-\sum_{i=1}^{m-2} \alpha_{i}}, t \in[0,1] . \tag{3.19}
\end{align*}
$$

For $y_{n} \in M$, from (3.10) we obtain

$$
\begin{equation*}
y_{n}(t)=-\int_{0}^{t} a(s) f\left(s,\left(A y_{n}\right)(s), y_{n}(s)\right) d s, \quad t \in(0,1) \tag{3.20}
\end{equation*}
$$

For fixed $t \in(0,1)$, there exists $0<d<t$ such that

$$
\begin{equation*}
y_{n}(t)-y_{n}(d)=-\int_{d}^{t} a(s) f\left(s,\left(A y_{n}\right)(s), y_{n}(s)\right) d s \tag{3.21}
\end{equation*}
$$

Since $y_{n}(s) \leq \max \{\tau, W(d)\},\left(A y_{n}\right)(s) \geq \Theta, s \in[d, t]$, the Lebesgue Dominated Convergence Theorem yields that

$$
\begin{equation*}
y_{0}(t)-y_{0}(d)=-\int_{d}^{t} a(s) f\left(s,\left(A y_{0}\right)(s), y_{0}(s)\right) d s, \quad t \in(0,1) \tag{3.22}
\end{equation*}
$$

From (3.10), we have

$$
\begin{aligned}
-y_{n}^{\prime}(t) & =a(t) f\left(t,\left(A y_{n}\right)(s), y_{n}(s)\right) \\
& \leq a(t) k(t) F[\Theta,+\infty) G\left(y_{n}(t)\right), \quad t \in(0,1)
\end{aligned}
$$

which yields

$$
\frac{-y_{n}^{\prime}(t)}{G\left(y_{n}(t)\right)} \leq a(t) k(t) \sup F[\Theta,+\infty), t \in(0,1)
$$

Integrating from 0 to $d$

$$
\begin{equation*}
\int_{y_{n}(d)}^{0} \frac{d y_{n}}{G\left(y_{n}\right)} \leq \int_{0}^{d} a(s) k(s) d s \sup F[\Theta,+\infty) \tag{3.23}
\end{equation*}
$$

Letting $n \rightarrow \infty$ and $d \rightarrow 0^{+}$, we obtain

$$
y_{0}\left(0^{+}\right)=\lim _{d \rightarrow 0^{+}} y_{0}(d)=0 .
$$

Letting $d \rightarrow 0^{+}$in (3.22), we have

$$
\begin{equation*}
y_{0}(t)=-\int_{0}^{t} a(s) f\left(s,\left(A y_{0}\right)(s), y_{0}(s)\right) d s, \quad t \in(0,1) \tag{3.24}
\end{equation*}
$$

and

$$
\left(A y_{0}\right)(1)=\sum_{i=1}^{m-2} \alpha_{i}\left(A y_{0}\right)\left(\xi_{i}\right) .
$$

Then $x_{0}(t)=\left(A y_{0}\right)(t)$ is a positive solution of (1.1). So $y_{0} \in M$ and $M$ is a closed set.
Hence $\{A y, y \subseteq M\} \in C^{1}[0,1]$ is compact.
Theorem 3.3 Suppose $\left(\mathrm{H}_{1}\right)-\left(\mathrm{P}_{3}\right)$ hold. Then (1.1) has a minimal positive solution and a maximal positive solution in $C^{1}[0,1]$.

Proof. Let $\Omega=\left\{x(t): x(t)\right.$ is a $C^{1}[0,1]$ positive solution of (1.1) $\}$. Theorem 3.1 implies that is nonempty. Define a partially ordered $\leq$ in $\Omega: x \leq y$ iff $x(t) \leq y(t)$ for any $t \in[0,1]$. We prove only that any chain in $<\Omega, \leq>$ has a lower bound in $\Omega$. The rest is obtained from Zorn's lemma. Let $\left\{x_{\alpha}(t)\right\}$ be a chain in $<\Omega, \leq>$. Since $C[0,1]$ is a separable Banach space, there exists countable set at most $\left\{x_{n}(t)\right\}$, which is dense in $\left\{x_{\alpha}(t)\right\}$. Without loss of generality, we may assume that $\left\{x_{n}(t)\right\} \subseteq\left\{x_{\alpha}(t)\right\}$. Put $z_{n}(t)=\min \left\{x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right\}$. Since $\left\{x_{\alpha}(t)\right\}$ is a chain, $z_{n}(t) \in \Omega$ for any $n$ (in fact, $z_{n}(t)$ equals one of $\left.x_{n}(t)\right)$ and $z_{n+1}(t) \leq z_{n}(t)$ for any n. Put $z(t)=\lim _{m \rightarrow+\infty} z_{n}(t)$. We prove that $z(t) \in \Omega$.

By Lemma 2.2, there exists $y_{n}(t)$ (e.g., $y_{n}(t)$ may be $z_{n}^{\prime}(t)$ ), which is a solution of

$$
(T y)(t)=-\int_{0}^{t} a(s) f(s,(A y)(s), y(s)) d s \quad t \in[0,1]
$$

such that

$$
z_{n}(t)=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n}(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y_{n}(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y_{n}(\tau) d \tau
$$

(3.2) imply that $\left\{\left\|y_{n}\right\|\right\}$ is bounded. From Lemma 2.3, there exists a subsequence $\left\{y_{n_{k}}(t)\right\}$ of $\left\{y_{n}(t)\right\}, i \neq j, n_{i} \neq n_{j}$, which converges everywhere on $[0,1]$. Without loss of generality, let $\left\{y_{n_{k}}(t)\right\}$ be itself of $\left\{y_{n}(t)\right\}$. Put $y_{0}(t)=\lim _{m \rightarrow+\infty} y_{n}(t), t \in[0,1]$. Use $y_{n}(t), y_{0}(t)$, and 0 in place of $y_{n}(t), y(t)$, and $1 / n$ in Theorem 3.1, respectively. A similar argument to show Theorem 3.1 yields that $y_{0}(t)$ is a solution of

$$
y(t)=-\int_{0}^{t} a(s) f\left(s,(A y)(s), y_{n}(s)\right) d s, \quad t \in[0,1]
$$

The boundedness of $\left\{\left\|y_{n}\right\|\right\}$ leads to

$$
\begin{aligned}
z(t) & =\lim _{m \rightarrow+\infty} z_{n}(t) \\
& =\lim _{m \rightarrow+\infty}\left[\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n}(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y_{n}(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y_{n}(\tau) d \tau\right] \\
& =\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{0}(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y_{0}(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y_{0}(\tau) d \tau .
\end{aligned}
$$

Hence $z \in \Omega$. By Lemma 2.2, for any $x \in\left\{x_{\alpha}\right\}$, there exists $\left\{x_{n_{k}}\right\} \subseteq\left\{x_{n}\right\}$ such that $\left\|x_{n_{k}}-x\right\| \rightarrow 0$. Notice that $x_{n_{k}}(t) \geq z_{n_{k}}(t) \geq z(t), t \in[0,1]$. Letting $k \rightarrow+\infty$, we have $x(t) \geq z(t), t \in[0,1]$; i.e., $\left\{x_{\alpha}\right\}$ has lower boundedness in $\Omega$. Zorn's lemma shows that (1.1) has a minimal $C^{1}[0,1]$ positive solution. By a similar proof, we can get the a maximal $C^{1}[0,1]$ positive solution. The proof is complete.

Theorem 3.4 Suppose that $\left(\mathrm{H}_{1}\right)-\left(\mathrm{P}_{3}\right)$ hold,$f(t, x, z)$ is decreasing in $x$ for all $(t, z) \in$ $[0,1] \times R_{-}, a(0) f(0, x, z) \neq 0$ and $\lim _{t \rightarrow 0} f(t, x, y) \neq+\infty$. Then (1.1) has an unique positive solution in $C^{1}[0,1]$.

Proof. Assume that $x_{1}$ and $x_{2}$ are two positive different solutions to (1.1), i.e., there exists $t_{0} \in(0,1]$ such that $x_{1}\left(t_{0}\right) \neq x_{2}\left(t_{0}\right)$. Without loss of generality, assume that $x_{1}\left(t_{0}\right)>x_{2}\left(t_{0}\right)$. Let $\varphi(t)=x_{1}(t)-x_{2}(t)$ for all $t \in[0,1]$. Obviously, $\varphi \in C[0,1] \cap C^{1}(0,1]$ with $\varphi\left(t_{0}\right)>0$.

Let $t_{*}=\inf \left\{0<t<t_{0} \mid \varphi(s)>0\right.$ for all $\left.s \in t \in\left[t, t_{0}\right]\right\}$ and $t^{*}=\sup \left\{t_{0}<t<1 \mid \varphi(s)>\right.$ 0 for all $\left.s \in t \in\left[t_{0}, t\right]\right\}$. It is easy to see that $\varphi(t)>0$ for all $t \in\left(t_{*}, t^{*}\right)$ and $\varphi$ has maximum in $\left[t_{*}, t^{*}\right]$. Let $t^{\prime}$ satisfying that $\varphi\left(t^{\prime}\right)=\max _{t \in\left[t_{*}, t^{*}\right]} \varphi(t)$. There are three cases: (1) $t^{\prime} \in\left(t_{*}, t^{*}\right)$; (2) $t^{\prime}=t^{*}=1 ;(3) t^{\prime}=0$.
(1) $t^{\prime} \in\left(t_{*}, t^{*}\right)$. It is easy to see that $\varphi^{\prime \prime}\left(t^{\prime}\right) \leq 0$ and $\varphi^{\prime}\left(t^{\prime}\right)=0$. Then $\varphi^{\prime \prime}\left(t^{\prime}\right)=$ $x_{1}^{\prime \prime}\left(t^{\prime}\right)-x_{2}^{\prime \prime}\left(t^{\prime}\right)$

$$
=-a\left(t^{\prime}\right) f\left(t^{\prime}, x_{1}\left(t^{\prime}\right), x_{1}^{\prime}\left(t^{\prime}\right)\right)+a\left(t^{\prime}\right) f\left(t^{\prime}, x_{2}\left(t^{\prime}\right), x_{2}^{\prime}\left(t^{\prime}\right)\right)>0
$$

a contradiction.
(2) $t^{\prime}=t^{*}=1$. Since $t^{\prime}=t^{*}=1$, we have $\sum_{i=1}^{m-2} \alpha_{i} \max \left\{\varphi\left(\xi_{i}\right)\right\}>\sum_{i=1}^{m-2} \alpha_{i} \varphi\left(\xi_{i}\right)=\varphi(1)$, a contradiction to $0<\sum_{i=1}^{m-2} \alpha_{i}<1$.
(3) $t^{\prime}=0$. Since $t^{\prime}=0$ and $x_{1}$ and $x_{2}$ are solutions, the proof of lemma 2.2 implies that there exist $x_{n, 1}$ and $x_{n, 2}$ such that

$$
\left\|x_{n, 1}-x_{1}\right\|<\frac{\varphi(0)}{2}, \quad\left\|x_{n, 2}-x_{2}\right\|<\frac{\varphi(0)}{2}
$$

where

$$
\begin{array}{ll}
x_{n, 1}(t)=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n, 1}(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y_{n, 1}(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y_{n, 1}(\tau) d \tau, & t \in[0,1], \\
x_{n, 2}(t)=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{1}-y_{n, 2}(\tau) d \tau-\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}}-y_{n, 2}(\tau) d \tau}{1-\sum_{i=1}^{m-2} \alpha_{i}}-\int_{0}^{t}-y_{n, 2}(\tau) d \tau, & t \in[0,1],
\end{array}
$$

and

$$
\begin{array}{ll}
y_{n, 1}(t)=-\frac{1}{n}-\int_{0}^{t} a(s) f\left(s, x_{n, 1}(s)+\frac{1}{n}, y_{n, 1}(s)\right) d s, & t \in[0,1], \\
y_{n, 2}(t)=-\frac{1}{n}-\int_{0}^{t} a(s) f\left(s, x_{n, 2}(s)+\frac{1}{n}, y_{n, 2}(s)\right) d s, \quad t \in[0,1],
\end{array}
$$

$y_{n, 1}(t) \leq-\frac{1}{n}, y_{n, 2}(t) \leq-\frac{1}{n}$ for all $t \in[0,1]$.
By a similar proof with above, there exists $t_{1} \in(0,1]$ such that $x_{n, 1}\left(t_{1}\right) \neq x_{n, 2}\left(t_{1}\right)$. Without loss of generality, assume that $x_{n, 1}\left(t_{1}\right)>x_{n, 2}\left(t_{1}\right)$. Let $\varphi_{n}(t)=x_{n, 1}(t)-x_{n, 2}(t)$ for all $t \in[0,1]$. Obviously, $\varphi_{n} \in C[0,1] \cap C^{1}(0,1]$ with $\varphi_{n}\left(t_{1}\right)>0$. Let $t_{*}=\inf \{0<t<$ $t_{1} \mid \varphi_{n}(s)>0$ for all $\left.s \in t \in\left[t, t_{1}\right]\right\}$ and $t^{*}=\sup \left\{t_{1}<t<1 \mid \varphi_{n}(s)>0\right.$ for all $\left.s \in t \in\left[t_{1}, t\right]\right\}$. It is easy to see that $\varphi_{n}(t)>0$ for all $t \in\left(t_{1 *}, t^{1^{*}}\right)$ and $\varphi_{n}$ has maximum in $\left[t_{1_{*}}, t^{1^{*}}\right]$. Let $t^{\prime \prime}$ satisfying that $\varphi\left(t^{\prime \prime}\right)=\max _{t \in\left[t_{1 *}, t^{1 *}\right]} \varphi(t)$. There are three cases: 1) $\left.t^{\prime \prime} \in\left(t_{1_{1 *}}, t^{1 *}\right) ; 2\right)$ $t^{\prime \prime}=t^{*}=1$; 3) $t^{\prime \prime}=0$.

The proof of 1 ) and 2) are similar with (1) and (2).
3) $t^{\prime \prime}=0$. We have $\varphi_{n}(t)<\varphi_{n}(0), t \in(0,1], \varphi_{n}^{\prime}(0)=0, \varphi_{n}^{\prime}\left(t_{\xi}\right)<0, t_{\xi} \in(0,1)$. Then

$$
\varliminf_{t_{\xi} \rightarrow 0+} \varphi_{n}^{\prime \prime}(t)=\varliminf_{t_{\xi} \rightarrow 0+} \frac{\varphi_{n}^{\prime}\left(t_{\xi}\right)-\varphi_{n}^{\prime}(0)}{t_{\xi}-0} \leq 0
$$

On the other hand, since $\varphi_{n}^{\prime \prime}(0)=x_{n, 1}^{\prime \prime}(0)-x_{n, 2}^{\prime \prime}(0)$

$$
=-a(0) f\left(0, x_{n, 1}(0)+\frac{1}{n}, x_{n, 1}^{\prime}(0)\right)+a(0) f\left(0, x_{n, 2}(0)+\frac{1}{n}, x_{n, 2}^{\prime}(0)\right)>0,
$$

a contradiction. Then (1.1) has at most one solution. The proof is complete.
Example 3.1. In (1.1), let $f(t, x, y)=k(t)\left[1+x^{-\gamma}+(-y)^{-\sigma}-(-y) \ln (-y)\right], a(t)=t^{-\frac{1}{3}}$, and

$$
k(t)=t^{-\frac{1}{2}}, \quad 0<t<1,
$$

where $\gamma>0, \sigma<-2$, and let $F(x)=1+x^{-\gamma}, G(y)=1+(-y)^{-\sigma}-(-y) \ln (-y)$. Then

$$
f(t, x, y) \leq k(t) F(x) G(y), \quad \delta=1, \quad \beta(t)=k(t)
$$

and

$$
\int_{-\infty}^{-1} \frac{d y}{G(y)}=+\infty
$$

By Theorem 3.1, (1.1) at least has a positive solution and Corollary 3.1 implies the set of solutions is compact.

## References

[1] K.Deimling, Nonlinear Functional Analysis, Springer - Verlag, Berlin, 1985.
[2] Y.Guo, W.Ge, Positive solutions for three-point boundary value problems with dependence on the first order derivative, J. Math. Anal. Appl., 290(2004), pp291-301.
[3] V.A.Il'in, E.I.Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equation 23 (8)(1987), pp979-987.
[4] V.A.Il'in, E.I.Moiseev, Nonlocal value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations 23 (7) (1987), pp803-810.
[5] B.Liu, Positive solutions of a nonlinear three-point boundary value problem, Applied Mathematics and Computation 132 (2002), pp11-28.
[6] R.Ma, Positive solutions for a nonlinear three-point boundary value problem, Electron. J.Differential Equations 34 (1999), pp1-8.
[7] C.P. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, Solvability of an $m$-point boundary value problem for second order ordinary differential equations, J. Math. Anal. Appl. 189 (1995) pp575-584.
[8] R.Ma, Donal O'Regan, Solvability of singular second order $m$-point boundary value problems Journal of Mathematical Analysis and Applications 301(2005), pp124-134.
[9] Mario Petrich and Norman Reilly, Completely regular semigroups, Canadian Mathematical Society series of monographs, Springer New York 64 (2002).
[10] D. Xia et al., Foundation of Real Variable Function and Applied Functional Analysis, Shanghai Science and Technology Press, Shanghai, (1987) (in Chinese).
[11] G.Yang, Minimal Positive Solutions to Some Singular Second-Order Differential Equations, Computers J. Math. Anal. Appl. 266 (2002), pp479-491.
[12] G.Yang, Positive solutions of some second order nonlinear singular differential equations, Computers Math.Appl. 45 (2003), pp604-615.
[13] G.Yang, Second order singular boundary value problems with sign-changing nonlinearities on infinity intervals. Nonlinear Analysis Forum. 9 (2) (2004), pp169-174.
(Received September 19, 2008)


[^0]:    *The project is supported by the fund of National Natural Science (10871120), the fund of Shandong Education Committee (J07WH08) and the fund of Shandong Natural Science (Y2008A06)
    ${ }^{\dagger}$ Corresponding author: yanbqcn@yahoo.com.cn

