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1 Introduction

Impulsive differential equations play a very important role in understanding mathematical models of real

processes and phenomena studied in physics, chemical technology, population dynamics, biotechnology, eco-

nomics and so on, see [1,2,8,10,17]. About wide applications of the theory of impulsive differential equations

to different areas, we refer the readers to monographs [5,7,18,19] and the references therein. Some resent

works on periodic and anti-periodic nonlinear impulsive boundary value problems can be found in [6,12,20,21].

Recently, J. Chen, C. Tisdell, and R. Yuan in [4] studied the following first order impulsive nonlinear periodic

boundary value problem






−u′(t) = f(t, u), t ∈ [0, T ], t 6= t1,

u(t+1 ) − u(t−1 ) = I(u(t1)),
u(0) = u(T ),

(1.1)

where T > 0 and f : [0, T ] × Rn → Rn is continuous on (t, u) ∈ [0, T ] \ {t1} × Rn. The authors studied

the existence of solutions to the problem (1.1) in view of differential inequalities and Schaefer’s fixed-point

theorem. Their results extend those of [9,14] in the sense that they allow superlinear growth in nonlinearity

‖f(t, p)‖ in ‖p‖.
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About further investigation, in 2007, Bai and Yang in [3] presented the existence results for the following

second-order impulsive periodic boundary value problems














u′′(t) = f(t, u(t), u′(t)), t ∈ [0, T ] \ {t1},
u(t+1 ) = u(t−1 ) + I(u(t1))),
u′(t+1 ) = u′(t−1 ) + J(u(t1)),
u(0) = u(T ), u′(0) = u′(T ).

(1.2)

Inspired by [3,4], in this paper, we investigate the following second order impulsive nonlinear boundary

value problems














−u′′(t) + p(t)u′(t) + q(t)u(t) = f(t, u(t), u′(t)), t ∈ [0, T ] \ {t1, t2, ..., tk},
4u(ti) = ai, i = 1, 2, ..., k,

4u′(ti) = bi, i = 1, 2, ..., k,

u(0) = βu(T ), u′(0) = γu′(T ),

(1.3)

where f : [0, T ]×Rn×Rn → Rn is continuous on (t, u, v) ∈ [0, T ]\{ti}×Rn×Rn, i = 1, 2, ..., k, p, q ∈ C([0, T ]),

ai, bi are constants for i = 1, 2, ..., k, β, γ are constants satisfying |β| ≥ 1, |γ| ≥ 1. Notice that our results not

only extend some known results from the nonimpulsive case [16] to the impulsive case, or from single impulse [3]

to multiple impulses, but also extend those of [11] in the sense that we allow superlinear growth of ‖f(t, u, v)‖

in ‖u‖ and ‖v‖. Furthermore, the impulsive boundary-value problem reduces to a periodic boundary value

problem [15,22] for β = γ = 1, p = q ≡ 0, and anti-periodic boundary value problem [21] for β = γ = −1,

p = q ≡ 0. Hence, the problem (1.3) can be considered as a generalization of periodic and anti-periodic

boundary value problems.

We shall establish the existence of solutions for impulsive BVP (1.3) by means of well-known Schaefer’s

fixed-point theorem. The rest of paper is organized as follows. In section 2, we present some definitions and

lemmas, and the fixed point theorem which is key to our proof. In section 3, the new existence theorem of

(1.3) is stated. An example is given in the last section to demonstrate the application of our main result.

2 Preliminaries

First, we introduce and denote the Banach space PC([0, T ], Rn) by

PC([0, T ], Rn) = {u : [0, T ] → Rn|u ∈ C([0, T ] \ {ti}, R
n),

u is left continuous at t = ti, the right − hand limit u(t+i ) exists}

with the norm

‖u‖PC = sup
t∈[0,T ]

‖u(t)‖,

where ‖ · ‖ is the usual Euclidean norm.

We denote the Banach space PC1([0, T ]; Rn) by

PC1([0, T ], Rn) = {u ∈ C1([0, T ] \ {ti}, R
n),

u is left continuous at t 6= ti, u
′(t+i ), u′(t−i ) exist}
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with the norm

‖u‖PC1 = max{‖u‖PC, ‖u′‖PC}.

The following fixed-point theorem due to Schaefer, is essential in the proof of our main result.

Lemma 2.1. Let E be a normed linear space and Φ : E → E be a compact operator. Suppose that the set

S = {x ∈ E|x = λΦ(x), for some λ ∈ (0, 1)}

is bounded. Then Φ has a fixed point in E.

Lemma 2.2. Assume p ∈ C[0, T ], q(t) ∈ C([0, T ], (−∞, 0]). Let φ1, φ2 be the solutions of
{

φ′′
1 (t) + p(t)φ′

1(t) + q(t)φ1(t) = 0,

φ1(0) = 0, φ1(T ) = T,
(2.1)

and
{

φ′′
2 (t) + p(t)φ′

2(t) + q(t)φ2(t) = 0,

φ2(0) = T, φ2(T ) = 0.
(2.2)

Then

(i) φ1 is strictly increasing on [0,T];

(ii) φ2 is strictly decreasing on [0,T].

Proof. The proof is similar to that of Lemma 2.1 in [13], so we omit it here.

Remark 2.3. It follows from Lemma 2.2 that

φ1(t)φ2(s) ≤ φ1(s)φ2(s) ≤ φ1(s)φ2(t), 0 ≤ t ≤ s ≤ T. (2.3)

In order to prove our main results, we present a useful lemma in this section. Consider the following

impulsive boundary value problem



















−u′′(t) + p(t)u′(t) + q(t)u(t) = h(t), t 6= {t1, t2, ..., tk},

4u(ti) = ai, i = 1, 2, ..., k,

4u′(ti) = bi, i = 1, 2, ..., k,

u(0) = βu(T ), u′(0) = γu′(T ),

(2.4)

where ai, bi are constants for i = 1, 2, ..., k, h ∈ PC[0, T ].

Lemma 2.4. For h(t) ∈ PC[0, T ], the problem (2.4) has the unique solution

u(t) = Mφ1(t) + Nφ2(t) + φ1(t)

∫ T

t

1

ρ
h(s)φ2(s)l(s)ds

+φ2(t)

∫ t

0

1

ρ
h(s)φ1(s)l(s)ds +

∑

ti<t

bi(t − ti) +
∑

ti<t

ai, (2.5)

where φ1, φ2 satisfies (2.1), (2.2) respectively, and

l(t) = exp(
∫ t

0
p(s)ds), ρ := φ

′

1(0), (2.6)
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M =

γ

∫ T

0

1

ρ
h(s)φ1(s)l(s)dsφ

′

2(T ) −

∫ T

0

1

ρ
h(s)φ2(s)l(s)dsφ

′

1(0) + γ
∑

ti<T

bi

φ
′

1(0) − γφ
′

1(T ) + β(φ
′

2(0) − γφ
′

2(T ))

−

β

(

∑

ti<T

bi(T − ti) +
∑

ti<T

ai

)

(φ
′

2(0) − γφ
′

2(T ))

T [φ
′

1(0) − γφ
′

1(T ) + β(φ
′

2(0) − γφ
′

2(T ))]
. (2.7)

N =

βγ

∫ T

0

1

ρ
h(s)φ1(s)l(s)dsφ

′

2(T ) − β

∫ T

0

1

ρ
h(s)φ2(s)l(s)dsφ

′

1(0) + βγ
∑

ti<T

bi

φ
′

1(0) − γφ
′

1(T ) + β(φ
′

2(0) − γφ
′

2(T ))

+

β

(

∑

ti<T

bi(T − ti) +
∑

ti<T

ai

)

(φ
′

1(0) − γφ
′

1(T ))

T [φ
′

1(0) − γφ
′

1(T ) + β(φ
′

2(0) − γφ
′

2(T ))]
. (2.8)

Proof. Since φ1, φ2 are two linearly independent solutions of the equation

−u′′(t) + p(t)u′(t) + q(t)u(t) = 0, t ∈ [0, T ], (2.9)

we know the solutions of (2.9) can be presented as

u(t) = c1φ1(t) + c2φ2(t),

where c1, c2 are any constants.

Let u∗ = c1(t)φ1(t) + c2(t)φ2(t) be a special solution of

−u′′(t) + p(t)u′(t) + q(t)u(t) = h(t), t ∈ [0, T ]. (2.10)

Employing the method of variation of parameter, by some calculation, we get

c1(t) =

∫ T

t

1

ρ
h(s)φ2(s)l(s)ds, c2(t) =

∫ t

0

1

ρ
h(s)φ1(s)l(s)ds.

So the solution of (2.10) can be given as

u(t) = c1φ1(t) + c2φ2(t) + u∗.

Next, we consider






−u′′(t) + p(t)u′(t) + q(t)u(t) = h(t), t 6= {t1, t2, ..., tk},
4u(ti) = ai, i = 1, 2, ..., k,

4u′(ti) = bi, i = 1, 2, ..., k.

(2.11)

It is easy to know the solution of (2.11) is as the following form

u(t) = c1φ1(t) + c2φ2(t) + u∗ +
∑

ti<t

bi(t − ti) +
∑

ti<t

ai. (2.12)

Finally, we consider the solution of (2.4). Substituting (2.12) into u(0) = βu(T ), u′(0) = γu′(T ), we have
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c2T − c1βT − β
∑

ti<T

bi(T − ti) − β
∑

ti<T

ai = 0,

γ

∫ T

0

1

ρ
h(s)l(s)φ1(s)dsφ

′

2(T ) + γ
∑

ti<T

bi

−

∫ T

0

1

ρ
h(s)l(s)φ2(s)dsφ

′

1(0) = c1(φ
′

1(0) − γφ
′

1(T )) + c2(φ
′

2(0) − γφ
′

2(T )).

(2.13)

By some calculations, we get

c1 =

γ

∫ T

0

1

ρ
h(s)φ1(s)l(s)dsφ

′

2(T ) −

∫ T

0

1

ρ
h(s)φ2(s)l(s)dsφ

′

1(0) + γ
∑

ti<T

bi

φ
′

1(0) − γφ
′

1(T ) + β(φ
′

2(0) − γφ
′

2(T ))

−

β

(

∑

ti<T

bi(T − ti) +
∑

ti<T

ai

)

(φ
′

2(0) − γφ
′

2(T ))

T [φ
′

1(0) − γφ
′

1(T ) + β(φ
′

2(0) − γφ
′

2(T ))]
=: M,

c2 =

βγ

∫ T

0

1

ρ
h(s)φ1(s)l(s)dsφ

′

2(T ) − β

∫ T

0

1

ρ
h(s)φ2(s)l(s)dsφ

′

1(0) + βγ
∑

ti<T

bi

φ
′

1(0) − γφ
′

1(T ) + β(φ
′

2(0) − γφ
′

2(T ))

+

β

(

∑

ti<T

bi(T − ti) +
∑

ti<T

ai

)

(φ
′

1(0) − γφ
′

1(T ))

T [φ
′

1(0) − γφ
′

1(T ) + β(φ
′

2(0) − γφ
′

2(T ))]
:= N.

Hence, the problem (2.4) has the unique solution

u(t) = Mφ1(t) + Nφ2(t) + φ1(t)

∫ T

t

1

ρ
h(s)φ2(s)l(s)ds

+φ2(t)

∫ t

0

1

ρ
h(s)φ1(s)l(s)ds +

∑

ti<t

bi(t − ti) +
∑

ti<t

ai.

Let f : [0, T ] × Rn × Rn → Rn be continuous. We now introduce a mapping A : PC1([0, T ], Rn) →

PC([0, T ], Rn) defined by

Au(t) = Mφ1(t) + Nφ2(t) + φ1(t)

∫ T

t

1

ρ
f(s, u(s), u′(s))φ2(s)l(s)ds

+φ2(t)

∫ t

0

1

ρ
f(s, u(s), u′(s))φ1(s)l(s)ds +

∑

ti<t

bi(t − ti) +
∑

ti<t

ai. (2.14)

In view of Lemma 2.4, we easily know that u is a fixed point of operator A iff u is a solution to the impulsive

periodic boundary problem (1.3).

Lemma 2.5. Let f : [0, T ] × Rn × Rn → Rn be continuous. Then A : PC1([0, T ], Rn) → PC([0, T ], Rn) is a

compact map.

Proof. This is similar to that of Lemma 3.2 in [4].

For convenience, let

‖φ1‖0 = max
0≤t≤T

|φ1(t)|, ‖φ2‖0 = max
0≤t≤T

|φ2(t)|, G1 = max
0≤t≤T

|φ1(t)φ2(t)|,
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L = max
0≤t≤T

|l(t)|, ‖φ
′

1‖0 = max
0≤t≤T

|φ
′

1(t)|, ‖φ
′

2‖0 = max
0≤t≤T

|φ
′

2(t)|. (2.15)

Now we are in the position to present our main results.

3 Main results

Theorem 3.1. Suppose that f : [0, T ]×Rn×Rn → Rn is continuous and p ∈ C([0, T ], [0, +∞)), q(t) ≡ q ≤ 0,

|β| ≥ 1, |γ| ≥ 1, ai, bi are constants for i = 1, 2, ..., k. If there exist nonnegative constants α, Q such that

‖f(t, u, v)‖ ≤ 2α〈v, pv + qu − f(t, u, v)〉 + Q, (t, u, v) ∈ ([0, T ] \ {t1, t2, ..., tk}) × Rn × Rn. (3.1)

Then BVP (1.3) has at least one solution.

Proof. Let u ∈ PC([0, T ], Rn) be such that u = λAu for some λ ∈ (0, 1). That is,














−u′′(t) + p(t)u′(t) + qu(t) = λf(t, u(t), u′(t)), t ∈ [0, T ] \ {t1, t2, ..., tk},
4u(ti) = λai, i = 1, 2, ..., k,

4u′(ti) = λbi, i = 1, 2, ..., k,

u(0) = βu(T ), u′(0) = γu′(T ).

(3.2)

By Lemma 2.5, A is a compact map. In order to utilize Lemma 2.1, next, we will show S = {u ∈ PC1|u =

λAu, λ ∈ (0, 1)} is bounded. By(2.3), (2.14)-(2.15) together with (3.1)-(3.2), we obtain

‖u(t)‖ = λ‖Au(t)‖

= λ‖Mφ1(t) + Nφ2(t) +
1

ρ

∫ T

t

φ1(t)φ2(s)l(s)f(s, u(s), u′(s))ds

+
1

ρ

∫ t

0

φ1(s)l(s)φ2(t)f(s, u(s), u′(s))ds +
∑

ti<t

bi(t − ti) +
∑

ti<t

ai‖

≤ |M |‖φ1(t)‖ + |N |‖φ2(t)‖ + |
1

ρ
φ1(t)φ2(t)L|

∫ T

t

λ‖f(s, u(s), u′(s))‖ds

+|
1

ρ
φ1(t)φ2(t)L|

∫ t

0

λ‖f(s, u(s), u′(s))‖ds +
∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|

≤ |M |‖φ1‖0 + |N |‖φ2‖0 +
2

|ρ|
G1L

∫ T

0

(2α〈u′(s), λp(s)u′(s) + λqu(s) − λf(s, u(s), u′(s)〉 + Q)ds

+
∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|

=
2

|ρ|
G1L[

∫ T

0

2α〈u′(s), p(s)u′(s) + qu(s)− λf(t, u, u′) − (1 − λ)p(s)u′(s) − (1 − λ)qu(s)〉ds + QT ]

+|M |‖φ1‖0 + |N |‖φ2‖0 +
∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|

=
2

|ρ|
G1L[

∫ T

0

2α〈u′(s), u′′(s)〉ds−2α(1−λ)

∫ T

0

〈u′(s), p(s)u′(s)〉ds−2α(1−λ)q

∫ T

0

〈u′(s), u(s)〉ds
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+QT ] + |M |‖φ1‖0 + |N |‖φ2‖0 +
∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|

=
2

|ρ|
G1L[α

∫ T

0

d

ds
‖u′(s)‖2ds−2α(1−λ)

∫ T

0

〈
√

p(s)u′(s),
√

p(s)u′(s)〉ds−α(1−λ)q

∫ T

0

d

ds
‖u(s)‖2ds

+QT ] + |M |‖φ1‖0 + |N |‖φ2‖0 +
∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|

=
2

|ρ|
G1L[α(‖u′(T )‖2−‖u′(0)‖2)−2α(1−λ)

∫ T

0

‖
√

p(s)u′(s)‖2ds−α(1−λ)q(‖u(T )‖2−‖u(0)‖2)

+QT ] + |M |‖φ1‖0 + |N |‖φ2‖0 +
∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|

≤
2

|ρ|
G1L[α(1 − γ2)‖u′(T )‖2 − α(1 − λ)q(1 − β2)‖u(T )‖2 + QT ]

+|M |‖φ1‖0 + |N |‖φ2‖0 +
∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|

≤
2

|ρ|
G1LQT + |M |‖φ1‖0 + |N |‖φ2‖0 +

∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|.

A similar calculation yields an estimate on u′: differentiating both sides of the integration and taking norms

yields, for each t ∈ [0, T ], we have

‖u′(t)‖ = λ‖(Au)′(t)‖

= λ‖Mφ
′

1(t) + Nφ
′

2(t) +

∫ T

t

1

ρ
f(s, u(s), u′(s))φ2(s)l(s)dsφ

′

1(t)

+

∫ t

0

1

ρ
f(s, u(s), u′(s))φ1(s)l(s)dsφ

′

2(t) +
∑

ti<t

bi‖

≤ |M |‖φ
′

1‖0 + |N |‖φ
′

2‖0 +
1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)L

∫ T

0

λ‖f(s, u(s), u′(s))‖ds +
∑

ti<T

|bi|

≤
1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)L

∫ T

0

[2α〈u′(s), λp(s)u′(s) + λqu(s)

−λf(s, u(s), u′(s)〉 + Q]ds + |M |‖φ
′

1‖0 + |N |‖φ
′

2‖0 +
∑

ti<T

|bi|

=
1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)L[

∫ T

0

2α〈u′(s), p(s)u′(s) + qu(s)

−λf(t, u, u′) − (1 − λ)p(s)u′(s) − (1 − λ)qu(s)〉ds + QT ] + |M |‖φ
′

1‖0 + |N |‖φ
′

2‖0 +
∑

ti<T

|bi|

=
1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)L[

∫ T

0

2α〈u′(s), u′′(s)〉ds − 2α(1 − λ)

∫ T

0

〈u′(s), p(s)u′(s)〉ds
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−2α(1 − λ)q

∫ T

0

〈u′(s), u(s)〉ds + QT ] + |M |‖φ
′

1‖0 + |N |‖φ
′

2‖0 +
∑

ti<T

|bi|

=
1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)L[α

∫ T

0

d

ds
‖u′(s)‖2ds− 2α(1−λ)

∫ T

0

〈
√

p(s)u′(s),
√

p(s)u′(s)〉ds

−α(1 − λ)q

∫ T

0

d

ds
‖u(s)‖2ds + QT ] + |M |‖φ

′

1‖0 + |N |‖φ
′

2‖0 +
∑

ti<T

|bi|

=
1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)L[α(‖u′(T )‖2 − ‖u′(0)‖2) − 2α(1 − λ)

∫ T

0

‖
√

p(s)u′(s)‖2ds

−α(1 − λ)q(‖u(T )‖2 − ‖u(0)‖2) + QT ] + |M |‖φ
′

1‖0 + |N |‖φ
′

2‖0 +
∑

ti<T

|bi|

≤
1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)L[α(1 − γ2)‖u′(T )‖2

−α(1 − λ)q(1 − β2)‖u(T )‖2 + QT ] + |M |‖φ
′

1‖0 + |N |‖φ
′

2‖0 +
∑

ti<T

|bi|.

≤
1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)LQT + |M |‖φ
′

1‖0 + |N |‖φ
′

2‖0 +
∑

ti<T

|bi|.

Thus, we conclude that

‖u‖PC1 ≤ max{
2

|ρ|
G1LQT + |M |‖φ1‖0 + |N |‖φ2‖0 +

∑

ti<T

|bi|(T − ti) +
∑

ti<T

|ai|,

1

|ρ|
(‖φ

′

1‖0‖φ2‖0 + ‖φ1‖0‖φ
′

2‖0)LQT + |M |‖φ
′

1‖0 + |N |‖φ
′

2‖0 +
∑

ti<T

|bi|}.

As a result, set S is bounded. Applying Scheafer’s fixed-point theorem, the problem (3.2) has at least one

fixed point, which means that (1.3) has at least one solution. We complete the proof.

A similar discuss as Theorem 3.1 leads to the following result.

Remark 3.2. If the condition (3.1) is replaced by

‖f(t, u, v)‖ ≤ 2α〈v, pv − f(t, u, v)〉 + Q, (t, u, v) ∈ ([0, T ] \ {t1, t2, ..., tk}) × Rn × Rn, (3.3)

and all the other assumptions are satisfied in Theorem 3.1, then the problem (1.3) has at least one solution.

4 An example

In this section, an example is given to highlight our main result. Consider the scalar impulsive periodic

BVP given by
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−u′′(t) + t2u′(t) − 9u(t) = f(t, u(t), u′(t)), t ∈ [0, 1] \ {t1, t2, ..., tk},
4u(ti) = ai, i = 1, 2, ..., k,

4u′(ti) = bi, i = 1, 2, ..., k,

u(0) = u(1), u′(0) = u′(1),

(4.1)

where 0 < t1 < · · · < tk < 1, f(t, u, v) =
8

π
arctanu + (1 − t2)v2 − v3, p(t) = t2, and q = −9. We claim that

(4.1) has at least one solution.

Proof. Let T = 1, β = γ = 1, and f(t, u, u′) = (1 − t2)u′2 − u′3 +
8

π
arctanu. It is easy to check that

x4 − 2x3 − x2 − 4x + 12 ≥ 0, x ≥ 0. (4.2)

And we see that

|f(t, u, v)| = |
8

π
arctanu + (1 − t2)v2 − v3|

≤
8

π
×

π

2
+ |v|2 + |v|3

≤ 4 + |v|2 + |v|3, (t, u, v) ∈ [0, 1]× R2. (4.3)

On the other hand, for α =
1

2
, Q = 16, we have

2α〈v, pv − f(t, u, v)〉 + Q

= v(t2v − (1 − t2)v2 + v3 −
8

π
arctanu) + 16

= v4 − (1 − t2)v3 + t2v2 −
8

π
arctanuv + 16

≥ |v|4 − |v|3 − 4|v| + 16, (t, u, v) ∈ [0, 1] × R2. (4.4)

In view of (4.2), we have

|v|4 − |v|3 − 4|v| + 16 ≥ |v|3 + |v|2 + 4. (4.5)

By (4.3)-(4.5), we obtain that

‖f(t, u, v)‖ ≤ 2α〈v, pv − f(t, u, v)〉 + Q.

Thus, condition (3.3) holds. By Remark 3.2, we conclude that the solvability of (4.1) follows.
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